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Abstract

Background: Clinical registries, which capture information about the health and healthcare use of patients with a
health condition or treatment, often contain patient-reported outcomes (PROs) that provide insights about the
patient’s perspectives on their health. Missing data can affect the value of PRO data for healthcare decision-making. We
compared the precision and bias of several missing data methods when estimating longitudinal change in PRO scores.

Methods: This research conducted analyses of clinical registry data and simulated data. Registry data were from a
population-based regional joint replacement registry for Manitoba, Canada; the study cohort consisted of 5631 patients
having total knee arthroplasty between 2009 and 2015. PROs were measured using the 12-item Short Form Survey,
version 2 (SF-12v2) at pre- and post-operative occasions. The simulation cohort was a subset of 3000 patients from the
study cohort with complete PRO information at both pre- and post-operative occasions. Linear mixed-effects models
based on complete case analysis (CCA), maximum likelihood (ML) and multiple imputation (MI) without and with an
auxiliary variable (MI-Aux) were used to estimate longitudinal change in PRO scores. In the simulated data, bias, root
mean squared error (RMSE), and 95% confidence interval (CI) coverage and width were estimated under varying
amounts and types of missing data.

Results: Three thousand two hundred thirty (57.4%) patients in the study cohort had complete data on the SF-12v2 at
both occasions. In this cohort, mixed-effects models based on CCA resulted in substantially wider 95% CIs than models
based on ML and MI methods. The latter two methods produced similar estimates and 95% CI widths. In the
simulation cohort, when 50% of the data were missing, the MI-Aux method, in which a single hypothetical auxiliary
variable was strongly correlated (i.e., 0.8) with the outcome, reduced the 95% CI width by up to 14% and bias and
RMSE by up to 50 and 45%, respectively, when compared with the MI method.

Conclusions: Missing data can substantially affect the precision of estimated change in PRO scores from clinical
registry data. Inclusion of auxiliary information in MI models can increase precision and reduce bias, but identifying the
optimal auxiliary variable(s) may be challenging.
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Background
Clinical registries are databases that capture information
about the health and healthcare use of patients having a
specific health condition or healthcare treatment. Patient-
reported outcomes (PROs) are increasingly collected in
clinical registries because they provide valuable informa-
tion about the patient’s perspectives on their health, in-
cluding pain, perceived functional abilities, and mental
health [1]. PRO data in registries can be a useful tool for
clinicians to assess quality of care and improvements in
patient health status, beyond what can be captured from
objective measures of health status such as complication
rates and patient mortality [2]. Clinical registry data have
a number of other potential uses, including evaluations of
new programs and treatments. Registry data are also used
for research. However, clinical registry data collection and
evaluation may not always follow the same methods or
practices as are used in research studies involving primary
data collection [3]. Clinics may also not have the resources
needed to routinely and thoroughly check the data for
accuracy and completeness.
Studies involving clinical registry data are often longi-

tudinal in nature; for example, they may examine change
in PROs before and after an intervention or healthcare
treatment [3]. Longitudinal study findings may be
strongly influenced by missing data, which can arise
when participants die, miss scheduled clinic visits, or fail
to respond to clinic questionnaires or interviews. One
potential consequence of missing data in a longitudinal
study is a loss of power to detect change. Missing data
can also result in under- or over-estimation of treatment
effects, depending on its characteristics [3–5].
The choice of methods to handle missing data is gen-

erally dependent on the missingness mechanism [6–8].
According to Little and Rubin’s taxonomy, these mecha-
nisms can be categorized as missing completely at
random (MCAR), missing at random (MAR), or missing
not at random (MNAR) [8]. Data are MCAR if the
reason for the missingness is unrelated to the outcomes.
MAR arises if the reason for dropout depends on the
observed outcomes and possibly on observed covariates
at any or all occasions before the individual is lost to
follow up. The MNAR mechanism depends, in whole or
in part, on unobserved measurements.
In longitudinal studies, commonly used missing data

methods include list-wise deletion, complete-case
analysis (CCA), average available observation carried for-
ward, last observation carried forward, and conditional
or unconditional mean imputation [9–11]. However,
these methods may result in a loss of statistical power
and biased estimates of change, especially when data are
MNAR. Other missing data methods, including max-
imum likelihood (ML) and multiple imputation (MI),
which are practical to implement in real-world data and

increasingly being adopted, are recommended when the
missing data mechanism is ignorable, that is, when the
distribution of the missing data indicator is independent
of the missing data, conditional on the observed data
[11]. Beyond these methods, machine-learning algo-
rithms such as the k-nearest neighbor method, decision
trees, and random forest imputation, which are used to
construct predictive models to estimate observations
that will replace the missing values, can be used when
the missing data mechanism is ignorable [12]. However,
these machine-learning algorithms may distort the data
distribution or introduce spurious associations when not
carefully implemented to address missing data [13].
Other types of registries have used ML and MI

methods to address missing data. For example, in cancer
registries, MI methods based on specific clinical features
have been used to impute missing prostate cancer stage
information [14]. In a trauma registry, O’Reilly et al.
(2012) identified and handled incomplete data using the
MI method [15]. In a national weight control registry,
Thomas et al. (2014) addressed missing data using the
ML method in their evaluation of the effect of behavior
change on weight-loss trajectories [16]. Similarly, in
obesity surgery and medical birth registries, missing
observations on the outcome variables were addressed
using the ML method [17, 18]. However, for all of the
studies, the use of these methods is predicated on the
assumption that the data are MAR.
When data are MNAR or the missingness mechanism

is non-ignorable, methods such as pattern mixture
models, shared parameter models, and selection models
are recommended [3, 19]. However, these methods are
less frequently used because the missing data mechan-
ism must be modeled and they can be computationally
intensive [11].
Another approach to ensure that the assumption

about ignorability of the missing data is plausible is to
use auxiliary (i.e., supplementary) variables that are
potential correlates of missingness and/or the outcome
of interest [20]. The use of auxiliary variables related to
the outcome of interest may reduce the bias due to
missing data in model estimates by adding information
associated with missingness to the model. Auxiliary
variables are typically found in external data sources. An
example of a data source that may contain useful
auxiliary variables is administrative health data, which
captures information about healthcare use and health
status of patients; the advantage of administrative data is
that they are routinely collected for purposes of health
system management or remuneration, so they are
unlikely to have missing values. Auxiliary variables are
generally not of direct interest, other than for keeping
the assumptions about ignorability of the missing data
plausible [20, 21].
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Several studies have shown that the theoretical advan-
tage of auxiliary variables is the same for ML and MI
methods [3, 20]. However, it is more straightforward to
include auxiliary variables without adjusting the analysis
model in MI,when compared to including them in the
ML model [21, 22]. Previous studies have compared MI
with other missing data methods using simulated data
drawn from a real-world cohort, to preserve the
complex relationships amongst the covariates and the
outcomes in a longitudinal setting [6, 23]. However,
neither the precision nor the bias of MI with and
without auxiliary variables in PROs from clinical registry
have been previously compared.
The primary purpose of this study was to compare the

impact of several missing data methods on the precision
of the estimated change in PRO measures in longitudinal
data from a clinical registry. A secondary purpose was to
use computer simulation to demonstrate the potential
effects of including an auxiliary variable in the imput-
ation model on bias and precision of PRO change
estimates in longitudinal data.

Methods
Data source and cohorts
Study data were from the population-based Winnipeg
Regional Health Authority (WRHA) Joint Replacement
Registry. The WRHA is the largest health region in the
central Canadian province of Manitoba, which has a
population of approximately 1.2 million residents. The
Registry captures more than 90% of all hip and knee
replacement surgeries performed within the health
region and approximately 75% of all replacement surger-
ies conducted in the province.
Information contained in the Registry includes age,

sex, medical conditions, implant details, complications,
and both general and condition-specific PROs. These
data are collected via self-report and chart abstraction
from medical records [24, 25]. Much of the information
is collected at a pre-operative assessment conducted ap-
proximately one month prior to surgery, with additional
data collection at one year following surgery.
The study cohort included all patients in the Registry

who had total knee arthroplasty (TKA) between April 1,
2009 and March 31, 2015. Patients with inaccurate data
on sex and BMI were excluded. The simulation cohort
was comprised of patients from the study cohort who
had complete information on PRO measures, demo-
graphic, and health status measures.

Study measures
Generic and condition-specific PROs in the WRHA Joint
Replacement Registry are collected via self-report
questionnaires completed in the pre-operative assess-
ment clinic and via mailed self-report questionnaires

completed one year following surgery. We limited our
attention in this study to the generic Short Form Survey
version 2 (SF-12v2), a 12-item generic measure of phys-
ical and mental well-being. It produces Physical Compo-
nent Summary (PCS) and Mental Component Summary
(MCS) scores, which can range in value from 0 (worst)
to 100 (best). Scores are normalized so that values above
or below 50 are better or worse, respectively, than their
corresponding values in the general population [26].
Demographic information on patient age and sex are

extracted from patients’ medical records and included in
the Joint Replacement Registry. Age was defined at the
time of the pre-operative assessment. Body mass index
(BMI) was calculated from self-reported weight and
height at the pre-operative assessment. Information
about comorbid health conditions, such as heart disease,
were also obtained via self-report at the pre-operative
assessment.

Missing data methods
ML and MI methods were selected for use in this study
because of their efficient computational requirements
and recommendations in the literature for their adoption
in practice [11]. The ML method chooses parameter
values that assign the maximum possible probability or
probability density to the observed data under a well-
defined family of parametric probability models. The
probability or probability density of the realized data is
the likelihood function [11]. The missing values are re-
moved from the likelihood by a process of summation
or integration. These likelihood functions have a compli-
cated form that requires special computational tech-
niques such as expectation maximization [27]. Estimates
obtained using this method are unbiased if the missing
data are MAR and the statistical model has been cor-
rectly specified.
For the MI method, each missing value is replaced by

M > 1 imputed values. Each value is a Bayesian draw
from the conditional distribution of the missing observa-
tion given the observed data. The imputations are ex-
pected to represent the information about the missing
values that is contained in the observed data for the
chosen imputation model. MI involves three distinct
tasks: (a) missing values are filled in M times to generate
M complete data sets, (b) the complete data sets are
analyzed using standard procedures, and (c) results from
the M analyses are combined into a single inference
estimate. The efficiency of the estimate is dependent on
the number of imputations and fraction of missing infor-
mation [28, 29]. Similar to the ML approach, the MI
procedure also relies on the assumption that data are
MAR. However, the process of handling missing data
differs. In MI, missing values are treated in a step that is
completely separate from the analysis. This separation
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has both positive and negative consequences. On the
negative side, there is the possibility that a researcher
may proceed to analyze the imputed data without
considering how the imputations were generated. For
example, a model based on a multivariate normal distri-
bution allows pairwise associations among variables but
not interactions. Therefore, imputed data set may tend
to exhibit interactions that are weaker than those found
in the population. On the positive side, the model is
flexible and a straightforward process to include auxil-
iary variables. It is also not necessary to include these
auxiliary variables in subsequent analyses, as their full
effect is taken into account during the MI process, and
is automatically carried forward into subsequent analyses
of the imputed data [20, 30].

Statistical analysis
Descriptive statistics including means, standard devia-
tions (SD), frequencies, and percentages were used to
describe the cohorts at the baseline (i.e., pre-operative)
measurement occasion. Patterns of missing data were
described for the study cohort using percentages.

A linear mixed-effects model was used to estimate
change in SF-12v2 PCS and MCS scores between pre-
and post-operative occasions; the choice of models and
covariates was based on previous research with these
data [31]. Specifically, the model included a random
intercept and multiple fixed covariates, including
time, age, sex (male [reference], female), and body
mass index (BMI < 24.9, 25.0-29.9, 30.0+ [reference],
comorbid chronic conditions (including heart disease,
depression, high blood pressure, diabetes and back
pain (No [reference], Yes)). The two-way interaction
of sex and time was included in the model based on
preliminary assessments of model fit using penalized
likelihood-based fit statistics (e.g., Akaike Information
Criterion).
Mixed-effects regression models based on CCA, ML,

and MI methods were applied to the study cohort data;
separate analyses were conducted for the PCS and MCS.
CCA was conducted for the subset of patients who had
no missing observations on any variables at either the
pre- or post-operative occasions. For the MI method,
Markov Chain Monte Carlo (MCMC) sampling of the
full predictive distribution was adopted; it assumes a
multivariate normal distribution for the imputations. This
assumption was descriptively assessed using quantile-
quantile plots of the observed values. Ten imputations
were conducted, as this number has been shown to be
sufficient for achieving a reasonable efficiency for high
proportions of missing observations [29].
All analysis were carried out in R using the lme function

[32] and multiple imputation by chained equations [33].

Simulation study
The simulation study was conducted next. In our ana-
lysis of the simulation cohort data, we used all variables
previously described for the study cohort in addition to
a single hypothetical auxiliary variable, Z, which was
generated from a bivariate normal distribution. Specific-
ally, Z was correlated with both the pre- (Y1) and post-
operative (Y2) scores with ρ = corr (Y, Z) = 0.2, 0.5 and
0.8, where Y = (Y1, Y2).
Random samples of size n = 1000 were selected from

the simulation cohort; mixed-effects models, as specified
previously, were applied to PCS scores. Pre-specified
amounts (10%, 25% and 50%) of data were removed from
the outcome variable via MCAR, MAR, and MNAR
mechanisms by modeling the probability of the missing
indicator conditional on the outcome variable using a
logistic regression model. The ML, MI and MI-Aux (i.e.,
multiple imputation with Z included the imputation
model) methods were used to address missingness.
A total of 1000 replications were conducted for each

of the 27 simulation conditions, which were obtained by
crossing all possible combinations of types and amounts
of missingness with the magnitude of correlation of the
hypothetical auxiliary variable with the outcome meas-
ure. We evaluated bias and error in the regression
parameter estimates including the intercept (β0), which
is the estimated average PRO score at the pre-operative
occasion, change (βT) between the pre- and post-
operative occasions, and time-sex interaction (βTS). Spe-
cifically, we computed standardized bias, root mean
squared error (RMSE), 95% confidence interval (CI)
coverage, and the average width of the 95% CI for each
regression parameter mentioned above. Standardized
bias was the ratio of the bias, the difference between the
estimates obtained from the model applied to the ran-
dom sample with n = 1000 obervations, and all data in
the simulation cohort, and the SD of the estimates
expressed as a percent; smaller values indicate less bias.
The RMSE was calculated from the sum of squared bias
and variance; smaller values indicate less error. Coverage
was calculated as the proportion of the replications for
which the 95% CI contained the true value of the param-
eter of interest; good performance is evident when the
actual coverage is approximately equal to the nominal
coverage rate of 95%. The average width of the 95% CI
was the difference between the upper and lower limits of
the interval averaged over the number of replications.
Shorter intervals imply greater precision and higher
power, provided the 95% CI coverage is high.

Results
Description of cohorts and missing data
Table 1 describes characteristics of the study and simula-
tion cohorts. The average age of the TKA patients was
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approximately 67 years in both cohorts. More than
half of the patients were obese. The most common
chronic conditions were high blood pressure and back
pain.
The patterns of missing data in the study cohort is

reported in Table 2. Overall, just 57.4% of the cohort
had complete data at both pre- and post-operative occa-
sions. Almost one-third of this cohort had missing data
at the post-operative occasion only.

Regression results for the study cohort
The mixed-effects regression model results for the study
cohort on both the SF-12v2 PCS and MCS measures for
the intercept, time, and time-sex effects are presented in
Table 3. Parameter estimates, standard errors and 95%
CI width are provided for the CCA, ML and MI
methods. Overall, the three methods did not differ on
statistical significance of the parameter estimates for the
intercept, time, and time-sex. However, there were dif-
ferences amongst the methods for the coefficients of
age, diabetes, and heart disease in the model for MCS,
which were not statistically significant for the CCA
method but were statistically significant for the ML and
MI methods (estimates not shown). Overall, the CCA
method yielded 95% CIs that were substantially wider

than for the ML and MI methods. ML and MI produced
similar estimates and 95% CI widths (see Table 3).

Simulation study results
The performance measures for the computer simulation,
including the standardized bias, RMSE, and average
width of the 95% CI for the CCA, ML, and MI methods
are reported in Table 4. The 95% CI coverage (not
reported) for the CCA, ML and MI methods ranged
between 95% and 97% when data were MCAR, between
91% and 97% when data were MAR and between 60%
and 93% when data were MNAR. The lowest number in
each of these sets of values corresponds to the case
when 50% of the data were missing.
The RMSE and the average width of the 95% CI in-

creased as the rate of missingness increased, reflecting
the expected loss of information that occurs with in-
creased rates of missing data. Under the different
missing data mechanisms, the average 95% CI width and
RMSE obtained from the ML and MI methods were
similar for all main effects, but not for the two-way
interaction. When 25% to 50% of the data were missing,
the average width of the 95% CI from the ML method
was marginally narrower than the width for the MI
method. The standardized bias for the CCA, ML and MI
methods when data were MNAR was twice the size of
the bias observed when the data were missing because
of MCAR and MAR mechanisms. As the rate of miss-
ingness increased, the standardized bias also increased.
However, when the missing data were MCAR, the stan-
dardized bias for the MI and ML methods were larger
than for the CCA method, while the RMSE of the CCA
method was substantially larger than for the MI and ML
methods.
Simulation results for the MI and MI-Aux methods

are reported in Table 5. Including the hypothetical auxil-
iary variable in the imputation model reduced the aver-
age width of the 95% CI as its correlation with the
outcome variable increased. The size of the reduction in-
creased as the rate of missing data increased. When 50%
of the data was missing, we obtained a reduction of up
to 14% and 4% in the average 95% CI width by including
the hypothetical auxiliary variable with ρ = 0.8 and 0.5,
respectively. However, there was no significant reduction
in the average 95% CI width when the hypothetical aux-
iliary variable with ρ = 0.2 was included in the model.
Similarly, a reduction of up to 5% and 2% in the average
95% CI width was observed when the percentage of
missing data was 25% and 10% respectively.
Inclusion of the hypothetical auxiliary variable in the

imputation model reduced the bias and RMSE, particu-
larly in cases where the rate of missing data was high
and ρ = 0.8. When 50% of the data was missing via an

Table 1 Pre-operative Characteristics of the Study and
Simulation Cohorts

Characteristic Study Cohort
(n = 5631)

Simulation Cohort
(n = 3000)

Age, mean (SD) 66.7 (9.9) 67.0 (9.2)

Sex (female) 3307 (58.7) 1754 (58.4)

Body Mass Index

< 24.9 (underweight or
normal weight)

632 (11.2) 314 (10.5)

25.0–29.9 (overweight) 1696 (30.1) 912 (30.4)

> 30 (obese) 3305 (58.7) 1774 (59.1)

High Blood Pressure 3020 (53.5) 1613 (53.8)

Back Pain 2074 (36.8) 1080 (36.0)

Diabetes 992 (17.6) 494 (16.5)

Depression 761 (13.5) 322 (10.7)

Heart Disease 663 (11.8) 329 (11.0)

Frequencies and percentages [n (%)] reported for all categorical variables; SD
Standard Deviation

Table 2 Missing Data Patterns in the Study Cohort

Pattern Pre-Operative Post-Operative %

1 O O 57.4

2 O X 32.3

3 X O 5.9

4 X X 4.4

O – Observed; X – Missing
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Table 3 Mixed-Effect Regression Model Parameter Estimates for the SF-12v2 PCS and MCS Scores

Model Effect CCA ML MI

Estimate (SE) CI Width Estimate (SE) CI Width Estimate (SE) CI Width

PCS β0 37.85 (1.10) 4.32 35.91 (0.86) 3.36 37.72 (0.92) 3.65

βT 12.42 (0.30) 1.18 12.67 (0.27) 1.04 12.57 (0.26) 1.03

βTS −1.03 (0.39) 1.53 −1.35 (0.35) 1.36 −1.34 (0.35) 1.39

MCS β0 54.20 (1.32) 5.18 50.86 (1.07) 4.19 51.15 (1.07) 4.22

βT −0.24 (0.29) 1.13 0.01 (0.27) 1.06 0.004 (0.25) 0.99

βTS 1.13 (0.38) 1.48 1.34 (0.35) 1.39 1.48 (0.33) 1.32

CCA Complete Case Analysis, ML Maximum Likelihood, MI Multiple Imputation, HBP High Blood Pressure, CI Width Width of the 95% confidence interval, SE
Standard Error, Boldface font indicates statistically significant estimates at α = 0.05

Table 4 Simulation Performance Measures for Complete Case Analysis (CCA), Maximum Likelihood (ML) and Multiple Imputation (MI)

Missing
Mechanism

Model
Parameter

Performance
Measure

10% Missing 25% Missing 50% Missing

CCA ML MI CCA ML MI CCA ML MI

MCAR β0 Bias 5.57 6.90 7.53 2.03 1.09 3.97 −0.19 1.51 6.23

RMSE 1.89 1.83 1.84 2.14 1.96 1.97 2.68 2.19 2.23

CI Width 8.28 8.09 8.12 9.06 8.48 8.56 11.14 9.31 9.50

βT Bias −2.91 −3.29 −11.63 −3.47 −1.79 −20.61 − 1.90 −2.21 − 39.96

RMSE 0.47 0.47 0.45 0.54 0.52 0.49 0.68 0.60 0.53

CI Width 2.18 2.15 2.15 2.38 2.29 2.31 2.92 2.62 2.64

βTS Bias 3.21 3.27 15.30 3.30 0.89 29.48 −4.47 −2.62 60.89

RMSE 0.59 0.59 0.55 0.68 0.66 0.56 0.86 0.76 0.58

CI Width 2.85 2.81 2.81 3.12 3.00 3.00 3.81 3.43 3.32

MAR β0 Bias 14.08 6.19 7.17 11.42 0.56 2.01 −13.98 −9.28 −6.69

RMSE 1.87 1.81 1.81 2.08 1.91 1.92 2.59 2.12 2.16

CI Width 8.21 8.05 8.08 8.89 8.39 8.47 10.67 9.12 9.24

βT Bias 20.71 14.92 9.90 42.60 32.55 21.65 86.01 64.71 43.61

RMSE 0.47 0.46 0.44 0.56 0.52 0.47 0.81 0.66 0.52

CI Width 2.14 2.12 2.13 2.30 2.23 2.25 2.72 2.51 2.56

βTS Bias 11.25 10.53 21.15 21.13 18.10 45.06 10.25 3.52 64.01

RMSE 0.60 0.59 0.56 0.69 0.66 0.59 0.85 0.75 0.59

CI Width 2.83 2.80 2.81 3.09 2.98 2.98 3.79 3.41 3.31

MNAR β0 Bias −52.67 −41.61 −39.78 − 111.56 − 82.51 −80.01 − 171.53 − 105.67 − 102.79

RMSE 2.05 1.89 1.89 3.08 2.45 2.43 5.23 3.16 3.17

CI Width 8.13 7.95 7.97 8.79 8.27 8.34 10.70 9.16 9.35

βT Bias −1.46 7.61 −2.71 −25.40 −9.78 −36.13 −73.72 −47.93 − 110.44

RMSE 0.47 0.47 0.45 0.57 0.53 0.51 0.87 0.69 0.76

CI Width 2.19 2.15 2.17 2.42 2.32 2.34 3.04 2.70 2.73

βTS Bias −17.53 −18.53 −5.93 −32.42 −34.40 −3.92 −45.61 −45.24 17.64

RMSE 0.59 0.59 0.54 0.72 0.69 0.54 0.99 0.88 0.53

CI Width 2.85 2.81 2.82 3.13 3.01 3.02 3.90 3.50 3.41

CI Width Average width of the 95% confidence interval, Bias Standardized bias, RMSE Root mean squared error
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MNAR mechanism, the bias reduction was over 50%
and RMSE decreased by up to 45%.

Discussion
This study used a real-world numeric example and
computer simulation to compare several methods for
missing data when estimating change in PRO scores
from a joint replacement clinical registry. In the numeric
example, we investigated the effect of missing data
methods on the precision of estimates of change in pre-
and post-operative PROs. Standard errors were consist-
ently larger for the CCA method when compared with
ML and MI methods. The ML and MI methods
produced consistent parameter estimates and standard
errors. This is because the imputation and analysis
models are similar for both methods [11, 20].

The simulation study investigated the potential benefit
of using a supplementary variable on the bias and
precision of the MI method. The simulation focused on
the effects of a single hypothetical auxiliary variable, al-
though in practice there may be more than one auxiliary
variable included in the MI model [20]. The impact on
bias and precision was substantial when the amount of
missing data was large, and when the correlation
between the hypothetical auxiliary variable and the
outcome of interest was high. When missingness on the
outcome of interest was ignorable, inclusion of an
auxiliary variable that was strongly associated with our
outcome variable added extra information to the
imputation model, which is in agreement with the
recommendation of the International Society of Arthro-
plasty Registries on how to deal with missing data in

Table 5 Simulation Performance Measures for Multiple Imputation (MI) without and with an Auxiliary Variable (MI-Aux)

Missing
Mechanism

Model
Parameter

Performance
Measure

10% Missing 25% Missing 50% Missing

MI MI-Aux MI MI-Aux MI MI-Aux

ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.2 ρ = 0.5 ρ = 0.8

MCAR β0 Bias 4.48 3.75 3.70 3.29 2.31 3.05 3.25 0.74 3.89 4.81 5.05 4.36

RMSE 1.78 1.78 1.77 1.74 1.88 1.89 1.85 1.77 2.19 2.18 2.11 1.94

CI Width 8.11 8.09 8.03 7.92 8.58 8.53 8.39 8.09 9.50 9.42 9.10 8.46

βT Bias −2.16 −2.06 −0.54 2.18 −19.72 −21.47 −21.49 −12.81 −36.70 − 37.14 −31.22 −16.90

RMSE 0.46 0.46 0.46 0.45 0.47 0.46 0.46 0.44 0.52 0.53 0.52 0.47

CI Width 2.16 2.16 2.15 2.12 2.32 2.31 2.29 2.21 2.65 2.64 2.57 2.38

βTS Bias 4.18 3.84 2.61 −1.39 29.38 32.62 33.04 21.74 61.45 62.28 52.82 29.08

RMSE 0.56 0.56 0.56 0.56 0.57 0.57 0.57 0.56 0.60 0.60 0.60 0.58

CI Width 2.82 2.82 2.81 2.77 3.00 3.00 2.96 2.88 3.34 3.31 3.25 3.05

MAR β0 Bias −1.29 −0.56 0.67 3.06 −11.52 −10.87 − 10.59 −8.20 −26.62 − 19.67 − 10.71 4.93

RMSE 1.77 1.76 1.76 1.74 1.87 1.88 1.84 1.76 2.26 2.24 2.13 1.95

CI Width 8.05 8.04 8.01 7.93 8.44 8.45 8.32 8.10 9.34 9.31 9.03 8.44

βT Bias 9.13 6.53 4.63 3.17 −4.55 −11.15 −18.72 −18.78 −14.41 −14.83 − 10.96 −2.48

RMSE 0.46 0.46 0.46 0.46 0.45 0.46 0.46 0.45 0.52 0.51 0.50 0.47

CI Width 2.15 2.15 2.14 2.12 2.31 2.30 2.28 2.21 2.62 2.60 2.54 2.35

βTS Bias −8.19 −6.72 −6.81 −5.64 15.21 20.60 24.92 21.05 31.05 30.19 22.37 6.38

RMSE 0.57 0.57 0.57 0.57 0.54 0.55 0.56 0.56 0.55 0.54 0.55 0.57

CI Width 2.83 2.82 2.81 2.77 3.02 3.02 2.99 2.89 3.34 3.32 3.25 3.05

MNAR β0 Bias −42.75 −40.05 −31.76 −13.71 −86.54 −84.55 −73.35 − 42.67 −102.96 − 99.42 −89.10 −53.11

RMSE 1.89 1.87 1.81 1.73 2.49 2.44 2.26 1.90 3.17 3.10 2.80 2.20

CI Width 7.97 7.97 7.90 7.84 8.33 8.32 8.20 7.97 9.37 9.27 8.95 8.35

βT Bias 7.95 6.41 3.46 1.73 −31.14 −34.74 −35.36 −25.04 − 101.73 − 99.73 −80.58 − 41.96

RMSE 0.45 0.45 0.45 0.45 0.48 0.48 0.48 0.45 0.74 0.73 0.65 0.51

CI Width 2.17 2.16 2.16 2.12 2.34 2.35 2.31 2.22 2.74 2.71 2.63 2.40

βTS Bias −16.91 −14.34 −8.65 −3.75 −5.30 1.39 11.72 16.71 16.66 18.66 15.27 8.17

RMSE 0.55 0.55 0.55 0.56 0.53 0.54 0.55 0.55 0.54 0.54 0.55 0.57

CI Width 2.82 2.82 2.80 2.77 3.01 3.02 2.98 2.88 3.41 3.39 3.30 3.07

CI Width Average width of the 95% confidence interval, Bias Standardized bias, RMSE Root mean squared error
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arthroplasty registries [34]. As a result of this inclusion,
we obtained a significant reduction in standard errors,
and consequently increased the precision of our analysis,
which is consistent with previous research [3, 20, 22].
Furthermore, including an auxiliary variable in the im-
putation model helped moderate the amount of bias and
size of the RMSE when missingness was non-ignorable.
Thus, our results are comparable to what would be ex-
pected under an ignorable missingness mechanism [20].
Clinical registries may include variables that are corre-

lated with missingness and could therefore be included
as auxiliary variables in MI models. However, many vari-
ables in clinical registries will have the same pattern of
missingness as the outcome of interest. This was true for
the clinical registry data used in the current study. Thus,
in order to adopt a MI approach with auxiliary variables,
the researcher should link the registry data to another
data source that has complete information on variables
thought to be associated with missingness. For example,
it may be possible to link clinical registry data with
administrative health data containing measures of
healthcare use or diagnoses for comorbid health condi-
tions that may be associated with the presence of
missing observations [35, 36]. As well, these data may
also contain information about physician characteristics,
which may also influence missing data for patients cap-
tured in clinical registries. For example, some physicians
may focus on more or less complex patients; comorbid
characteristics, which are likely to be more common in
more complex patients, may have a strong impact on
patient dropout/loss to follow-up.
This study has a number of strengths. First, we used a

combination of computer simulation and a real-world
numeric example to examine the effect of the missing
data method on estimates of change in PRO scores. The
use of simulated data drawn from the study cohort en-
sures that the complex relationships amongst the covari-
ates and the outcomes are preserved, which facilitates
understanding of the impacts of missing data in real-
world settings [23]. We examined change in both the
SF-12v2 PCS and MCS scores in our numeric example,
and PCS only in our simulation study as we expect the
performance measures to have similar patterns across
outcomes. There are, however, some limitations to this
study. In our simulation study, we considered only the
hypothetical situation of using a single auxiliary variable
in the imputation model due to the substantial computa-
tion time for the simulation study. Also, we only consid-
ered the case where the relationship between the
auxiliary variable and outcome of interest was linear. It
is possible to have a scenario where the relationship is
non-linear. Moreover, we did not include an auxiliary
variable in our numeric example. The linkage of the
WRHA Joint Replacement Registry to sources of

auxiliary variables, such as administrative health data, re-
quires data access approvals and a health information
privacy impact assessment. Moreover, the choice of one
or more potential auxiliary measures to include in a MI
model is not a straightforward process; both theoretical
and practical considerations must be addressed, which is
beyond the scope of the current paper [20].

Conclusion
In summary, we examined the impact of different missing
data mechanisms and an auxiliary variable on the bias and
precision in estimating change over time in PROs. Our
simulation results showed that using auxiliary information
in the imputation model can increase the precision and
reduce the bias of parameter estimates, especially in cases
where the percentage of missing data is high.
In the absence of an auxiliary variable, the simulation

results revealed that the ML method is more precise in
estimating longitudinal change in PRO measures than
the MI method, especially when there is complete data
on the covariates. However, MI offers an advantage of
straightforward inclusion of one or more auxiliary
variables in the imputation model over the ML method.
Under the expectation of inevitable missing data when
conducting a longitudinal study, complete auxiliary in-
formation should be collected, such as other measures
of the PRO of interest and/or variables that may be
associated with the outcome. Our results showed a con-
sistent pattern in all the scenarios considered. Therefore,
we recommend that in the presence of missing data,
initial analyses should be conducted assuming MAR and
then sensitivity analyses should be conducted assuming
MNAR.
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