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Abstract

Background: Bradykinin, a vasoactive peptide, has many biological functions. For example, it accelerates
angiogenesis. Thus, we studied the effects of bradykinin on the survival of perforator flaps.

Methods: Averagely, 50 male Sprague-Dawley rats were divided into control and bradykinin groups and underwent
procedures to the multiterritory perforator flap. Areas of flap survival were tested 7 days later. Flap perfusion was
evaluated by laser Doppler imaging. We assessed the extent of autophagy by determining LC3-Il/l, Beclin 1, and p62.
Flap angiogenesis was assessed by immunohistochemistry and H&E staining. We measured the level of vascular
endothelial growth factor (VEGF) protein using western blot. We assessed oxidative stress by measuring the activity of
superoxide dismutase (SOD) and malondialdehyde (MDA) levels. The apoptotic index was also evaluated by western

autophagy relative to the control group.

blot, and we determined nitric oxide (NO) production using an NO assay Kkit.

Results: The bradykinin group exhibited significantly larger areas of flap survival, higher blood supply, and more
neovascularization. The bradykinin group also had higher SOD activity, higher VEGF expression and NO content, and
reduced MDA compared to the control group. Rats treated with bradykinin also had lower levels of apoptosis and

Conclusion: Our results suggest that bradykinin promotes the survival of multiterritory perforator flaps by increasing
angiogenesis, promoting the release of NO, suppressing apoptosis, reducing oxidative stress, and inhibiting autophagy.
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Background

The skin, a protective barrier, is highly vulnerable to
trauma which can cause serious skin defects. A multiterri-
tory perforator flap can be used to cover these skin de-
fects. It is a skin flap that involves a perforator artery of
0.5 mm or greater, and is widely used because of their ad-
vantages [1, 2]. For example, when the skin is injured or
defected by severe trauma and burn etc., the multiterritory
perforator flaps can cover the huge skin defects. However,
avoiding necrosis of such flaps remains a challenge. Many
studies have proven that necrosis of the perforator flap al-
ways occurs at the dynamic and potential territories [3—5].
Previous studies have also demonstrated that inadequate
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blood supply [6], oxidative stress [7], and cells apoptosis
[8] are important factors that lead to flap necrosis. Thus,
there is a need to find an effective way to improve the sur-
vival of the multiterritory perforator flaps.

Bradykinin, a vasoactive peptide released from precursor
kininogens by a protease known as kallikrein [9], is an im-
portant component of both acute and chronic inflamma-
tory processes [10, 11]. However, bradykinin performs
several other biological functions as well. For example, it
increases expression of VEGF via the bradykinin B2 recep-
tor [12]. The levels of VEGF are particularly affected;
vascular endothelial cells are stimulated to regenerate and
proliferate, thus accelerating angiogenesis [13]. Yoshida et
al. [14] recently reported that kallikrein gene delivery
weakened apoptosis in ischemia—reperfusion (I/R) injury
and myocardial infarction via bradykinin. Bradykinin had
anti-apoptotic effects in a model of coronary artery disease
[15]. Bradykinin also played an antioxidative role in a rat
model of acute hyperglycemia [16], in which it reduced
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oxidative stress under conditions of hyperglycemia. More-
over, many studies suggest that bradykinin negatively reg-
ulates both apoptotic and autophagic responses via the
PI3K/Akt signaling pathway [17-19]. Excessive autophagy
is detrimental although the process of autophagy is advan-
tageous to cell survival [20, 21]. Inhibition of autophagy
could inhibit oxidative stress, suppress apoptosis, and en-
hance perforator flap survival [8].

Several recent publications have demonstrated that
bradykinin stimulates nitric oxide (NO) production [22-24].
NO, the product of nitric oxide synthase (NOS), promotes
cell proliferation and angiogenesis [25]. NO also inhibits
apoptosis and autophagy by stimulating the PI3K/Akt sig-
naling pathway [19], which is beneficial for flap survival
Therefore, we hypothesized that bradykinin inhibits apop-
tosis and autophagy by promoting the release of NO, which
may also improve flap survival.

The anti-apoptotic functions of bradykinin, with its
ability to inhibit autophagy, inhibit oxidative stress, ac-
celerate vascularization, and promote the release of NO,
should be beneficial to improve multiterritory perforator
flap survival. In this study, we hypothesized that bradyki-
nin enhances the survival of multiterritory perforator
flaps and analyzed its role in doing so in rats. We used
histological and protein analyses to investigate whether
bradykinin had these effects in a multiterritory perfor-
ator flap. We hope our study leads to novel strategies to
improve flap survival.

Methods

Animals

Sprague—Dawley (SD) rats, with a closed group of gen-
etic characteristics [26], were used in this study. Fifty
healthy male specific-pathogen-free (SPF) rats weighing
250 to 300 g were purchased from the Wenzhou Medical
University (license no. SCXK [Z]] 2015-0001). All used
procedures and animal care conformed to the Health
Guidelines National Institutes for the Care and Use of
Laboratory Animals. The Wenzhou Medical University
Animal Research Committee approved the study (wydw
2014—0015). Rats were housed in separate cages with
free access to food and water under standard environ-
mental conditions such as temperature 22-25°C, hu-
midity 60-70%, and 12-h light:12-h dark cycle. Rats
were divided into two groups randomly: the bradykinin
group and the saline (control) group. Each group con-
tained 25 rats.

Flap animal model

Rats were anesthetized with intraperitoneal pentobar-
bital (60 mg/kg) [8]. Before surgery, we removed dorsal
fur with a depilatory cream and electric shaver. A deep
circumflex iliac artery (DCIA) flap was made on the
right side of each rat dorsum [27]. In the particular flap,
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there are three vascular territories: the anatomic terri-
tory, the dynamic territory, and the potential territory.
In this flap model, the anatomic territory has a deep
circumflex iliac (DCI), the dynamic territory has an
intercostal artery (IC), and the potential territory has a
thoracodorsal artery (TD) [8]. The flap position was
approximately 2.5 x 11 cm in size, and it was standard-
ized by bony landmarks. Transillumination identified the
choke vessel zone (CVZ) between the IC and TD. Next,
the flap was sutured into the original position after the
TD and IC were ligated.

Drug administration

Rats in the bradykinin group were injected intraperito-
neal bradykinin (150 pg/kg; purity = 98.97%; Medchem
Express, Princeton, NJ, USA) [28] 30 min before the pro-
cedure. Rats in the control group were injected normal
saline at an equal volume for the same days. All rats were
housed individually. All rats were sacrificed after 7 days.

Flap assessment

On postoperative day 7 (POD 7), we took high-reso-
lution photographs of the flap with a digital camera. We
measured surviving flap areas by superimposing the
photographs onto graph paper. The percentages of the
viable area were quantified as follows: (range of survival/
total flap size) x 100%.

Experimental design

Five rats in each group were used for each test method.
In details, five rats in each group were used for flap sur-
vival observation and Laser Doppler perfusion imaging;
five rats in each group were used for hematoxylin and
eosin (H&E) and immunohistochemistry (IHC) staining;
five rats in each group were used for superoxide dismut-
ase (SOD) activity and malondialdehyde (MDA) content
tests; five rats in each group were used for NO content
test; and another five rats in each group were used for
western blot.

Hematoxylin and eosin staining

A sample (1 x1cm) from each flap CVZ [27] was col-
lected after the sacrifice of rats on POD 7, and routine
procedures of H&E staining kit (Solarbio Science &
Technology, Beijing, China) were performed. The thick-
ness of the flap tissue was measured under a light micro-
scope, and the number of microvessels in each area
(/mm?) was calculated to understand the condition of
microvascular density (MVD).

Western blot analysis

On POD 7, flaps from the CVZ were stored at — 80 °C.
We determined protein concentrations by using the BCA
assay (Thermo Fisher Scientific, Rockford, IL, USA). We
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performed routine procedures. The membranes were in-
cubated with the following primary antibodies: VEGF
(1:1000; Abcam, Cambridge, UK), p62 (1:1000; Abcam,
Cambridge, UK), Beclin 1 (1:1000; Cell Signaling Technol-
ogy (CST), Danvers, MA, USA), LC3 (1:1000; Sigma-Al-
drich, St. Louis, MO, USA), cleaved caspase-3 (1:1000;
CST), Bax (1:1000; CST), BCL-2 (1:1000; CST) and
GAPDH (1:2000; Bioworld Technology, St. Louis Park,
MN, USA). Next, membranes were incubated with goat
anti-rabbit secondary antibody for 2h. We quantified
band intensity using Image Lab (ver. 5.2, Bio-Rad Labora-
tories, Hercules, CA, USA).

Immunohistochemistry

On POD 7, samples from the CVZ which were fixed in
paraformaldehyde were sectioned into 5 pm slices. Sec-
tions were rehydrated in a graded series of ethanol after
they were deparaffinized through xylene. Then, sections
were immersed in 3% H,O, and incubated to saturate
nonspecific sites. Last sections were incubated with
CD34 (1:50; Abcam, Cambridge, UK) at 4 °C overnight.
Sections were imaged at x 100 magnification on an
image acquisition system (Olympus, Tokyo, Japan). The
number of CD34-positive microvessels was calculated in
five dense fields.

Laser Doppler perfusion imaging

On POD 7, blood perfusion images were obtained by a
Laser Doppler instrument (Moor Instruments, Axmin-
ster, UK).

Superoxide dismutase activity and malondialdehyde
content

SOD and MDA test kits (Nanjing Jiancheng Biology In-
stitution, Nanjing, China) were used to measure the oxi-
dative stress on the flaps. The flap specimens were
obtained from the choke vessel zone on POD 7, weighed,
homogenized, and diluted to 10% (volume/volume) on an
ice bath. Then, SOD activity and MDA content were de-
tected with the method as reported previously [27].

NO content assay
NO was assayed spectrophotometrically by measuring
the products of NO metabolism using NO content
assay kits [27] (Nanjing Jiancheng Biology Institution,
Nanjing, China).

Statistical analyses

We performed statistical analyses using SPSS version
19.0 (SPSS, Chicago, IL, USA). All data are presented as
means + standard errors of the mean (SEMs). We
compared data between groups using Student’s inde-
pendent ¢ test and one-way repeated measures analysis
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of variance. In all analyses, P < 0.05 was considered to
indicate statistical significance.

Results

Surviving area and blood perfusion

The boundary between the surviving and necrotic re-
gions was evident on POD 7 (Fig. la). The control
group survival rate was 71.83 +2.52%, which differed
significantly from that of the bradykinin group (85.83 +
0.98%). Compared to the control group, flap survival
was better in the bradykinin group, with less necrosis
(P<0.01; Fig. 1b). Laser Doppler images revealed the
flap perfusion differences (perfusion units (PU)) were
evident on POD 7 (Fig. 1c). Bradykinin improved blood
supply at the CVZ compared to the control group (con-
trol group, 428.38 + 23.39; bradykinin group, 505.85 +
25.52; P < 0.05; Fig. 1d).

Histology

The flaps from rats treated with bradykinin showed
more neovascularization and less necrosis than those
from the control group (H&E staining; Fig. 2a). The
mean MVD in the CVZ was higher in flaps from the
bradykinin group than the control group (39.47 +1.35
vs. 30.38 £ 2.10, respectively; P < 0.05; Fig. 2b). Endothe-
lial cells can be labeled by CD34. The number of
CD34-positive vessels/mm? can indicate the mean MVD.
Immunohistochemistry staining revealed that the num-
ber of CD34-positive vessels was higher in the bradyki-
nin group than the control group (42.13 + 2.59/mm? vs.
31.92 + 1.40/mm?, respectively; P < 0.05; Fig. 3a, b).

Western blot assay for VEGF

The expression of VEGF in the CVZ of all perforator
flaps was revealed by western blotting (Fig. 4a). VEGF
expression was higher in the bradykinin group (P < 0.05;
Fig. 4b).

Western blot analyses of the apoptotic index

The expression of apoptotic proteins, including cleaved
caspase-3, Bax, and Bcl-2, was investigated. Cleaved
caspase-3 and Bax are two types of apoptotic proteins
that participate in apoptosis, whereas Bcl-2 can resist
apoptosis [20, 21]. The levels of cleaved caspase-3 and
Bax were decreased, whereas that of BCL-2 was in-
creased on POD 7 in the bradykinin group (P < 0.05;
Fig. 5a, b).

SOD and MDA content

Compared to the control group, mean SOD activity was
much higher in the bradykinin group (45.46+1.43
U mg protein" vs. 30.61 + 147 U mg protein ™, respect-
ively; P <0.05; Fig. 6a). The bradykinin group also had a
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Fig. 1 a Photographs of the postoperative flaps from the bradykinin and control groups on day 7. b The flap survival rate (%) in the bradykinin group
(85.83 £ 0.98%) and control group (71.83 £ 2.52%). ¢ The perfusion images of a flap on POD 7. Red denotes high perfusion, and blue denotes low
perfusion with the scale bar. d The perfusion value on POD 7 (control group, 42838 + 23.39; bradykinin group, 505.85 + 25.52). n =5 per group.
*P <005 *P<001

much lower mean level of MDA (41.39 + 1.67 nmol mg pro-
tein') (60.05 + 2.25 nmol mg protein™*; P < 0.05; Fig. 6b).

Western blot analyses of autophagy markers

Western blot was used to assess Beclin 1 and LC3II/
LC3I expression in the CVZ of all perforator flaps. The
ratio of LC3 II to LC3 I was downregulated as well as
Beclin 1 in the bradykinin group. The control group had
a higher LC3II/LC3I ratio and Beclin 1 expression than
the bradykinin group (P < 0.05; Fig. 7a). p62 is a marker
of autophagic flux. Expression of p62 was much higher
in the bradykinin group than the control group (P < 0.05;
Fig. 7b).

NO content

Compared to the control group, NO production was
higher in the bradykinin group (1.18 £0.22 vs. 0.82 £
0.15, respectively; P < 0.05; Fig. 8).

Discussion

Bradykinin, a vasoactive peptide, is produced by the pro-
tease degradation of high molecular weight or low
molecular weight kininogens [29]. Bradykinin plays im-
portant roles in both acute and chronic inflammatory
processes. However, it also has anti-apoptotic [30] and an-
tioxidative [31] properties and promotes vascularization
[32]. Thus, we hypothesized that bradykinin would im-
prove the viability of multiterritory perforator flaps by
promoting vascularization, suppressing apoptosis, inhibit-
ing autophagy, promoting the release of NO, and redu-
cing oxidative stress.

Several authors have reported that treatment with
bradykinin increases VEGF expression in tumors [33].
VEGF can promote angiogenesis [13]. In a kininogen-
deficient rat tumor model (which cannot intrinsically
generate bradykinin), expression of VEGF and the extent
of angiogenesis were significantly less than in normal rats
[34]. In skin flaps, VEGF which is particularly active in
dermal vascular structures is secreted by fibroblasts and
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keratinocytes in the cutis [35]. VEGF can also promote
vascularization in multiterritory perforator flaps [27]. In
our study, the VEGF protein levels were upregulated after
treatment with bradykinin. Western blot analyses also
showed lower VEGF levels in the control group than the
bradykinin group. In addition, MVD showed more

neovascularization in the bradykinin group relative to the
control group. So, we know that bradykinin promotes
vascularization in multiterritory perforator flaps by im-
proving VEGF expression.

A postoperative flap that suffers from I/R injury exhibits
increased production of ROS, apoptosis, inflammation,

Control group
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Fig. 3 a The CD34-positive microvessels were represented by black arrows (original magnification x 100). b The number of CD34-positive vessels/
mm? was 42.13 + 2.59/mm? in the bradykinin group and 31.92 + 1.40/mm? in the control group. n =5 per group. *P < 0.05
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Fig. 4 a Levels of VEGF protein in the choke vessel zone (CVZ) were calculated as the fold relative to the control. GAPDH served as the loading

and so forth [36, 37]. Several publications have described
effective therapeutic strategies for inhibiting I/R injury
[36—38]. Among them, the use of hyperbaric oxygen to
inhibit I/R injury is accepted both clinically and experi-
mentally [39, 40]. Flap survival is further improved by
combining treatment with hyperbaric oxygen and vascular
growth factor [41, 42]. As mentioned previously, the
pathophysiological action of I/R injury determined the
final outcome of the flap.

Apoptosis plays a vital role in flap survival. The I/R
process can induce apoptosis which can lead to cell
death [43]. Burns et al. reported that cellular apoptosis
can lead to I/R injury [43]. With less apoptosis, flaps ex-
hibit a better blood supply and larger survival area [44].
When apoptosis is exacerbated, attenuation of apoptosis
ameliorates healing. Bradykinin had an anti-apoptotic ef-
fect under conditions of diabetes [45]. Our results also

show that bradykinin inhibits apoptosis, as reflected by
increased BCL-2 levels and decreased Bax levels [46, 47].
We also found that cleaved caspase-3 activity was
reduced in the bradykinin group [48]. So, we reach the
conclusion that bradykinin can suppress apoptosis in a
multiterritory perforator flap.

I/R injury can produce ROS, a significant component
of the complex oxidation process. ROS include free radi-
cals, oxygen ions, and peroxides that initiate I/R damage
[49-51]. ROS formed during I/R injury cause a lot of
changes that damage microcirculation (e.g., swelling of
endothelial cells, vasoconstriction) [37]. When skin flaps
experience ischemia, the oxidase system will be upregu-
lated significantly [52, 53]. This system is an important
source of ROS production during ischemia [54, 55].
Inhibition of the xanthine oxidase system reduces the
formation of ROS and increases the survival rate of flaps
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Fig. 5 a Expression of apoptotic proteins (cleaved caspase-3, Bax, and BCL-2). b The relative protein levels of apoptotic proteins. Expression of
apoptotic proteins were evaluated by optical density analyses, calculated as the fold relative to the control, and normalized to GAPDH. n=5 per
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[53, 56]. MDA content and SOD activity are biomarkers
of oxidative stress. In our research, we used MDA con-
tent and SOD activity to assess oxidative stress. Bradyki-
nin has a cardioprotective effect in acute cardiac I/R
injury [57]. In this research, the MDA content was much
lower in the bradykinin group relative to the control
group, whereas SOD activity was higher. Thus, bradyki-
nin suppresses oxidative stress in multiterritory perfor-
ator flaps.

ROS can induce angiogenesis but an excessive amount of
ROS inhibits angiogenesis [58—60]. It remains to be deter-
mined about the effects of ROS on angiogenesis. These
effects are likely dependent on different characteristics of a
disease. In the present study, bradykinin improved the
survival of multiterritory perforator flaps by suppressing

oxidative stress and accelerating vascularization. However,
the relationship between oxidative stress and vascularization
in multiterritory perforator flaps after treatment with brady-
kinin remains to be confirmed.

Scherz—Shouval and Elazar previously reported that
ROS induces autophagy [61]. By contrast, Vande et al.
reported that excessive autophagy increased the level of
ROS production [62]. Excessive autophagic activity has a
detrimental effect. It can consume functional compo-
nents under conditions of excessive autophagy and pro-
mote cell death [20, 63]. For instance, many experts
have reported that excessive autophagy enhances apop-
tosis, ROS production, and tissue injury [62-64]. The
effects of autophagy vary by disease or different periods
of a disease [65]. Wang et al. reported that inhibiting
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Fig. 7 a Expression of p62, Beclin 1, and LC3. The intensity of band was calculated as the fold relative to the control and normalized to GAPDH.
b Densitometric analyses of p62, the ratio of LC3 Il to LC3 |, and Beclin 1. n=5 per group. *P < 0.05, ***P < 0.001
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Fig. 8 Nitric oxide (NO) production in the CVZ on POD 7. n=5 per
group. *P < 0.05

autophagy enhanced perforator flap survival [8]. In the
current study, bradykinin also regulated autophagy
levels. Western blot analyses revealed that expression of
LC3II/LC3I and Beclin 1 decreased, which indicates that
autophagy was inhibited in the bradykinin group. p62 is
an autophagic flux marker. p62 was increased in the
group treated with bradykinin, which indicates that
autophagy was inhibited. Thus, bradykinin likely down-
regulates the level of autophagy in multiterritory perfor-
ator flaps.

Several authors have reported that bradykinin can acti-
vate the PI3K/Akt signaling pathway [18, 24, 66]. This
signaling pathway promotes the release of NO [22, 23].
Low levels of NO inhibit PTEN activity, thereby stimu-
lating the Akt signaling pathway, which suppresses neur-
onal apoptosis [67]. Inactivation of PTEN results in
increased mTORCI1 activity, leading to the inhibition of
autophagy [19]. NO, the product of NOS, promotes cell
proliferation and angiogenesis [25], which is also benefi-
cial for flap survival. In our study, NO levels decreased
in the control group compared to the bradykinin group.
Thus, NO inhibits apoptosis, autophagy, and tissue in-
juries. From the results, we conclude that bradykinin
suppresses apoptosis and autophagy by promoting the
release of NO in perforator flaps. The function of NO in
angiogenesis is also important for flap survival.

Conclusion

Bradykinin increased angiogenesis, suppressed apoptosis,
inhibited autophagy, and suppressed oxidative stress,
leading to higher perforator flap survival rate. In addition,
NO production was promoted in perforator flaps treated
with bradykinin, which may suppress apoptosis and in-
hibit autophagy.
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