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Identification of hub genes with diagnostic
values in pancreatic cancer by
bioinformatics analyses and supervised
learning methods
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Abstract

Background: Pancreatic cancer is one of the most lethal tumors with poor prognosis, and lacks of effective
biomarkers in diagnosis and treatment. The aim of this investigation was to identify hub genes in pancreatic
cancer, which would serve as potential biomarkers for cancer diagnosis and therapy in the future.

Methods: Combination of two expression profiles of GSE16515 and GSE22780 from Gene Expression Omnibus (GEO)
database was served as training set. Differentially expressed genes (DEGs) with top 25% variance followed by protein-
protein interaction (PPI) network were performed to find candidate genes. Then, hub genes were further screened by
survival and cox analyses in The Cancer Genome Atlas (TCGA) database. Finally, hub genes were validated in GSE15471
dataset from GEO by supervised learning methods k-nearest neighbor (kNN) and random forest algorithms.

Results: After quality control and batch effect elimination of training set, 181 DEGs bearing top 25% variance
were identified as candidate genes. Then, two hub genes, MMP7 and ITGA2, correlating with diagnosis and prognosis
of pancreatic cancer were screened as hub genes according to above-mentioned bioinformatics methods. Finally, hub
genes were demonstrated to successfully differ tumor samples from normal tissues with predictive accuracies reached
to 93.59 and 81.31% by using kNN and random forest algorithms, respectively.

Conclusions: All the hub genes were associated with the regulation of tumor microenvironment, which implicated in
tumor proliferation, progression, migration, and metastasis. Our results provide a novel prospect for diagnosis
and treatment of pancreatic cancer, which may have a further application in clinical.
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Background
Pancreatic cancer is one of the most lethal tumors due
to the poor prognosis, and now it is the fourth or fifth
most common causes of cancer mortality in developed
countries [1]. And it is estimated that by the year 2020,
pancreatic cancer would move to the second leading
cause of death [2]. Although some advances in under-
standing the molecular mechanisms of pancreatic cancer
have been achieved, there still exist difficulties in early
diagnosis due to non-specific symptoms and lacking

effective testing identification, making it usually found in
its late stage [3]. Until now, 1-year survival in pancreatic
cancer patients is still not significantly improved [4], and
the 5-year survival is less than 10% [5].
Numerous studies have focused on the investigation

of biomarkers and molecular mechanisms of pancre-
atic cancers, and it is demonstrated that accumulated
mutations in genes like oncogene Kras, and tumor-
suppressor genes including P16 as well as TP53 re-
sulted in the occurrence of pancreatic cancer [4]. One
study performed the whole-genome sequencing and
copy number variation (CNV) analyses showed that
several genes including TP53, SMAD4, CDKN2A,
ARID1A, ROBO2, PREX2, and KDM6A were disrupt
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resulting from chromosomal rearrangements in pan-
creatic ductal adenocarcinomas patients [6]. Molecular
mechanisms researches demonstrated that overexpres-
sion of protein-coupled receptor GPR87 enhanced
pancreatic cancer aggressiveness by activating NF-κB
signaling pathway [7]. Moreover, Zhong and colleges
have found that functional P38 MAPK activity con-
tributed to overall survival through suppressing JNK
signaling in pancreatic cancer [8]. In addition, aber-
rant expressions of some microRNAs have emerged as
an important hallmark of cancer recently [9]. It was
reported that microRNA-21 was overexpressed in pan-
creatic cancer, and could serve as a potential predictor
of survival [10]. One study has found that miR-506
facilitated pancreatic cancer progression and chemore-
sistance via SPHK1/Akt/NF-κB signaling pathway
[11]. Another study demonstrated that suppressing
microRNA-34 expression downregulated Bcl-2 and
Notch1/2 in pancreatic cancer cells, as well as significantly
inhibited cell growth and invasion, induced apoptosis and
G1 and G2/M arrest in cell cycle, and sensitized the cells
to chemotherapy and radiation [12].
However, traditional experimental methods as men-

tioned above could only identify single gene or a few
genes at once, which limits large-scale investigation of
hub genes and pathways in the systematic biology level.
Development of microarray and sequencing technologies
provides better methods for biomarker screening and
molecular mechanism discovery in cancer research.
Recent years with the accessibility of multi-omics data-
base like Gene Expression Omnibus (GEO) [13] as well
as The Cancer Genome Atlas (TCGA) [14] and so on, it
is now possible to acquire multi-sample data and com-
pare cancer profiles with normal profiles in multiple
omics dimensions. On one hand, omics data in multiple
dimensions leading to the system biology- and/or
network-based approach, which could better understand
the dysregulated molecular mechanisms in cancer devel-
opment and progression [15]. On the other hand, biol-
ogy- and/or network-based method can not only identify
critical genes but also can detect corresponding path-
ways and/or interactive network, which may provide bet-
ter insights into molecular mechanisms investigation
than dysregulated gene analysis individually [16]. For
example, Kras was proved to be the most frequently mu-
tated gene in pancreatic ductal adenocarcinoma [17],
and the mutation of Kras was a hallmark of pancreatic
cancer [18]. However, inhibitors targeting Kras gene
were largely unsuccessful, while some omics-based strat-
egies targeting Kras correlated pathways and interactive
genes were proved to bear better therapeutic effects than
targeting Kras individually [19].
To date, diagnosis of pancreatic cancer is mainly based

on clinical signs and pathology confirmation. However,

the specific symptoms and pathological imagines may
only be detected unambiguously at the late stage of
pancreatic cancer, which may lead to a limited therapies
and poor prognosis. This raises an urgent need for the
development of reliable biomarkers which can effect-
ively differ tumor from normal tissues based on ana-
lyses of gene expression profiles. Herein, in order to
identify novel diagnostic predictors and molecular
markers, we integrated two microarray datasets from
GEO database, and 11 candidate genes significantly dif-
ferentially expressed between tumor and normal sam-
ples were screened by bioinformatics analyses. Then
two hub genes, matrix metallopeptidase 7 (MMP7) and
integrin, alpha 2 (ITGA2), were further identified by
survival and cox analyses in TCGA database. These two
hub genes were validated in another expression profile
from GEO database, demonstrating that these hub
genes can successfully differ normal tissues from tumor
samples. The predictive accuracies of k-nearest neigh-
bor (kNN) and random forest algorithms were almost
94% and almost 82%, respectively. Results in our study
may provide an auxiliary evidence of pancreatic cancer
diagnosis and therapy in the future.

Methods
Data collection and preprocessing
A workflow of this study was shown in Fig. 1. Datasets
in our study were firstly searched in GEO database
(http://www.ncbi.nlm.nih.gov/geo/) by using these key-
words “pancreatic/pancreas” + “tumor/cancer” + “nor-
mal” + “GPL570,” and 165 datasets were obtained until
June 20th, 2018. Then these datasets were further
screened as following criteria: (1) Samples were from hu-
man pancreatic tissues. (2) Samples were not interfered
with any other treatments. Finally, three datasets,
GSE16515 [20], GSE22780, and GSE15471 [21], were
included in our study for further analysis.
All the datasets were performed by Affymetrix Human

Genome U133 Plus 2.0 Array (Affymetrix, Santa Clara,
CA, USA). GSE16515 dataset included 36 malignant
pancreatic samples and 16 normal pancreatic samples,
while the corresponding numbers in GSE22780 dataset
were 8 and 8. In order to obtain sample balance, com-
bination of GSE16515 and GSE22780 was used as train-
ing set to determine hub genes. Besides, raw expression
data of GSE15471 was downloaded from GEO, also per-
formed by Affymetrix Human Genome U133 Plus 2.0
Array. It composed of 39 normal and 39 malignant pan-
creatic samples, and served as testing set.
Firstly, the quality of all the datasets were detected with

“affyPLM” package in R, herein FitPLM weight, residual,
relative log expression (RLE), normalized unscaled stand-
ard errors (NUSE), and RNA degradation images were
evaluated. Then robust multiarray averaging (RMA) with
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“affy” package was used to do the background correction
and normalization. Before subsequent hub gene selection
in training set, empirical Bayes framework with “sva”
package in R was used to adjust the batch effects between
these two datasets.
In addition, we also downloaded RNA-sequencing data

of pancreatic cancer from The Cancer Genome Atlas
(TCGA) database (https://cancergenome.nih.gov/), and
all the raw data were also converted into gene symbol
expression matrix by R software and Perl software.

Differentially expressed genes screening
Herein, “limma” package was used to detect differen-
tially expressed genes (DEGs) between malignant pan-
creatic samples and normal samples in training set with
the threshold of adj.P value < 0.01 and absolute
log2-based fold change > 1.

Candidate gene selection
Variance of every DEGs in different samples were calcu-
lated and sorted by descending order, and the top 25%

Fig. 1 Flow diagram of the analysis procedure: data collection, analysis, hub gene selection and validation
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results were selected. Then, 181 genes bearing top 25%
variance were uploaded in Search Tool for the Retrieval
of Interacting Genes (STRING) database (https://string-
db.org/), and PPI network was constructed [22] by set-
ting minimum required interaction score at 0.700. Then
a plug-in Cytohubba in Cytoscape [23] was used to fur-
ther screen candidate genes. Herein, degree algorithm
was applied and the screening criterion was degree > 5.

Hub gene screening by survival and cox regression
analyses in TCGA
Candidate genes were further screened by survival
analysis and cox regression analysis in TCGA database
with “survival” package. Genes with P value less than
0.05 both in survival analysis and cox analysis were
further screened as hub genes.

Gene ontology annotation and pathway analyses of
candidate genes
In order to depict the biological function of candidate
genes, gene ontology (GO) biological process enrich-
ments were performed through Database for Annota-
tion, Visualization and Integrated Discovery (DAVID)
(https://david.ncifcrf.gov/) [24, 25]. And the visualization
of GO results was performed by “GOplot” package in R.

Validation of hub genes by supervised learning methods
In order to verify whether these hub genes were “real
hub genes” to discriminate tumor and normal samples,

kNN algorithm in “class” package and random forest
algorithm in “randomForest” package were performed.
The accuracy was used to evaluate the predictive results.
Herein, random forest algorithm was rerun for 100
times, and the mean value of the accuracies was calcu-
lated finally.

Results
Identification of DEGs
After the quality control of GSE16515 and GSE22780
datasets, these two profiles were suitable for subse-
quent analyses. And all the raw probe expression data
were converted into gene expression data finally. The
heat map of all the gene expressions in training set
was shown in Fig. 2a. After background correction
and normalization as well as batch effects adjustment,
724 DEGs were determined with the threshold of
adj.P value < 0.01 and absolute log2-based fold change
> 1 (Additional file 1). Among all the DEGs, there
were 591 upregulated genes and 133 downregulated
genes, and the volcano map for DEGs selection was
shown in Fig. 2b.

Determination of candidate genes
Variance analyses of 724 DEGs were further performed in
all the 68 different samples, and 181 candidate genes with
top 25% variance were screened (shown in Additional
file 2). Subsequently, all the 181 candidate genes were
uploaded to STRING database, and PPI network was

Fig. 2 Identification of differentially expressed genes (DEGs). Note: a heatmap for all the genes. b Volcano map for DEGs selection, red dots
represented upregulated genes and green dots represented downregulated genes
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constructed with minimum required interaction score
at 0.700. After elimination of disconnected node in the
network, there were 175 nodes and 102 edges in this
PPI network (Fig. 3). Finally, 11 genes (ALB, EGF, FN1,
ITGA2, COL1A2, SPARC, COL3A1, TIMP1, COL5A1,
COL11A1, and MMP7) with degree > 5 were screened
as candidate genes.

Selection of hub genes by survival and cox analyses
There were 178 pancreatic cancer samples and 4 normal
samples in TCGA database. In survival analysis, two
groups were defined, one is high expression group (ex-
pressions greater than mean expression of the gene) and
the other one is low expression group (expressions lower
than mean expression of the gene). After survival ana-
lyses of 11 candidate genes, 3 genes (MMP7, COL1A2,
and ITGA2) had significant difference of survival time
between these two groups (Fig. 4). As for cox regression
analysis, two genes (MMP7 and ITGA2) bear significant

difference between alive and death patients. Therefore,
MMP7 and ITGA2 were further screened as hub genes
for further analysis.

Functional annotation and pathway enrichment
GO enrichment results showed that 181 genes were
participated in 75 different biological process, and genes
in GO:0030198 implicated in extracellular matrix
organization exhibited the most significantly upregulated
expressions (Fig. 5a). In Fig. 5b, the biological processes
of top 5 GO terms enriched the most genes were shown,
of which GO:0007165 enriched 22 genes ranked as the
first with the biological process of signal transduction.
GO enrichment of two hub genes demonstrated that
these hub genes mainly participated in the regulation of
cell adhesion, transforming growth factor beta receptor
signaling pathway and extracellular matrix organization
or disassembly (Table 1).

Fig. 3 PPI network constructed by 181 candidate genes with minimum required interaction score at 0.700
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Prediction of pancreatic cancer by hub genes
Herein, kNN and random forest algorithms were applied
to detect whether these two hub genes could correctly
distinguish malignant samples from normal samples. We
can see from Table 2 that hub genes selected by method

1 (the method performed in this study) bear the highest
predictive accuracy, which reached to almost 93.59% by
using kNN method. As for random forest algorithm, the
mean predictive accuracy was 81.31% after rerunning
the method for 100 times. Furthermore, predictive

Fig. 4 Survival analysis to select hub genes in the TCGA dataset. Note: a COL5A1, b COL11A1, c MMP7, d ALB, e COL1A2, f COL3A1, g EGF, h FN1, i
ITGA2, j SPARC, kTIMP1

Fig. 5 GO annotation for all the 181 candidate genes. Note: a Expressions of every GO clusters. b Functional annotation of top 5 GO enriched
the most genes
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accuracies of different hub genes selected by other
methods were compared, and the results were listed in
Table 2. Conclusion could be drawn from Table 2 that
method 1 as proposed in this study had highly predictive
accuracies in both kNN and random forest algorithms.

Discussion
Compared with other cancers, the occurrence of pancre-
atic cancer is relatively rare; however, it is still a lethal
disease with poor prognosis. Until now, there still lacks
effective therapies against pancreatic cancer, and many
novel therapies are in the experimental stage. Therefore,
it is important to find some potential hub genes playing
crucial roles in regulating cancer occurrence and pro-
gression, which may become key targets in the treatment
of pancreatic cancer in the future. In addition, these hub
genes effectively differing cancer tissues from normal
samples may provide novel auxiliary evidence in pancre-
atic cancer diagnosis. It is demonstrated that pancreatic
cancer results from the accumulation of acquired muta-
tions, which may lead to the upregulation of some onco-
genes and downregulation of some tumor-suppressing
genes and genomic maintenance genes [4]. Therefore,
there might exist some DEGs between normal and
tumor samples, and these DEGs may play important
roles in regulating tumor occurrence, development, and
progression. In the present study, two genes ITGA2 and
MMP7 were screened from DEGs as hub genes by using
a series of bioinformatics methods, and they could dis-
criminate normal samples and tumor samples.
The matrix metalloproteinase (MMPs) is a family of

enzymes, bearing the capability to cleave extracellular
matrix substrates [26], as well as promotes the release of

pro-TNF-α, Fas ligand, and some cytokines in various
cancers cells [27]. One previous study has experimen-
tally demonstrated that genes in matrix metallopeptidase
family, collagen family, and integrin family were upregu-
lated in pancreatic cancer, and they may correlate with
cancer activity and poor prognosis [28]. MMPs also in-
volved in proliferative, migrating, and differentiated pro-
cesses in cells [29]. The interaction between MMPs and
extracellular ligand induced a series of signaling cascade,
and thus led to the functional regulation of intracellular
and extracellular activities. The expression of MMP7 has
been reported to be upregulated in several kinds of can-
cer, including colon cancer [27], pancreatic cancer [30],
breast cancer [31], gastric cancer [32], and esophageal
cancer [33]. One study has demonstrated that multiplex
detection of pancreatic biomarkers CA19-9, MMP7, and
MUC4 in sera samples were of high sensitivity, which
may act as the critical biomarker in diagnosis of pancre-
atic cancer [34]. Another study compared tumor tissues
with healthy control samples revealed that MMP7 was
highly predictive for advanced stage of pancreatic cancer,
which strongly associated with N1 status, T3/T4 stage,
moderate/poor differentiation, and perineural invasion
[35]. It has been reported that Stat3 was a critical factor
to facilitate precursor formation and enforced MMP7
expression in pancreatic cancer cells, while MMP7 level
was correlated with metastasis and survival in pancreatic
cancer patients [36].
ITGA2 encoding by ITGA2 gene is the alpha subunit

of the transmembrane receptor integrin, and it mainly
exerts the adhesive roles in cell-cell interaction, also pro-
motes the generation and adhesion of newly synthesized
extracellular matrix [37, 38]. The polymorphisms of
ITGA2 gene was related to the poor survival of nasopha-
ryngeal carcinoma [39]. ITGA2 gene was reported to
play migrating roles in colon cancer cells [40], and it
expressed in colorectal cancer with liver metastasis tis-
sues but absent in normal tissue [41]. In addition, epi-
genetic modifications such as DNA methylation were
also important in tumorigenesis, and hypomethylation of
ITGA2 with high gene expression was associated with
poor survival in pancreatic cancer patients [42]. One
research has found that ITGA2 was overexpressed in a
variety of gastric cancer patients mainly playing
pro-survival roles, and the blockage of ITGA2 could
induce apoptosis and inhibit cell migration in gastric
cancer [43]. Another research in gastric cancer revealed
that HMGA2, FOXL2, and ITGA2 were increased in
metastatic lymph nodes and distant metastases in gastric
cancer, and suppressing the HMGA2-FOXL2-ITGA2
pathway could serve as a new strategy in further treat-
ment in gastric cancer [44]. The transcriptional co-acti-
vators yes-associated protein (YAP) was considered as
oncogene in many types of cancer; ITGA2 stimulating

Table 1 Functional annotation of two hub genes ITGA2 and MMP7

Genes GO number Biological process

ITGA2 GO:0045987 Positive regulation of smooth muscle contraction

GO:0033591 Response to L-ascorbic acid

GO:0031346 Positive regulation of cell projection organization

GO:0043589 Skin morphogenesis

GO:0048333 Mesodermal cell differentiation

GO:0030198 Extracellular matrix organization

GO:0007155 Cell adhesion

GO:0042493 Response to drug

GO:0007596 Blood coagulation

GO:0007565 Female pregnancy

MMP7 GO:0006508 Proteolysis

GO:0030574 Collagen catabolic process

GO:0022617 Extracellular matrix disassembly

GO:0007568 Aging
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YAP activity was associated with unfavorable survival of
pancreatic cancer patients [45].
In order to validate whether these genes were real hub

genes, another mRNA expression profile GSE15471
from GEO database was utilized as testing set. Herein,
kNN and random forest algorithms were performed to
detect whether these hub genes could successfully distin-
guish tumor tissues from normal samples. We can see
from Table 2 that hub genes selected by method 1 in this
study represented the highest accuracy reaching to 94%
approximately with 2.56% false negative and 3.84% false
positive. In the cases of differing from tumor and normal
samples, reduction of false negative results was more im-
portant than the reduction of false positive result. Since
false negative results may lead to wrongly diagnose pan-
creatic cancer as normal condition, it may result in the
delay of timely treatment, and further lead to more
serious progression of disease as well as more waste of
medical resources and costs. Bedsides, random forest al-
gorithm also represented highly predictive accuracy of
81.31% after rerun for 100 times of method 1. Therefore,
method 1 bear highly predictive accuracies in both of
the two methods, and it could be inferred that these two
hub genes were real hub genes, which could successfully
discriminate normal and tumor samples. Another interest-
ing result could be found in Table 2 that selection of genes
with top 25% variance obviously increased the predictive
accuracy from 70 to 94% (method 1 vs. method 3).
In addition, we can choose different minimum re-

quired interaction score when constructing PPI network.
Minimum required interaction score is a threshold pro-
viding a score for each interactive pair, which is com-
puted as the joint probability from different evidence
(e.g., protein interaction, fusion, co-expression, text min-
ing). Higher score may represent more confident inter-
action while lower score may lead to more false positives
[22]. In order to elucidate whether setting different mini-
mum required interaction score may have influence on
hub gene selection, predictive accuracy was compared
(shown in Table 2). It can be found that higher mini-
mum required interaction score led to much higher pre-
dictive accuracies; method 5 bear the highest accuracy of
85% while the predictive accuracy of method 1 could
reach to almost 95% by using kNN method.
Hub genes screened in this study were rational. Firstly,

all the candidate genes and these two hub genes were
closely correlated with the progression of tumor. As
shown in GO enrichment, most of the candidate genes
were implicated in the biological process of extracellular
matrix, cell adhesion, cell proliferation, and signal trans-
duction; they play important role in the progression of
cancers. Moreover, both of the hub genes were impli-
cated in the regulation of tumor microenvironment,
including the regulation of tumor cells, stroma cells,

extracellular matrix (ECM), and some extracellular mol-
ecules like cytokines as well as chemokines. It has been
demonstrated that microenvironment was usually dys-
regulated and disorganized in cancer cells. Thus, disor-
dered microenvironment may be favorable to tumor
proliferation, progression, invasion and metastasis, and
exert drug-hampering roles [46, 47], and now some
treatment strategies have focused on the regulation of
tumor microenvironment. Since pancreatic cancer was
featured as uncontrolled and malignant invasion and
migration, therefore we can infer that these hub genes
implicated in tumor microenvironment might be core
meditators in pancreatic cancer diagnosis and therapy.
Secondly, two supervised learning methods were
performed, and both of the predictive results of these
two hub genes were good with lower false negative in
discriminating tumor samples from normal samples.
However, there also exist some limitations in our

study. Firstly, the number of samples in our study is not
too much. According to the dataset screening criteria,
three datasets were included in our study. There were
146 samples totally, of which 68 were training set and 78
were testing set. In the future, with more and more
investigations about pancreatic cancer would be per-
formed, more samples should be included. Secondly, in
this study, we mainly focused on the genes in the pan-
creatic tissue not the genes from circulating tumor cells
(CTC) nor circulating tumor DNA (ctDNA) in periph-
eral blood, since the genes in tissue are more accurate to
analyze the important biomarkers. Moreover, the data-
sets about peripheral blood in GEO database are not
enough to do the same research. In the future, the
microarray analysis of DNA in peripheral blood of pan-
creatic cancer patients should be further proposed.
Thirdly, in our study, all the hub genes were screened
and validated only by bioinformatics method, and
further exploration of the biological functions and mo-
lecular mechanisms of these hub genes both in vitro and
in vivo are needed to be fulfilled.

Conclusions
In summary, we conducted a series of bioinformatics
methods to find DEGs, further screened and validated
hub genes. These two hub genes, ITGA2 and MMP7,
may act as potential diagnostic and therapeutic bio-
markers in pancreatic cancer patients. This study pro-
vides several useful hub genes for future in vitro and in
vivo investigations of their molecular mechanisms in
pancreatic cancer diagnosis and therapy. And profile
data mining by bioinformatics analysis is an available
method to find potential diagnostic and prognostic bio-
markers systematically. Nevertheless, further molecular
mechanisms investigations by biological experiments are
still needed to be verified in pancreatic cancer cells.
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