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Abstract

Background: Trastuzumab has been prevailingly accepted as a beneficial treatment for gastric cancer (GC) by
targeting human epidermal growth factor receptor 2 (HER2)-positive. However, the therapeutic resistance of
trastuzumab remains a major obstacle, restricting the therapeutic efficacy. Therefore, identifying potential key genes
and pathways is crucial to maximize the overall clinical benefits.

Methods: The gene expression profile GSE77346 was retrieved to identify the differentially expressed genes (DEGs)
associated with the trastuzumab resistance in GC. Next, the DEGs were annotated by the gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways. The DEGs-coded protein-protein interaction (PPI) networks and
the prognostic values of the 20 hub genes were determined. Correlation of the hub genes were analyzed in The Cancer
Genome Atlas. The prognostic values of hub genes were further validated by Kaplan-Meier (KM) plotter.

Results: A total of 849 DEGs were identified, with 374 in upregulation and 475 in downregulation. Epithelium
development was the most significantly enriched term in biological processes while membrane-bounded vesicle was in
cellular compartments and cell adhesion molecular binding was in molecular functions. Pathways in cancer and ECM-
receptor interaction were the most significantly enriched for all DEGs. Among the PPI networks, 20 hub genes were
defined, including CD44 molecule (CD44), HER-2, and cadherin 1 (CDH1). Six hub genes were associated with favorable
OS while eight were associated with poor OS. Mechanistically, 2′-5′-oligoadenylate synthetase 1, 3 (OAS1, OAS3) and
CDH1 featured high degrees and strong correlations with other hub genes.

Conclusions: This bioinformatics analysis identified key genes and pathways for potential targets and survival predictors
for trastuzumab treatment in GC.

Keywords: Differentially expressed genes, Gene ontology, KEGG pathway, Gastric cancer, Trastuzumab, Resistance,
Protein-protein interaction

Background
Gastric cancer (GC) remains one of the leading common
causes for cancer-related mortality and major global heath
challenges [1–4]. Despite the incidence declining in indus-
trialized nations, most new cases are occurred in South
America, East Asia, and Eastern Europe [2, 5]. Surgery is
the primary treatment for resectable GC [6]. However, the
dissection extent of lymph node (D1, D2) remains

controversial [3]. Kang et al. reported 46.5% patients who
underwent curative surgery experienced recurrence, and
half of the recurrence occurred in less than 3 years [7]. In
the Dutch Gastric Cancer Group (DGCG) trial, 65% cura-
tive resected patients experienced recurrence with 30%
overall survival (OS) for D1 and 35% for D2 [8]. Consist-
ently, the Medical Research Council (MRC) trial reported a
34% 5-year OS [9]. Noteworthy, the inclusion of targeted
drugs, such as angiogenesis inhibitors (ramucirumab) and
epidermal growth factor receptor (EGFR) antibodies (nimo-
tuzumab), have shown encouraging therapeutic benefits in
GC patients [10, 11].
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Trastuzumab, a monoclonal antibody targeting epider-
mal growth factor receptor 2 (HER2) in breast cancer
[12], was also among the promising therapeutic manage-
ment to the GC patients with HER2-positive [13, 14]. It
eliminated the activity of HER2 receptor and weakened
subsequent multiple signaling pathways [15]. The first
randomized prospect trial had shown that a triplet regi-
men of trastuzumab, cisplatin, and a fluoropyrimidine
significantly improved the median OS of GC with HER2
overexpression or amplification [13]. In fact, secondary
resistance was acquired within a median of two thera-
peutic cycles [16]. Until now, the resistance to trastuzu-
mab in GC remains a major obstacle with limited
clinical benefits. Efficient biomarkers and underlying
mechanism are yet to be fully elucidated.
Hereby, potential biomarkers and pathways associated

with trastuzumab resistance were investigated in GC cell
lines by the gene expression profile, GSE77346 [17], from
the Genetic Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/). The prognostic values of the
biomarkers and potential mechanisms were assessed.

Methods
Gene expression profile from GEO database
The gene expression profile, GSE77346, was retrieved
from the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo/) [18]. The profile was
generated by GPL10558, Illumina Human 48 K gene chips
(Illumina HumanHT-12 V4.0 Expression BeadChip). The
GSE77346 dataset consisted of one trastuzumab-sensitive
NCI-N87 cell line and four trastuzumab-resistant cell lines
(N87-TR1, N87-TR2, N87-TR3, N87-TR4). Briefly, all the
cell lines were maintained in Roswell Park Memorial Insti-
tute (RPMI) 1640 medium with 10% heat-inactivated FBS.
The green fluorescent protein (GFP) +/luciferase+
NCI-N87 cell lines were harvested and injected into the
gastric walls of a nude mice. The tumor-bearing mice
were received 20 mg/kg trastuzumab i.p. twice per week
when the resulting tumors were detectable (Living Image
Software program, Xenogen). The trastuzumab treatments
were stopped when the tumors were relapsed. By repeated
GFP flow cytometric sorting (FACSAria II sorter, Becton
Dickinson), four trastuzumab-resistant cell lines were
established [17]. Next, total RNA was retrieved by TRIzol
reagent (Ambion, Warrington, UK). The synthesis of bio-
tinylated cRNA (Illumina TotalPrep RNA Amplification
Kit, Ambion) and the hybridization (Human HT-12 V4
BeadChip) were performed according to the manufacturer
protocols. Probe intensity was obtained and normalized
by the Illumina GenomeStudio software (Genome Studio
V2011.1) [17]. The gene expression profiles GSE13861, in-
cluding 84 samples (65 tumors and 19 normal tissues),
were used for investigation of mRNAs expression of the
hub genes between tumor and normal tissues (Illumina

Human V3) [19]. For external validation on gene expres-
sion profiles with other target drugs, we further included
GSE19043 and GSE95414. GSE19043 contained 21 sam-
ples from DiFi and GTL-16 cell lines, of which biological
triplicates of DiFi cells with gefitinib (EGFR inhibition)
and DMSO (control) were used in this study for valid-
ation. The platform was GPL5104, Sentrix HumanRef-8
v2 Expression BeadChip [20]. GSE95414 contained one
parental NCI-N87 cell line and one trastuzumab-DM1
(T-DM1, trastuzumab emtansine)-resistant cell line.
T-DM1 is designed to achieve a combinational therapy of
trastuzumab and DM1 (a potent microtubule-disrupting
drug, a maytansine derivative) [21]. The RNA was proc-
essed by Human Transcriptome Array 2.0 arrays (Affyme-
trix, GPL17586). Given the absence of biological
replicates, the fold change between the T-DM1-resistant
cell line and parental cell line was used for investigation
(original study of GSE95414 is not yet published).

Data processing on DEGs
The differentially expressed genes (DEGs) between the
trastuzumab-resistant cell lines and sensitive control
were identified by the GEO2R analytical tool [22].
Benjamini and Hochberg method was used for false dis-
covery rate (FDR). The cut-off values of DEGs were de-
fined as adj.p value < 0.05 and log2 fold change (log
FC) > 2 or < − 2. The DEG expression data were proc-
essed for a bidirectional hierarchical clustering plot
(FunRich, http://www.funrich.org) [23].

Gene ontology and pathway analysis of DEGs
The Database for Annotation, Visualization, and Integrated
Discovery (DAVID, http://david.abcc.ncifcrf.gov/) was
employed for the gene ontology (GO) consortium reference,
including biological processes (BP), cellular components
(CC), and molecular functions (MF) [24, 25]. In addition,
DAVID was also employed for pathway enrichment annota-
tions with the data resources from Kyoto Encyclopedia of
Genes and Genomes (KEGG, http://www.genome.jp/kegg/)
pathway enrichment analysis [24, 26].

Protein-protein interaction (PPI) networks and module
analysis
The interaction networks of the DEG-coded proteins were
determined by the Search Tool for the Retrieval of Inter-
acting Genes/Proteins (STRING, http://www.string-d-
b.org/) [27]. Node degree ≥ 5 was defined as the cut-off
values for further PPI networks visualization by Cytoscape
software (version 3.6.0; http://www.cytoscape.org/) [28].
The Molecular Complex Detection (MCODE) program
embedded in Cytoscape was used to subcluster the PPI
networks with predefined cutoff criterions (max. depth =
100, node score = 0.2 and k-score = 2) [29]. Hub genes
were defined by the degree value (paired connections
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between each node). In addition, the betweenness central-
ity (defining the fraction of shortest paths involved in a
given node) of the hub genes were also added.

Survival analysis of the hub genes
Kaplan-Meier (KM) plotter enables comprehensive ana-
lysis of the prognostic values among lists of genes in
various cancers based on multiple genomic profiles, in-
cluding GSE14210, GSE15459, GSE22377, GSE29272,
GSE51105, and GSE62254 [30]. The prognostic values of
overall survivals (OS) for hub genes were displayed with
the hazard ratios (HR) and log-rank p values.

Hub genes correlation in TCGA
The gene expression profiling interactive analysis (GEPI
A, http://gepia.cancer-pku.cn) was established for cus-
tomized genomic analysis based on The Cancer Genome
Atlas (TCGA) database [31]. The top 20 hub genes were
extracted for interactive networks based on paired gene
correlations of the stomach adenocarcinoma (STAD) co-
hort in TCGA (Pearson correlation coefficients). In
addition, the mRNA expressions of the hub genes were
also investigated between tumor and normal tissues.
Moreover, the stage-specific expression of each hub

gene was also generated by GEPIA. The mRNA expres-
sions of the hub genes of TCGA (STAD) were also re-
trieved from the Xena system, University of California,
Santa Cruz (UCSC) for prognostic analysis [32].

Statistical analysis
Generally, p value < 0.05 was defined as cut-off criterion
and considered statistically significant in all cases. SPSS
17.0 (Chicago, IL, USA) and Prism 5.0 (GraphPad Soft-
ware, San Diego, CA) were used for statistical analysis
and illustration.

Results
Identification of DEGs and heat map clustering
A total of 849 DEGs were identified to be associated with
trastuzumab resistance, with 374 genes upregulated and
475 downregulated (Fig. 1). A bidirectional hierarchical
clustering heat map of the DEGs was illustrated (Fig. 2).

GO enrichment analysis
The GO enrichment analysis was conducted by the DAVID
tool. A total of 193 BP terms significantly enriched, includ-
ing epithelium development/cell surface receptor signaling
pathway/locomotion (Table 1). A total of 23 CC terms were
significantly enriched, including membrane-bounded
vesicle/extracellular region part/extracellular vesicle
(Table 1). A total of nine MF terms were significantly
enriched, including top-ranked cell adhesion molecular
binding/glycoprotein binding/growth factor binding
(Table 1). Specifically, in each term, top ranked 10 most

significantly enriched gene-ontologies of upregulated and
downregulated DEGs were compared (Fig. 3). In BP term,
nervous system development and response to type I inter-
feron were significantly enriched in up/downregulated
DEGs, respectively (Fig. 3a). In CC term, proteinaceous
extracellular matrix and extracellular region part were sig-
nificantly enriched in up/down regulated DEGs, respect-
ively (Fig. 3b). In MF term, protein dimerization activity
and cell adhesion molecule binding were significantly
enriched in up/down regulated DEGs, respectively (Fig. 3c).

KEGG pathways analysis
Noteworthy, only two significant signaling pathways were
identified in KEGG pathway analysis with cut-off values
(p < 0.05, FDR < 0.05): pathways in cancer (hsa05200) and
ECM-receptor interaction (hsa04512) (Table 2). The top
ten enriched signaling pathways in upregulated and down-
regulated DEGs were illustrated, respectively (Fig. 4). Of
note, no significant pathway was identified in upregulated
set, and only one, the pathways in cancer (hsa5200), was
identified as significant in downregulated set.

PPI network and modules
Next, the PPI networks were initially obtained by the
STRING database and visualized by Cytoscape with degrees
of each nodes ≥ 5. A total of 291 nodes 1883 edges were in-
cluded in the PPI networks (Fig. 5). The top 20 hub genes

Fig. 1 Volcano plot of the differentially expressed genes (DEGs)
involved in trastuzumab-resistant gastric cancer (GC) with respect to
control. The negative log10-adjusted p values (y-axis) were plotted
against log2 fold change (log2FC) (x-axis). DEGs were identified by
GEO2R. The threshold for significance was|log2FC| > 2 and adjusted
p value < 0.05. Red, upregulated DEGs; green, downregulated DEGs
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with highest degrees were determined, including CD44 mol-
ecule (CD44), erb-b2 receptor tyrosine kinase 2 (HER2),
cadherin 1 (CDH1), 2′-5′-oligoadenylate synthetase 1–3
(OAS1–3), 2′-5′-oligoadenylate synthetase-like (OASL),
ISG15 ubiquitin-like modifier (ISG15), bone morphogenetic
protein 4 (BMP4), signal transducer and activator of tran-
scription 1 (STAT1), early growth response 1 (EGR1), cyclin
D1 (CCND1), vimentin (VIM), Wnt family member 5A
(WNT5A), KIT proto-oncogene receptor tyrosine kinase
(KIT), bone morphogenetic protein 2 (BMP2), interferon
regulatory factor 9 (IRF9), MX dynamin-like GTPase 1
(MX1), FYN proto-oncogene, Src family tyrosine kinase
(FYN), and HECT and RLD domain containing E3 ubiqui-
tin protein ligase family member 6 (HERC6) (Fig. 5, Table 3).

In addition, the top scored three modules were determined
by MCODE in Cytoscape, with KEGG enrichment results
(Fig. 6). Furthermore, the siRNAs of the hub genes were
summarized (Additional file 1: Table S1) [33–51].

Prognostic analysis and mRNA expression of hub genes
The prognostic values of the hub genes were assessed by
the KM plotter in GC. High HER2, CDH1, OAS1, OAS3,
ISG15, BMP4, CCND1, and WNT5A expression levels
were associated with poor OS, whereas high CD44, STAT1,
EGR1, VIM, KIT, and FYN expression levels were associ-
ated with favorable OS. OAS2, OASL, BMP2, IRF9, MX1,
and HERC6 were not significantly associated with OS
(Fig. 7). The mRNAs expression of CD44, HER2, CDH1,

Fig. 2 Heat map for the DEGs in trastuzumab-resistant GC cell lines. The bidirectional hierarchical clustering heat map was generated by FunRich
software. The expression values were all processed by log2 fold change in prior to the heat map construction. Blue represents downregulation;
red represents upregulation

Table 1 Gene ontology analysis of the DEGs

Category Term/gene function Gene count % p value FDR

GOTERM_BP_FAT GO:0060429~epithelium development 112 13.25444 1.53E−17 3.01E−14

GOTERM_BP_FAT GO:0007166~cell surface receptor signaling pathway 207 24.49704 2.44E−16 4.33E−13

GOTERM_BP_FAT GO:0040011~locomotion 134 15.85799 4.27E−14 8.38E−11

GOTERM_BP_FAT GO:2000026~regulation of multicellular organismal development 145 17.15976 6.52E−14 1.28E−10

GOTERM_BP_FAT GO:0009887~organ morphogenesis 99 11.71598 9.11E−14 1.79E−10

GOTERM_CC_FAT GO:0031988~membrane-bounded vesicle 255 30.17751 2.34E−13 3.49E−10

GOTERM_CC_FAT GO:0044421~extracellular region part 266 31.47929 1.57E−12 2.34E−09

GOTERM_CC_FAT GO:1903561~extracellular vesicle 206 24.3787 1.08E−11 1.61E−08

GOTERM_CC_FAT GO:0043230~extracellular organelle 206 24.3787 1.11E−11 1.65E−08

GOTERM_CC_FAT GO:0070062~extracellular exosome 204 24.14201 2.24E−11 3.34E−08

GOTERM_MF_FAT GO:0050839~cell adhesion molecule binding 53 6.272189 1.39E−09 2.27E−06

GOTERM_MF_FAT GO:0001948~glycoprotein binding 20 2.366864 1.71E−07 2.78E−04

GOTERM_MF_FAT GO:0019838~growth factor binding 21 2.485207 1.31E−06 0.002133

GOTERM_MF_FAT GO:0098631~protein binding involved in cell adhesion 34 4.023669 4.03E−06 0.006547

GOTERM_MF_FAT GO:0000982~transcription factor activity, RNA polymerase II
core promoter proximal region sequence-specific binding

36 4.260355 7.11E−06 0.011559

As a total of 193 biological processes (BP), 23 cellular components (CC), nine molecular functions (MF) enriched in gene ontology (GO), only the top five in each
term according to the false discovery rate (FDR) value were illustrated
DEGs differentially expressed genes
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OAS1, OAS2, OAS3, OASL, ISG15, STAT1, CCND1, and
WNT5A were significantly upregulated in tumor while only
KIT was significantly downregulated in tumor (TCGA)
compared to normal (TCGA normal + GTEx normal)
(Fig. 8a). Next, we further compared the mRNA expression

of the hub genes between tumor (TCGA) and normal
(TCGA) by the data retrieved from the Xena system. In
fact, the results from the Xena (TCGA tumor vs TCGA
normal) were different from GEPIA (TCGA tumor vs
TCGA normal + GTEx normal). Only five hub genes

Fig. 3 Gene ontology (GO) enrichment of the DEGs involved in trastuzumab resistance. a Biological function (BF) enrichment in up/
downregulated DEGs. b Cellular component (CC) enrichment in up/downregulated DEGs. c Molecular function enrichment in
up/downregulated DEGs

Table 2 KEGG pathway enrichment analysis

KEGG pathway Gene counts % p value FDR Genes

hsa05200: pathways in cancer 44 5.21 5.95E−08 7.75E−05 GNG4,CCND1,STAT1,LAMB3,
JUP,SMAD4,ITGA2,RUNX1,
WNT5A,KIT,FGFR3,LAMA4,
ITGA3,BCL2L1,FZD8,ADCY7,
AXIN2,COL4A1,RAC2,
COL4A6,LAMC3,SMO,LPAR5,
LAMA1,RXRA,PAS1,FGF20,
SLC2A1,ERBB2,ITGA6,WNT11,
CDH1,TGFA,BMP2,ADCY1,
FZD9,BMP4,GNG7,GNB4,KITLG,
LAMC2,FGF9,F2R,LAMA5

hsa04512: ECM-receptor interaction 18 2.13 3.05E−07 3.98E−04 LAMA1,sdc1,LAMB3,ITGA6,
ITGA2,ITGB4,ITGA3,LAMA4,
THBS1,SV2A,COL4A1,COL6A1,
COL4A6,LAMC2,SDC4,CD44,
LAMC3,LAMA5

KEGG Kyoto Encyclopedia of Genes and Genome
FDR false discovery rate
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Fig. 4 Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs involved in trastuzumab resistance. a KEGG pathways in upregulated
DEGs. b KEGG pathways in downregulated DEGs

Fig. 5 Protein-protein interaction (PPI) networks of the DEGs. Red nodes represented upregulated genes and blue nodes represented downregulated
genes (nodes ≥ 5). The interaction between genes was illustrated by lines
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(STAT1, OAS3, OAS2, CDH1, ISG15) significantly exhib-
ited upregulation and two hub genes (KIT and EGR1) ex-
hibited downregulation according to the thresholds (adj.p
value < 0.05 and |logFC| > 1) (Additional file 2: Table S2).
Interestingly, the gene with the most significant logFC value
is KIT (logFC = − 2.11514), whereas the gene with the most
significant adj.p value is STAT1 (adj.p value = 8.99E−12).
Furthermore, the mRNA expression of the hub genes

(IRF9 was not available) was externally validated in
GSE13861 (Additional file 3: Figure S1). Consistently,
CD44, OAS3, ISG15, STAT1, and WNT5A were signifi-
cantly upregulated whereas KIT was significantly downreg-
ulated in tumor compared to normal in GSE13861.
Moreover, BMP4 was significantly upregulated in tumor in
GSE13861. OASL, EGR1, and BMP2 were significantly
downregulated in tumor in GSE13861 (Additional file 3:
Figure S1). Moreover, the mRNA expression of all the hub
genes in specific clinic stages had been analyzed. In fact,
only CD44 (p = 0.0146), VIM (p = 1.07e−05) and KIT
(0.00759) exhibited significant stage-specific expression
(Additional file 4: Figure S2).

Mechanism of hub genes correlations associated with
trastuzumab resistance
To further elucidate the underlying mechanism between
the DEGs, the STAD of TCGA data was employed based
on GEPIA platform. Of note, 87.8% (65/74) gene-gene
correlations were positive. What is more, OAS1, 3, and
CDH1 featured high degrees and strong correlations with
other hub genes. Additionally, VIM was negatively corre-
lated with CCND1, HER2, and CDH1, respectively. KIT
was negatively correlated with HER2, ISG15, and OAS1,
respectively (Fig. 8b). Meanwhile, to investigate the poten-
tial roles of the hub genes in other target therapies,
GSE19043 and GSE95414 were retrieved for external in-
vestigation (Additional file 5: Table S3). In GSE19043,
none of the hub genes exhibited differential expression be-
tween gefitinib group and control, whereas in GSE95414,
only six of the hub genes, including VIM, BMP2, CD44,
OAS3, KIT, and WNT5A, showed slight fold change
values > 1 between T-DM1-resistant cell lines and control
(Additional file 6: Figure S3). In summary, the hub genes
identified in this study may not be directly involved in ge-
fitinib (EGFR inhibition, GSE95414) and T-DM1
(GSE19043) (Additional file 6: Figure S3).

Discussion
Although the overall mortality and morbidity of GC has
been declining over the decades around the globe, it is
one of the most common causes for cancer-related deaths.
Postoperative recurrence remains high even with curable
resection and combinational chemotherapy [7–9]. Trastu-
zumab, the only approved treatment for GC with HER2
overexpress, had contributed to the encouraging results in
GC clinical trials [13, 14]. However, secondary resistance
of trastuzumab remained one of the major challenges in
treatment courses. Therefore, identification of potential
mechanisms and key genes underlying the acquired tras-
tuzumab resistance could distinguish the sensitive subsets
and improve overall benefits.
Generally, individual gene rarely dictate either system-

atic biochemical physiological actions or sophisticated
multilevel network interactions. Up to now, genomic
data had been stored in large matrix and processed by
well-established bioinformatics pipelines for the ultimate
conclusive visualization.
This study provided a systematic bioinformatics ana-

lysis of the gene expression profile, GSE77346, contain-
ing four trastuzumab-resistant cell lines and one
sensitive cell line. Pathways in cancer and ECM-receptor
interaction were the most significantly enriched for all
DEGs. CD44, STAT1, EGR1, VIM, KIT, and FYN were
associated with favorable OS while HER2, CDH1, OAS1,
OAS3, ISG15, BMP4, CCND1, and WNT5A were asso-
ciated with poor OS.

Table 3 Hub genes in the PPI networks

Gene
symbols

Gene names Degrees Betweenness
centrality

CD44 CD44 molecule 68 0.11543115

ERBB2 erb-b2 receptor tyrosine kinase 2 53 0.07513542

CDH1 cadherin 1 52 0.07282977

OAS1 2′-5′-oligoadenylate synthetase 1 52 0.01778379

OAS2 2′-5′-oligoadenylate synthetase 2 52 0.01854906

OAS3 2′-5′-oligoadenylate synthetase 3 51 0.01691589

OASL 2′-5′-oligoadenylate synthetase-like 50 0.01635114

ISG15 ISG15 ubiquitin-like modifier 49 0.02075018

BMP4 Bone morphogenetic protein 4 46 0.04507158

STAT1 Signal transducer and activator of
transcription 1

43 0.03737542

EGR1 Early growth response 1 42 0.04589496

CCND1 Cyclin D1 41 0.03727744

VIM Vimentin 40 0.06221522

WNT5A Wnt family member 5A 39 0.04301014

KIT KIT proto-oncogene receptor tyro-
sine kinase

37 0.03489184

BMP2 Bone morphogenetic protein 2 35 0.02672618

IRF9 Interferon regulatory factor 9 35 0.00398764

MX1 MX dynamin-like GTPase 1 35 0.00512151

FYN FYN proto-oncogene, Src family tyro-
sine kinase

34 0.05255568

HERC6 HECT and RLD domain containing
E3 ubiquitin-protein ligase family
member 6

34 0.02783539
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Mechanistically, OAS1, OAS3, and CDH1 featured
highest degrees among the hub genes, diverse from the
nodes (CD44, HER2, and CDH1) with highest degrees in
PPI networks.
OAS1 and OAS3, which encode the key enzymes,

2′, 5′-oligoadenylate synthetase (2′5′AS), are involved
in viral genome degradation and inhibits protein syn-
thesis [52, 53]. As classic interferon target genes,
OAS1 and OAS3 differ in cellular compartment, con-
formation, and biological functions [54]. Previously,
OAS1 and OAS3 had been participated in apoptosis
process [55]. Until now, only OAS3 had been associ-
ated with the HPV persistence and progression of
cervical cancer [56]. No specific study unveiled the
association between OAS1 and OAS3 and GC. This is

the first in silico study suggesting the involvement of
OAS1and OAS3 in trastuzumab-resistant GC.
CD44, a key cancer stem cell (CSC) marker, was downreg-

ulated in trastuzumab-resistant breast cancer and associated
with the trastuzumab resistance in GC. [57]. Previously, high
expression of CD44 correlated with downregulated HER2 in
breast cancer cell lines [58]. SiRNA CD44 led to reduced in-
ternalization of trastuzumab, highlighting the involvement
of endocytosis and membrane trafficking [58]. Furthermore,
Bao et al. revealed that CD44 could directly bind to HER2
and increase invasiveness both in vivo and vitro [59]. Con-
sistently, this study highlighted CD44 as the top hub gene in
PPI networks of trastuzumab-resistant GC; however, the
correlation between CD44 and HER2 associated with trastu-
zumab resistance in GC required further validation.

Fig. 6 The most scored three modules with KEGG enrichment results. a Module-1. b KEGG analysis of module 1. c Module 2. d KEGG analysis of
module 2. e Module 3. f KEGG analysis of module 3. Red nodes represented upregulated genes while blue nodes represented downregulated genes
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Noteworthy, eight of the 20 hub genes (WNT5A, BMP4,
BMP2, CCND1, HER2, CDH1, KIT, STAT1) associated
with trastuzumab resistance were commonly enriched in
the pathways in cancer (KEGG hsa05200). Thus, the ac-
quired resistance of trastuzumab in GC at least could be
partially attributed by the progression of GC itself, if not all.
Moreover, the potential impact of the mutations and fusion
of the genes in the pathway in cancer on the trastuzumab
resistance in GC remains largely unsolved.
In addition, for PPI networks, both degree and be-

tweenness centrality were included for proper evaluation
of hub genes. Generally, centrality is not generally
equivalent to connectivity. As a local quantity, connect-
ivity does not fully elucidate the importance of certain
node in PPI networks. Thus, both connectivity and be-
tweenness centrality were incorporated for a good meas-
urement of hub genes in PPI networks [60].
Remarkably, ion channels, one of the major transmem-

brane complexes that regulate the communication between
the extracellular matrix and intracellular environments, can
influence the growth and invasiveness of cancer cells by al-
tered expression or biological activities [61, 62]. In fact, ion
channels could be novel molecular targets [62]. Fujimoto et
al. indicated that the inhibition of ANO1, a Ca2 + -activated
Cl- channel overexpressed in HER2-positive breast cancer,
could lead to the transcriptional repression of HER2 in
breast cancer cells with resistance to trastuzumab [63]. An-
other Ca2 + -permeable channel, transient receptor poten-
tial canonical 6 (TRPC6), exhibited a vital role in tumor
growth, differentiation, and apoptosis with promising phar-
maceutic target values [64, 65].

Recently, Huang et al. published a result focusing on
the trastuzumab-resistant role of COL4A1 in GC [66].
Validation of COL4A1 in GSE77346 was one of the key
steps in their study. However, GSE77346 remained far
from fully explored with respect to trastuzumab resist-
ance. In fact, new agents to be discovered against HER2
and other signaling pathways open the way to the im-
provement of trastuzumab therapy [67].
In breast cancer, trastuzumab remains one of the inten-

sively studied drugs. It has been recommended as combin-
ation treatments in breast cancer [67]. In fact, mining the
relationships between HER2 signaling pathway and other
signaling pathways as well as the potential mechanisms
provides greater insights for rational combination therapy.
Currently, targets such as mTOR, PI3K, IGF-1R, Akt,
HSP90, and VEGF exhibited significant clinical interests
in HER2-positive breast cancer [67]. However, insightful
evidences to define, refine, and optimize the use of trastu-
zumab in gastric cancer patients with HER2-positive re-
main largely lacked. Therefore, this study contributed to
the understanding of trastuzumab resistance and the
prognostic values of hub genes and opened the way for fu-
ture research in combination therapy in gastric cancer.
Noteworthy, this was the first in silico study focusing

on the bioinformatics analysis of trastuzumab resistance
in GC, predicting the key genes and pathways associated
with trastuzumab resistance. In addition, this study also
investigated the prognostic values of key genes. How-
ever, no disease-free survival (DFS) or progression-free
survival (PFS) was collected. Further clinical and experi-
mental validation of the study findings was required.

Fig. 7 Survival plots of the prognostic values (overall survival) of hub genes involved in trastuzumab-resistant GC. The survival values of the hub
genes were generated by the Kaplan-Meier (KM) plotter. The expressions of hub genes were dichotomized by optimal cutoff values. Patients
number = 593. p values were calculated by log rank method

Yu et al. World Journal of Surgical Oncology  (2018) 16:174 Page 9 of 12



Conclusion
This bioinformatics analysis identified key genes and
pathways as potential targets and predictors associated
with trastuzumab resistance GC and further opened the
way to the improvement of trastuzumab therapy in GC.
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