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Abstract

Background: Numerous literatures have demonstrated that circular RNAs (circRNAs) are involved in multiple types
of tumors. However, the effects of circRNAs in melanoma are not very clear. In this study, we aimed to investigate
the roles and mechanisms of circ-FOXM1 in melanoma.

Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the expression
of circ-FOXM1, microRNA-143-3p (miR-143-3p), and Flotillin 2 (FLOT2) mRNA. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-
diphenyl-2-H-tetrazolium bromide (MTT) assay, flow cytometry analysis, and transwell assay were employed to test
cell proliferation, apoptosis, and invasion, respectively. The glucose consumption and lactate production were
examined by specific kits. Western blot assay was utilized for the detection of hexokinase2 (HK2), pyruvate kinase
isozyme type M2 (PKM2), and FLOT2. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were
employed to verify the targeting association between miR-143-3p and circ-FOXM1 or FLOT2. A murine xenograft
model was established to explore the effect of circ-FOXM1 in vivo.

Results: Circ-FOXM1 was elevated and miR-143-3p was reduced in melanoma tissues and cells. Circ-FOXM!1
deficiency impeded cell proliferation, invasion, and glycolysis and facilitated cell apoptosis in melanoma in vitro and
tumorigenesis in vivo. Circ-FOXM1 acted as a sponge of miR-143-3p and the impacts of circ-FOXM1 silencing on
cell proliferation, apoptosis, invasion, and glycolysis were overturned by miR-143-3p deletion. Moreover, FLOT2 was
a target gene of miR-143-3p and FLOT2 overexpression rescued the inhibitory effect of miR-143-3p on melanoma
progression.

Conclusion: Circ-FOXM1 facilitated the development of melanoma by upregulating FLOT2 through miR-143-3p.
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Background

Melanoma is one of the most notoriously invasive neo-
plasia, and it originates from cells that produce melanin
[1]. The prognosis of melanoma remains dismal because
melanoma is refractory to the current therapies [2, 3].
Moreover, the exact cause of malignant melanoma is
very complex and poorly understood. It is therefore
essential to explore the molecular pathogenesis of mel-
anoma and develop novel treatment targets for patients
with melanoma.

Circular RNAs (circRNAS) are a series of novel identified
non-coding RNAs (ncRNAs) with covalently closed-loop
structures [4]. With the improvements of bioinformatics
analysis and high throughput sequencing, more and more
circRNAs have been discovered and identified to participate
in the regulation of human tumors [5, 6]. For example,
circ-ABCB10 aggravated breast cancer carcinogenesis via
promoting the growth of tumor cells [7]. Circ_0020397 was
elevated in colorectal cancer (CRC) and facilitated CRC cell
viability and motility and impeded apoptosis [8]. Circ-
FOXM1 (also termed as circ_0025039) expression has been
identified to be raised in non-small lung cancer (NSCLC)
and contributed to NSCLC cell progression [9]. These
reports indicated that circRNAs played a crucial role in the
development of cancers. Nonetheless, only a very small
number of circRNAs are identified in melanoma yet and
the effects of circ-FOXMI1 in melanoma are still not very
clear. The purpose of this study is to explore the exact roles
and mechanisms of circ-FOXM1 in melanoma.

MicroRNAs (miRNAs), a type of short ncRNAs (~ 22
nucleotides), mainly alter gene expression via recogniz-
ing the 3’ untranslated region (3'UTR) of targeted
mRNAs at the posttranscriptional level [10]. Diverse
miRNAs were proved to function as tumor suppressors
to take part in the progression of melanoma. For in-
stance, Li et al. claimed that miR-155 could impede cell
proliferation and motility in malignant melanoma by
binding to CBL [11]. Zhao et al. declared that miR-140-
5p elevation hindered the malignant behaviors of melan-
oma cells via interacting with SOX4 [12]. Moreover,
miR-143-3p was identified to be decreased and acted as
an essential regulator in melanoma [13, 14]. Neverthe-
less, the potential mechanisms of miR-143-3p underlying
melanoma are far from being addressed. Flotillin 2
(FLOT?2) has been proved to play its tumorigenic role in
diverse human cancers, including melanoma [15, 16].
However, whether miR-143-3p can target FLOT2 to par-
ticipate in the development of melanoma has not been
unraveled.

In the presented research, the expression patterns of
circ-FOXM1, miR-143-3p, and FLOT2 in melanoma
were determined. Furthermore, the roles and regulatory
mechanisms of circ-FOXM1 were investigated by func-
tion and mechanism analysis.
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Materials and methods

Tissue collection

After the work was permitted by the Ethics Committee
of Peking University International Hospital and written
informed consents were provided by the patients, 30
pairs of melanoma tissues and adjacent normal tissues
were harvested from melanoma patients through surgery
at Peking University International Hospital. The tissue
specimens were preserved at — 80 °C before use.

Cell culture and cell transfection

Normal human epidermal melanocytes (HEMn) and
melanoma cells (A2058 and A375) were all bought from
the American Type Culture Collection (ATCC, Manas-
sas, VA, USA). These cells were grown in Dulbecco’s
modified Eagle’s medium (DMEM; Gibco, Grand Island,
NY, USA) containing 10% fetal bovine serum (FBS;
Gibco) and 1% penicillin-streptomycin (Gibco) at 37 °C
in a humidified incubator with 5% CO,.

The overexpression vector of circ-FOXM1 (circ-FOXM1),
the overexpression vector of FLOT2 (FLOT2) and their
control (pcDNA), small interfering RNA (siRNA) against
circ-FOXM1 (si-circ-FOXM1) and negative control (si-NC),
mimics of miR-143-3p (miR-143-3p) and control mimic
(miR-NC), inhibitors of miR-143-3p (anti-miR-143-3p) and
its control (anti-miR-NC), and short hairpin RNA against
circ-FOXM1 (sh-circ-FOXM1) and its control (sh-NC) were
bought from GeneCopoeia (Guangzhou, China). The syn-
thetic vectors or oligonucleotides were transfected into cells
using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA).

Quantitative real-time polymerase chain reaction (qRT-PCR)
Following total RNA was extracted from tissues and cells
with TRIzol reagent (Invitrogen), the RNAs were re-
versely transcribed into ¢cDNAs with PrimeScript™ RT
reagent Kit (Takara, Dalian, China) or All-in-One™
miRNA gRT-PCR Detection Kit (GeneCopoeia). Then
qRT-PCR was carried out on an ABI 7500 PCR system
(Applied Biosystems, Foster City, CA, USA) using SYBR
Premix Ex Taq II (Takara). The relative expression was
measured using the 22“* method. Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) or U6 was utilized
as an internal control. The primers were circFOXM1:

5-TTCCCTGCACGACATGTTTG-3" and R: 5'-
CTCTCAGTGCTGTTGATGGC-3"); miR-143-3p: (F:
5'-GGGGTGAGATGAAGCACTG-3" and R: 5'-
CAGTGCGTGTCGTGGAGT-3"); FLOT2: (F: 5'-

GGCAGTAGGAAACTGAGGAAGCT-3" and R: 5'-
GGACTGGTCTTCCCAGCCCTAAA-3"); GAPDH: (F:
5'-ATGGGGAAGGTGAAGGTCG-3" and R: 5'-
GGGGTCATTGATGGCAACAATA-3"); and Ué: (F: F:
5'-CTCGCTTCGGCAGCACATATACTA-3" and R: 5'-
ACGAATTTGCGTGTCATCCTTGCG-3").
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3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium
bromide (MTT) assay

For the detection of cell proliferation, cells were seeded
onto 96-well plates (Corning Incorporated, Corning, NY,
USA) after relevant transfection. Then 20 uL MTT (5
mg/mL; Sangon, Shanghai, China) was added to each
well at 24 h, 48 h, and 72 h and kept for an additional 4
h. Afterward, the formazan crystals were dissolved using
150 puL dimethyl sulfoxide (DMSO; Sangon). The optical
density was tested at 490 nm with a microplate reader
(Bio-Rad Laboratories, Hercules, CA, USA).

Flow cytometry analysis

The apoptosis of A2058 and A375 cells was evaluated
through Annexin V-fluorescein isothiocyanate (FITC)/
propidium iodide (PI) Apoptosis Detection Kit (Vazyme,
Nanjing, China). In brief, A2058 and A375 cells were
harvested, washed, and resuspended in binding buffer
following relevant transfection. Then cells were kept for
15 min with 5uL AnnexinV-FITC and 10 uL PI in the
dark. The rate of apoptosis was analyzed with a flow cy-
tometry (BD Biosciences, San Jose, CA, USA) within 1 h.

Transwell assay

Transwell insert chambers (Corning Incorporated) coated
with Matrigel (Solarbio Beijing, China) was employed for
the analysis of cell invasion capacity. Briefly, A2058 and
A375 cells (5 x 10° cells/well) were digested in DMEM
(Gibco) and seeded in the top chamber. DMEM (Gibco)
including 10% FBS (Gibco) was added to the bottom
chamber. Twenty-four hours later, cells that are still on
the upper chamber were removed and cells that invaded
to the lower chamber were fixed with paraformaldehyde
(Sangon), stained with crystal violet (Solarbio), and then
estimated under a microscope (Olympus, Tokyo, Japan).

Glucose consumption and lactate production assays

After relevant transfection, A2058 and A375 cells were
seeded in 6-well plates for 12h. The levels of glucose
consumption and lactate production were examined
using Glucose Assay Kit (Sigma-Aldrich, St. Louis, MO,
USA) and Lactate Assay Kit (Sigma-Aldrich) based on
the manufacturer’s instructions.

Western blot assay

Total protein in tissues and cells was extracted using RIPA
buffer (Beyotime, Shanghai, China) and determined using a
BCA Protein Quantification Kit (Vazyme). Twenty micro-
grams of proteins were separated by 10% sodium dodecyl
sulfonate-polyacrylamide gel (SDS-PAGE; Solarbio). Then
the protein samples were transferred onto polyvinylidene
difluoride membranes (Pall Corporation, New York, NYC,
USA). Thereafter, the membranes were blocked with non-
fat milk for 1h and probed with primary antibody:
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hexokinase2 (HK2; ab209847; Abcam, Cambridge, MA,
USA), pyruvate kinase isozyme type M2 (PKM2; ab137852;
Abcam), FLOT?2 (ab181981; Abcam), or GAPDH (ab9485;
Abcam) overnight at 4 °C. After incubation with secondary
antibody (ab205719; Abcam) for 2 h at room temperature,
the protein bands were examined by an enhanced chemilu-
minescence reagent (Vazyme).

Dual-luciferase reporter assay

The fragments of circ-FOXM1 and FLOT2 containing the
predicted wild-type or mutant complementary sequences
of miR-143-3p were cloned into pmirGLO plasmids (Pro-
mega, Madison, WI, USA), named as WT-circ-FOXM1,
MUT-circ-FOXM1, FLOT2 3'UTR-WT, and FLOT2 3’
UTR-MUT, respectively. Then cells were cultured in 24-
well plates and miR-143-3p or miR-NC together with in-
dicated luciferase reporter vector were co-transfected into
A2058 and A375 cells. Forty-eight hours later, Dual-
Luciferase Reporter Assay Kit (Promega) was adopted to
detect the luciferase activity.

RNA immunoprecipitation (RIP) assay

The EZ-Magna RIP kit (Millipore) was utilized for RIP
assay. Firstly, A2058 and A375 cells were lysed in RIP lysis
buffer. Then, cell lysates were incubated with magnetic
beads coated with antibody against Argonaute2 (Ago2;
Abcam) or immunoglobulin G (IgG; Abcam) for 6h.
Finally, the RNAs in the magnetic bead-binding com-
plexes were purified and subjected to qRT-PCR assay.

Murine xenograft model

BALB/c nude mice were bought from Shanghai SLAC La-
boratory Animals Co., Ltd. (4—6weeks old; Shanghai,
China) and assigned to 2 groups (7 mice/group). Sh-circ-
FOXM1 or sh-NC was transfected into A375 cells and
then the cells were subcutaneously injected into the right
side of the back of the mice. Eight days later, tumor length
(L) and width (W) were monitored every 4 days. Tumor
volume was calculated by (L x W?)/2. Following 28 days of
injection, the mice were euthanized by cervical dislocation
and the tumors were collected, weighted, and saved at -
80°C for further experiments. The steps were permitted
by the Ethics Committee of Animal Research of Peking
University International Hospital.

Statistical analysis

All experiments were repeated three times. The data
were exhibited as mean * standard deviation (SD) and
processed using software GraphPad Prism 7 (GraphPad
Inc., La Jolla, CA, USA). The difference was estimated
by Student’s t test or one-way analysis of variance
(ANOVA). Spearman’s correlation coefficient analysis
was performed to analyze the correlation between levels
of miR-143-3p and circ-FOXM1 or FLOT2 in melanoma
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tissues. It was regarded as statistically significant if P
value was less than 0.05.

Results

Circ-FOXM1 was increased and miR-143-3p was decreased
in melanoma tissues and cells

To validate the potential role of circ-FOXM1 in melan-
oma development, the expression of circ-FOXM1 in 30
melanoma tissues and corresponding normal skin tissues
was firstly tested by qRT-PCR. The data showed that circ-
FOXML1 expression was markedly raised in melanoma tis-
sues in reference to normal tissues (Fig. 1a). The analysis of
circ-FOXM1 in melanoma cells (A2058 and A375) and
normal human epidermal melanocytes (HEMn) indicated
that circ-FOXM1 was highly expressed in A2058 and A375
cells compared to HEMn cells (Fig. 1b). Subsequently, the
expression level of miR-143-3p in melanoma tissues and
cells was analyzed. The results of qRT-PCR exhibited that
miR-143-3p was conspicuously decreased in melanoma tis-
sues and cells compared to that in normal skin tissues and
HEMn cells (Fig. 1c, d). Moreover, there was an inverse
correlation between the expression of circ-FOXM1 and
miR-143-3p in melanoma tissues, as illustrated by Spear-
man’s correlation coefficient analysis (Fig. 1e). These results
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suggested that the dysregulation of circ-FOXM1 and miR-
143-3p might play vital roles in melanoma.

Silencing of circ-FOXM1 inhibited cell proliferation,
invasion, and glycolysis and induced apoptosis in
melanoma cells

In order to reveal the exact roles of circ-FOXM1 in mel-
anoma development, si-circ-FOXM1 was transfected into
A2058 and A375 cells to downregulate circ-FOXM1 ex-
pression. As shown in Fig. 2a, si-circ-FOXM1 transfection
led to a remarkable reduction of circ-FOXM1 expression
in A2058 and A375 cells. MTT assay proved that cell pro-
liferation was drastically suppressed in A2058 and A375
cells following the deficiency of circ-FOXM1 compared to
si-NC group (Fig. 2b, c). The results of flow cytometry
analysis exhibited that the apoptosis of A2058 and A375
cells was distinctly induced after circ-FOXM1 knockdown
compared to control group (Fig. 2d). The data of transwell
assay indicated that cell invasion was markedly inhibited
in si-circ-FOXM1 transfected A2058 and A375 cells com-
pared to si-NC transfected cells (Fig. 2e). Furthermore,
whether circ-FOXM1 regulated the glycolysis of melan-
oma cells was explored via detecting the levels of glucose
consumption, lactate production, and glycolysis key en-
zymes (including HK2 and PKM2). The results implied
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that the levels of glucose consumption, lactate production,
HK2, and PKM2 were all repressed in A2058 and A375
cells by circ-FOXM1 downregulation compared to control
groups (Fig. 2f-i), indicating that circ-FOXM1 knockdown
repressed glycolysis in melanoma cells. Collectively, circ-
FOXMLI silencing suppressed melanoma cell progression
via regulating cell proliferation, apoptosis, invasion, and
glycolysis.

Circ-FOXM1 regulated cell proliferation, apoptosis, invasion,
and glycolysis by targeting miR-143-3p in melanoma cells
To explore the potential mechanism of circ-FOXM1 in
melanoma progression, we searched online website star-
Base v2.0 and found that circ-FOXM1 contained the

complementary sequences of miR-143-3p (Fig. 3a), indicat-
ing that miR-143-3p might be a target of circ-FOXMI.
Dual-luciferase reporter assay displayed that the luciferase
activity in miR-143-3p and WT-circ-FOXM1 co-transfected
A2058 and A375 cells was inhibited compared to miR-NC
and WT-circ-FOXM1 co-transfected cells, whereas the lu-
ciferase activity was not changed in MUT-circ-FOXM1
groups (Fig. 3b, c). RIP assay showed that the levels of miR-
143-3p and circ-FOXM1 were distinctly increased in Ago2
immunoprecipitates in A2058 and A375 cells compared to
IgG immunoprecipitates (Fig. 3d, e). Moreover, we observed
that si-circ-FOXM1 transfection led to a marked decrease of
circ-FOXM1 expression and a marked increase of miR-143-
3p expression in A2058 and A375 cells, while circ-FOXM1
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transfection showed the opposite results (Fig. 3f, g). The
above data indicated that circ-FOXM1 negatively regulated
miR-143-3p expression via direct interaction.

Subsequently, we divided A2058 and A375 cells into 5
groups (control, si-NC, si-circ-FOXM1, si-circ-FOXM1
+ anti-miR-NC, and si-circ-FOXM1 + anti-miR-143-3p)
to explore whether circ-FOXM1 could alter melanoma

cell progression via targeting miR-143-3p. As exhibited
in Fig. 3h, the upregulation of miR-143-3p expression
caused by circ-FOXM1 knockdown was effectively over-
turned following miR-143-3p inhibition in both A2058
and A375 cells. As illustrated by MTT assay, flow cy-
tometry analysis, and transwell assay, the deletion of
miR-143-3p reversed the inhibitory effects on cell
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proliferation and invasion and the promotional effect on
cell apoptosis mediated by circ-FOXM1 silencing in
A2058 and A375 cells (Fig. 3i-1). In addition, the effect of
circcFOXM1 and miR-143-3p on glycolysis level was ex-
plored. The data showed that the levels of glucose con-
sumption, lactate production, HK2, and PKM2 were all
reduced in A2058 and A375 cells after circ-FOXM1
knockdown, while miR-143-3p inhibition partly re-
stored the impacts (Fig. 3m-p). To sum up, circ-
FOXM1 knockdown suppressed melanoma cell prolif-
eration, invasion, and glycolysis and promoted apop-
tosis by directly targeting miR-143-3p.

MiR-143-3p negatively regulated FLOT2 expression via
directly targeting in melanoma cells

As predicted by starBase v2.0, FLOT2 might be a target
gene of miR-143-3p and their potential binding sites were
shown in Fig. 4a. To verify it, dual-luciferase reporter

Page 7 of 12

assay and RIP assay were performed. The transfection of
miR-143-3p and FLOT2 3'UTR-WT caused an obvious
suppression in the luciferase activity in A2058 and A375
cells compared to miR-NC and FLOT2 3'UTR-WT co-
transfected groups, while no change was observed in
FLOT2 3'UTR-MUT groups, as demonstrated by dual-
luciferase reporter assay (Fig. 4b, c). The data of RIP assay
exhibited that miR-143-3p and FLOT2 were distinctly en-
hanced in Ago2 immunoprecipitates in A2058 and A375
cells compared to IgG control groups (Fig.4d, e). Next, we
determined the mRNA and protein levels of FLOT2 in
melanoma tissues and normal skin tissues. As we ex-
pected, the mRNA and protein levels of FLOT2 were
markedly raised in melanoma tissues relative to normal
tissues (Fig. 4f, h). Furthermore, FLOT2 expression was
negatively correlated with miR-143-3p expression in mel-
anoma tissues (Fig. 4g). The analysis of FLOT2 mRNA
and protein levels in melanoma cells and HEMn cells
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showed that the mRNA and protein levels of FLOT2 were
notably elevated in A2058 and A375 cells compared to
HEMn cells (Fig. 4i, j). Besides, we found that anti-miR-
143-3p transfection apparently decreased miR-143-3p
level but apparently increased FLOT2 protein level in
A2058 and A375 cells, whereas miR-143-3p transfection
increased miR-143-3p level and decreased FLOT?2 protein
level (Fig. 4k, 1). All these data suggested that miR-143-3p
negatively modulated FLOT2 expression by interacting
with FLOT?2 in melanoma cells.
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FLOT2 overexpression weakened the impacts of miR-143-
3p on cell proliferation, apoptosis, invasion, and
glycolysis in melanoma cells

Based on the above data, we wondered whether miR-143-
3p regulated melanoma progression via targeting FLOT2.
Thus, we divided A2058 and A375 cells into 5 groups:
control, miR-NC, miR-143-3p, miR-143-3p + pcDNA, and
miR-143-3p + FLOT2. As presented in Fig. 5a, miR-143-
3p overexpression notably repressed FLOT2 protein
expression in A2058 and A375 cells, while FLOT2
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transfection restored the repression. MTT assay indicated
that miR-143-3p remarkably suppressed the proliferation
of A2058 and A375 cells, whereas FLOT2 overexpression
abolished the impact (Fig. 5b,c). The results of flow cy-
tometry analysis displayed that the apoptosis of A2058
and A375 cells was induced by miR-143-3p, but the eleva-
tion of FLOT2 further repressed the effect (Fig. 5d). Cell
invasion was conspicuously hampered in A2058 and A375
cells after miR-143 transfection, whereas FLOT2 transfec-
tion effectively restored the effect, as demonstrated by
transwell assay (Fig. 5e). Moreover, the levels of glucose
consumption, lactate production, and glycolysis key en-
zymes were all reduced by miR-143-3p in A2058 and
A375 cells, while FLOT2 overexpression markedly
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overturned the impacts (Fig. 5f-i). All these outcomes
suggested that miR-143-3p could suppress melanoma cell
progression by targeting FLOT?2.

Circ-FOXM1 knockdown downregulated FLOT2 expression
by targeting miR-143-3p in melanoma cells

We further determined the association among circ-
FOXM1, miR-143-3p, and FLOT2. A2058 and A375 cells
were transfected with si-NC, si-circ-FOXM1, si-circ-
FOXM1 + anti-miR-NC, or si-circ-FOXM1 + anti-miR-
143-3p and then the mRNA and protein levels of FLOT2
were detected. The data of qRT-PCR assay and western
blot assay exhibited that circ-FOXM1 deficiency resulted
in a notable reduction of FLOT2 mRNA and protein
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expression in A2058 and A375 cells, but miR-143-3p in-
hibition partially restored the reduction (Fig. 6a, b). Thus,
we concluded that circ-FOXM1 could modulate FLOT?2
expression through sponging miR-143-3p.

Deficiency of circ-FOXM1 suppressed tumor growth in vivo
To investigate the function of circ-FOXM1 in tumori-
genesis in vivo, sh-circ-FOXM1 or sh-NC stably trans-
fected A375 cells were injected into the mice to
construct murine xenograft models. As shown in Fig. 7a
and b, tumor volume and weight were conspicuously
blocked in sh-circ-FOXM1 groups compared to sh-NC
control groups. Next, we determined the levels of circ-
FOXM1, miR-143-3p, FLOT2 mRNA, and FLOT2 pro-
tein in the collected tumor samples. The data showed
that the levels of circcFOXM1, FLOT2 mRNA, and
FLOT2 protein were decreased and the level of miR-
143-3p was increased in sh-circ-FOXM1 groups relative
to sh-NC groups (Fig. 7¢, d). Collectively, circ-FOXM1
knockdown blocked tumorigenesis in vivo.
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Discussion

A large number of studies have revealed that circRNAs
are closely related to disease occurrence and develop-
ment and have potential applications in disease diagnos-
tic markers, but their biological functions are still largely
unknown [17]. In the paper, we elucidated the effects of
circ-FOXM1 in melanoma. We observed that circ-
FOXM1 was obviously elevated in melanoma tissues and
cells. Moreover, our data exhibited that circ-FOXM1 defi-
ciency repressed cell proliferation, metastasis, and glycoly-
sis and facilitated apoptosis in melanoma by miR-143-3p/
FLOT axis.

It has been documented that circRNAs can sponge
miRNAs to suppress their functions [18]. Several cir-
cRNAs were verified to be associated with melanoma
progression. For example, Jin et al. manifested that cir-
cMYC was elevated in melanoma and facilitated melan-
oma cell growth and glycolysis [19]. Luan et al. verified
that circ_0084043 was highly expressed in melanoma
and facilitated melanoma cell proliferation and motility

- -~ sh-NC 1500
“ - sh-circ-FOXM1 >
E 1000- sh-circ g
° + 10004
£ ) [
2 o
o 5001 3 *
> 5 500-
o £
S
£ 2
o 0 -
8 12 16 20 24 28 sh-NC sh-circ-FOXM1
Days
C D sh-NC sh-circ-FOXM1
GAPDH w= s s = - -
€ ,-_ 3 sh-NC ;
'% 257 mm sh-circ-FOXM1 - 15
*
$ 20- g
s O 9 4, I
X 154 - 9
Q1. w s
< o X
£ 1.0- g 2
i ® .S 051 *
£ 057 x =2
il | -
& 0.0 T T T 0.0 T
circ-FOXM1 miR-143-3p FLOT2 sh-NC shcirc-FOXM1
Fig. 7 Knockdown of circ-FOXM1 hampered tumor growth in vivo. Sh-circ-FOXM1 or sh-NC transfected A375 cells were injected into the mice. a
Tumor volume was monitored every 4 days from the 8th day. b Tumor weight was measured after 28 days of injection. ¢ The levels of circ-
FOXM1, miR-143-3p, and FLOT2 mRNA were determined by gRT-PCR. d The protein level of FLOT2 was measured by western blot assay. *P
< 005




Tian et al. World Journal of Surgical Oncology (2020) 18:56

by directly interacting with miR-153-3p [20]. Bian et al.
proved that the circ_0025039 level was raised in melan-
oma and its silencing hampered melanoma cell growth,
colony formation, metastasis, and glycolysis by binding
to miR-198 [21]. In line with these data, we revealed that
circ-FOXM1 was conspicuously elevated in melanoma
tissues and cells. By loss-of-function experiments, we
discovered that the downregulation of circ-FOXM1 led
to a marked inhibition in melanoma cell proliferation,
metastasis, and glycolysis and a remarked promotion in
melanoma cell apoptosis. Moreover, circ-FOXM1 defi-
ciency blocked tumorigenesis in vivo. The outcomes il-
lustrated that circ-FOXM1 acted as an oncogene in
melanoma. Additionally, miR-143-3p was found to be
weakly expressed in melanoma and served as a target of
circ-FOXML1. Deletion of miR-143-3p restored the im-
pacts of circ-FOXM1 silencing on cell proliferation, me-
tastasis, and glycolysis in melanoma. All these data
unraveled that circ-FOXM1 knockdown decelerated
melanoma progression by sponging miR-143-3p.

Previous reports have shown that miR-143-3p was ab-
normally expressed in various cancers [22, 23]. In mel-
anoma, Panza et al. revealed that miR-143-3p was
diminished and miR-143-3p elevation impeded melan-
oma cell growth and motility and induced apoptosis by
binding to COX-2 [14]. Li et al. confirmed that miR-143
was reduced in melanoma and miR-143 upregulation
hampered melanoma cell growth and facilitated apop-
tosis by binding to Syn-1 [24]. Consistently, we observed
that overexpression of miR-143-3p hampered cell
growth, motility, and glycolysis and facilitated apoptosis
in melanoma. Moreover, FLOT2 was confirmed to be a
target gene of miR-143-3p. Hazarika et al. reported that
FLOT?2 elevation promoted cell progression and metas-
tasis in SB2 melanoma cells [15]. Doherty et al. sug-
gested that high level of FLOT2 was related to lymph
node metastasis in melanoma [25]. Moreover, Liu et al.
disclosed that FLOT2 could be targeted by miR-34a and
participated in the suppressive roles of miR-34a in
melanoma cell proliferation and motility [16]. Herein,
FLOT?2 elevation abrogated the influences of miR-143-
3p on cell growth, metastasis, and glycolysis in melan-
oma, indicating that miR-143-3p altered melanoma cell
development via interacting with FLOT?2.

Conclusion

In summary, circ-FOXM1 was upregulated in melan-
oma, and circ-FOXM1 contributed to melanoma cell
proliferation, motility, and glycolysis and repressed
apoptosis by upregulating FLOT?2 via targeting miR-143-
3p. Our data provided a novel regulatory network circ-
FOXM1/miR-143-3p/FLOT2 axis in melanoma progres-
sion and might have a crucial implication for melanoma
treatment.
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