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Abstract 

Background:  The pathogen of banana Fusarium oxysporum f. sp. cubense race 4(Foc4) infects almost all banana spe-
cies, and it is the most destructive. The molecular mechanism of the interactions between Fusarium oxysporum and 
banana still needs to be further investigated.

Methods:  We use both the interolog and domain-domain method to predict the protein–protein interactions 
(PPIs) between banana and Foc4. The predicted protein interaction sequences are encoded by the conjoint triad 
and autocovariance method respectively to obtain continuous and discontinuous information of protein sequences. 
This information is used as the input data of the neural network model. The Long Short-Term Memory (LSTM) neural 
network five-fold cross-validation and independent test methods are used to verify the predicted protein interaction 
sequences. To further confirm the PPIs between banana and Foc4, the GO (Gene Ontology) and KEGG (Kyoto Encylo-
pedia of Genes and Genomics) functional annotation and interaction network analysis are carried out.

Results:  The experimental results show that the PPIs for banana and foc4 predicted by our proposed method may 
interact with each other in terms of sequence structure, GO and KEGG functional annotation, and Foc4 protein plays a 
more active role in the process of Foc4 infecting banana.

Conclusions:  This study obtained the PPIs between banana and Foc4 by using computing means for the first time, 
which will provide data support for molecular biology experiments.

Keywords:  Protein–protein interactions, Banana, Fusarium oxysporum f. sp. cubense race 4, Sequence alignment, 
Prediction
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Introduction
Banana (Musaspp.) is a monocotyledonous perennial 
plant of the Musa genus in Musaceae. Banana is the 

largest herbaceous flowering plant in the world, and its 
fruit is edible. Banana grows in tropical and subtropi-
cal regions and is the fourth largest food crop after rice, 
wheat, and corn in some countries and regions [1]. 
Banana Fusarium oxysporum f. sp. cubense race 4(Foc4), 
also known as yellow leaf disease and Panama disease, is 
a typical fungal soil-borne disease caused by Fusarium 
oxysporum f.sp.cubense infection, which destroys banana 
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vascular bundles and causes plant death [2]. Foc4, the 
pathogen of banana Fusarium oxysporum f. sp. cubense 
race 4, infects almost all banana species, and it is the 
most destructive [3]. The pathogenic process of Fusarium 
oxysporum needs to go through the identification pro-
cess between pathogen and banana root. The pathogen 
reaches and adheres to the surface of the banana root, 
and Fusarium oxysporum produces a series of pathogenic 
factors, such as secreted effector protein factors [4], path-
ogenicity-related enzymes [5], and toxins [6]. The patho-
gen invades the inside of the host, colonizes in banana, 
and shows the symptoms on the outside [7]. At present, 
some progress have been achieved in the research of 
banana Foc4. Some pathogenic factors, cell wall degrad-
ing enzymes, and toxins of banana Foc4 have been found. 
Meanwhile, some banana resistance genes, active sub-
stances and hormones related to resistance have been 
discovered through transcriptomics and proteomics. 
However, up to now, there are no effective measures to 
control banana Foc4, and its pathogenic mechanism is 
not completely clear. Therefore, the molecular mecha-
nism of the interactions between Fusarium oxysporum 
and banana still needs to be further investigated.

When the pathogen’s proteins invade plants, the plants 
start the host’s defense response to the invaded patho-
gens. Protein–protein interactions(PPIs) between plant 
protein and pathogenic protein are crucial to studying 
the molecular basis of pathogenesis [8]. The PPI analysis 
methods can be divided into biological experiment-based 
methods and bioinformatics-based methods. The bio-
logical experiment-based methods mainly include yeast 
two-hybrid [9], bimolecular fluorescence complementa-
tion [10], and immunoprecipitation [11]. The biological 
experiment-based methods have some disadvantages, 
such as time-consuming, high cost, and low coverage. 
The bioinformatics-based methods have the advantages 
of high efficiency and low cost, and they have the disad-
vantage of the existence of false positives. With the rapid 
development of omics data, the biological experiment-
based methods are difficult to meet the requirement of 
high-throughput biological data. At present, the public 
databases DIP [12], HPRD [13], BioGRID [14], IntAct 
[15], MINT [16], and HPIDB [17] store a large number 
of experimentally verified PPIs data, which provide data 
sources for predicting PPIs using bioinformatics meth-
ods. The interolog method and domain-domain method 
have been used to predict PPIs in some fields. Recently, 
some researchers used these two methods to predict the 
intraspecific PPIs among bacterial blight pathogen, rice, 
corn, and cassava [18–21], and FWHT-RF [22] can be a 
useful supplementary method to predict potential PPIs in 
plants.

Interspecies PPI has been reported in the study of 
human and pathogenic bacteria, which is used to pre-
dict the PPIs between human and hepatitis C virus 
[23], between humans and Bacillus anthracis [24], and 
between humans and Plasmodium falciparum [25]. For 
the study of PPIs between plant and pathogen, Li et  al. 
predicted 3074 protein interactions between Arabidopsis 
thaliana and Ralstoniasolanacearum on the database DIP 
by the interolog method and domain-domain method. 
These protein interactions include 119 Ralstoniasolan-
acearum proteins and 1442 Arabidopsis thaliana pro-
teins. The data set of PPIs was verified by GO functional 
annotation and network characteristic analysis [26].

By using the interolog method and domain-domain 
method, Ma et  al. predicted 523 PPIs between rice and 
Magnaporthegrisea, including 27 rice blast proteins and 
236 rice proteins [27]. The obtained PPI data set was 
verified by the machine learning method, and the protein 
function was analyzed by GO and the KEGG pathway. 
Zheng et  al. [28] used the structure-based method and 
generated a global PPI network consisting of 2,018 PPIs 
involving 1,344 rice and 418 blast fungus proteins. To 
our knowledge, the research on predicting PPIs between 
plants and pathogens has only been reported on the 
model plants Arabidopsis thaliana, rice, and their patho-
gens. But there are no related reports on predicting PPIs 
between banana and Foc4 based on the Bioinformatics 
methods. The study on the interactions between banana 
and Foc4 has been mainly conducted from the independ-
ent perspective of infection of Foc4 pathogenic factors 
and active substances related to banana resistance. The 
genes or proteins differentially expressed in bananas 
could be obtained in previous studies, but the effectors 
of Foc4 interacting with banana protein could not be 
identified.

This paper has the following contributions. We pro-
posed a computing method for predicting PPIs for 
banana and Foc4 for the first time. We encoded the 
predicted PPIs sequences for banana and Foc4 by the 
conjoint triad method and autocovariance method 
respectively to obtain continuous and discontinuous 
information of protein sequences, verify the predicted 
PPIs may interact in sequence structural characteristics 
by the The Long Short-Term Memory (LSTM) neural 
network five-fold cross-validation and independent test 
methods [29], and further functionally verify the PPIs 
by the GO, KEGG function annotation, and interaction 
network analysis. The predicted PPIs between banana 
and Foc4 will provide data support for molecular biology 
experiments.
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Materials and methods
Datasets
We first downloaded 45,856 banana proteins in banana 
protein sequences from https://​banana-​genome-​hub.​
south​green.​fr and 14,459 Foc4 protein sequences from 
ftp://​ftp.​ncbi.​nlm.​nih.​gov/​genom​es/​all/​GCA/​000/​350/​
365/​GCA_​00035​0365.1_​Foc4_1.0, respectively. Sec-
ondly, We downloaded all PPIs of six model species, 
Arabidopsis thaliana, nematode, Drosophila, yeast, 
Escherichia coli, and human, from the database MINTat 
https://​mint.​bio.​uniro​ma2.​it/, the database DIP at 
https://​dip.​doe-​mbi.​ucla.​edu/​dip/​main.​cgi, the data-
base TAIR at https://​www.​arabi​dopsis.​org/, the data-
base BioGRID at https://​downl​oads.​thebi​oged.​org/​bioge​
rid/​relea​se-​archi​ve/ biogerid-3.5.166/, and the database 
INTACT at https://​www.​ebi.​ac.​uk/​intact/, respectively. 
Thirdly, we downloaded 118,921 PPIs from the data-
base MINT, 76,881 PPIs from the database DIP, 2656 
PPIs from the database TAIR, and 183,768 PPIs from 
the database IntAct. Finally, we downloaded 62,782 
pathogen-host interspecific protein interactions from 
the databaseHPIDB at http://​hpidb.​igbb.​mssta​te.​edu/.​All 
domain-domain interaction template PPIs were down-
loaded from the database3DID [30] at https://​3did.​irbba​
rcelo​na.​org/. The corresponding protein sequences of 
the above six species were downloaded from the data-
base Uniprot at https://​www.​unipr​ot.​org/. Different 
databases may use different IDs for the same protein. We 
used the software tool Biomart [31] to convert the differ-
ent protein IDs into uniform IDs.

Methods
We first downloaded the experimentally verified intra-
species and inter-species PPIs from the database as the 
interaction template. Next, we applied the interolog 
method and domain-domain method to predict the data 
sets of PPIs between banana and Foc4 to find the com-
mon PPIs between banana and Foc4. Thirdly, we used the 
conjoint triad(CT) [32] and auto covariance(AC) [33] to 
code protein sequence features to obtain the structure 
information of continuous and discontinuous protein 
sequences. Fourthly, we verified the predicted PPIs data 
sets for banana and Foc4 by using LSTM neural network 
five-fold cross-validation method and independent test 
method. Finally, we computed the accuracy, sensitivity, 
specificity, receiver operating characteristic curve (ROC), 
and area under the curve(AUC) of the predicted results. 
Figure  1 shows the process of predicting PPIs between 
banana and Foc4, in which iPPIs indicate interolog PPIs, 
dPPIs represent domain-domain PPIs, and DDI denotes 
domain-domain interactions.

Predicting PPIs between banana and Foc4
The interolog method is a means for predicting homolo-
gous interactions. Its main idea is that homologous pro-
teins may have similar properties. If two proteins A and 
B interact with each other via verified experiments, and 
two proteins A’ and B’ are homologous proteins of A 
and B respectively, then according to the principle that 
homologous proteins have similar properties, proteins A’ 
and B’ may also interact with each other [23]. The idea 
of the domain-domain interaction prediction method is 
that if proteins C and D contain domains C and D which 

Fig. 1  Process of predicting PPIs between banana and Foc4, where the solid arrow represents ‘control flow direction’ and the dashed arrow denotes 
‘data flow direction’
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can interact with each other, proteins C and D may inter-
act with each other [24].

Based on the protein sequence data of banana and 
Foc4, we used the interolog method and domain-domain 
method to predict the interactions between banana and 
Foc4. We selected the transmembrane or secreted pro-
teins in Foc4 as the protein infecting banana [26] and 
obtained the final PPIs data set between banana and Foc4.

For the interolog method, we used the local sequence 
alignment tool BLAST to find the homology proteins, 
where the parameter E was set to 0.00001, the sequence 
identity was set to 30%, and the coverage was set to 
80%[26, 27]. Firstly, the protein sequences of six model 
species are compared with banana and Foc4 to find out the 
orthologous proteins between banana and Foc4. Then, the 
host protein sequences in the database HPIDB are com-
pared with the banana protein sequences and the patho-
gen protein sequences are compared with the Foc4 protein 
sequences to obtain interspecific homologous proteins.

We submitted the protein sequences of banana and 
Foc4 to the database 3DID to find out the domains con-
tained in each protein, where the value of parameter E 
was set to 0.00001 and the sequence identity was set to 
90% [26]. If any PPI of banana and Foc4 contains a couple 
of interactive domains in the database 3DID, it is consid-
ered that this pair of proteins for banana and Foc4 may 
interact with each other [34].

We applied the two software tools signalP [35] and 
WoLFPSOFT [36] with the default values of their param-
eters to find secretory proteins. If a protein predicted by 
signalP contains a signal peptide and is located as extra-
cellular by WoLFPSOFT, the protein is a secretory pro-
tein. In addition, we used the software TMHMM2.0 [37] 
to predict transmembrane proteins in Foc4 proteins. 
If the number of transmembrane helices predicted by 
TMHMM is greater than 1, the proteins are considered 
to be transmembrane proteins [38].

PPIs coding of sequence features
Proteins are biomolecules composed of amino acids, 
while protein sequences are represented by 20 standard 
amino acids. Encoding the sequence feature of a protein 
is to extract the feature vector from the protein sequence. 
The sequence feature extraction transforms the original 
sequences into a fixed-length numerical vector. In recent 
years, some researchers have proposed some methods 
to predict PPIs using only protein sequence informa-
tion, but these methods can not fully capture interaction 
information from continuous and discontinuous amino 
acid fragments at the same time.

In order to solve the above problem, the conjoint triad 
(CT) method and auto covariance(AC) method were used 
to encode sequence features. By using the CT method, 20 

amino acids are divided into seven categories according 
to the volume of even electrodes and side chain volume. 
Each three consecutive amino acids is regarded as a basic 
unit, and the class frequency of all basic units in a protein 
is counted. The AC method mainly considers the proxim-
ity effect and uses both the continuous and discontinuous 
sequence information in a protein sequence. The number of 
all possible kinds for each basic unit is 7 × 7 × 7 = 343. Thus, 
the final feature vector with 686-dimension contains the 
features of two proteins interacting with each other. Min–
max normalization was performed on the feature vectors to 
map the result of encoding each protein pair into the inter-
val [0,1], so as to remove the influence of protein length on 
frequency counting. Let fi represent the i-th component of 
a protein eigenvector, the i-th component of a normalized 
protein feature vector, di, is computed as follows [32]:

The interactions between amino acids are reflected 
by seven physical and chemical characteristics of 
amino acids. The seven physical and chemical prop-
erties are hydrophobicity, hydrophilicity, net charge 
index, polarity, polarizability, solvent accessible sur-
face area, and side chain volume, respectively. Each 
protein sequence is transformed into a 7-dimensional 
vector, and each amino acid is represented by a nor-
malized value of seven descriptors. The initial values 
of seven physical and chemical properties of 20 amino 
acids can be found in [33]. The variance AClag ,j is com-
puted as follows [33]:

where lag represents the distance between the two 
amino acid residues, n is the length of protein sequence 
X, Xi,j represents the j-th descriptor in the i-th position 
of a protein sequence. In this paper, seven physical and 
chemical properties are used and the optimal value of 
lag is set to 30 [39]. After AC transformation, each pro-
tein sequence has been transformed into a 210-dimen-
sional vector. Combined with the CT method, each 
PPI sequence has been transformed into a vector of 
(343 + 210) × 2 = 1106 dimensions.

Verification
We used the interolog method and domain-domain 
method to deal with the proteins of banana and Foc4 
to obtain their PPIs, and treated these PPIs as the posi-
tive samples with size 739. We verified the predicted 
results by the five-fold cross-validation method and 

(1)di =
fi −min{f1, f2, ......, f343}

max{f1, f2, ......, f343}
, i = 1, 2, 3, . . . , 343

(2)AClag ,j =
1

n − lag

n−lag
∑

i=1

(Xi,j −
1

n

n
∑

i=1

Xi,j)(X(i+lag),j −
1

n

n
∑

i=1

Xi,j)



Page 5 of 10Fang et al. Proteome Science            (2022) 20:4 	

independent test method, respectively. The Long Short-
Term Memory(LSTM) neural network [40] was used to 
predict PPIs between banana and Foc4.

By using the characteristic coding of the PPIs between 
banana and Foc4, the original protein sequence was con-
verted into a fixed-length numerical vector which was 
used as the input of the LSTM neural network. The input 
layer of LSTM neural network was a feature vector com-
posed of the forward and backward hidden layer output 
vectors hf and hb. The corrected linear unit(relu) was used 
as the activation function in the hidden layer, and the 
softmax function was used in the output layer. Accord-
ing to the results of the CT and AC coding schemes, the 
input sequence was X = (x1, x2, x3, ..., x1106) and the pre-
diction model outputs a corresponding result sequence 
was Y =

{

y1, y2, y3, ..., y1106
}

. In the prediction model, 
the learning rate was set to 0.001, the batch size was 128, 
and the fully connected layer has 128 neurons. In five-
fold cross-validation, we randomly selected negative 
samples from banana and Foc4 proteome. The size of the 
selected negative samples was the same as the size of the 
predicted PPIs.. The selected negative samples filtered 
out the samples in the predicted PPIs between banana 
and FOC with a sequence consistency greater than 20%. 
When the size of positive samples is m, the size of nega-
tive samples is 10 × m. We selected the samples with size 
of 2 × m/3 in the positive samples and the samples with 
size of 2 × m/3 in the negative samples to form the train-
ing set, and selected the remaining positive samples with 
size of m/3 and the remaining negative samples with size of 
10 × m-2 × m/3 = 28 × m/3 to form the test set.

In this paper, we used the accuracy ACC​, sensitivity Sn, 
specificity Sp, receiver operating characteristic curve ROC, 
and area under curve AUC​ to evaluate the prediction 
effect [23]:

(3)ACC =
TN + TP

TN + TP + FN + FP

(4)Sn =
TP

TP + FN

(5)Sp =
TN

TN + FP

where TN is the number of true counterexamples, TP 
represents the number of true examples, FN denotes the 
number of false counterexamples, and FP is the number 
of false-positive examples.

Each protein is used as a node and the interaction 
between each pair of proteins is represented as an edge, 
a PPIs network is created by all the nodes and edges. We 
used the software Cytoscape3.7 [41] to visualize the PPIs 
network to conveniently and intuitively observe the char-
acteristics of the network. We used the ClusterViz plug-
in in Cytoscape [41] to divide the interaction network 
into different functional modules. We executed the algo-
rithm ClusterVizuse FAG-EC [42] to partition the net-
work into several subnetworks. The median centrality Vi 
of node i in the network is calculated as follows:

where gst denotes the number of the shortest paths 
from node s to node t, and nist represents the number of 
the shortest paths from node s to node t via node i in the 
network.

We applied the software TBTools [43] to carry out the 
GO (Gene Ontology) functional enrichment analysis of 
PPIs. According to the specification for TBTools, we set 
the value of parameter p < 0.05 and used Bonferroni cor-
rection [44]. KEGG (Kyoto Encylopedia of Genes and 
Genomics) enrichment analysis (p-value < 0.05) of PPIs 
was performed by using KOBAS2.

Results

Experimental environment
The computer used was with Intel (R) Xeon (R) 
W-2133 CPU @ 3.6 GHz processor and memory capac-
ity 8  GB running operating system Windows10. The 
prediction algorithm was implemented by Python3 
programming.

Experimental results
We first predicted 26,910 PPIs and 376,755 PPIs between 
banana and Foc4 by using the interolog method and 
domain-domain method, respectively. Table 1 shows the 
results of predicted PPIs, where 739 interactions with 

(6)vi =
∑

s �=t �=i

nist
gst

Table 1  Statistical information of predicted PPIs between banana and Foc4

Prediction method Number of PPIs Number of Banana proteins Number of Foc4 proteins

Method1 26,910 5938 697

Method2 376,755 18,965 1916

Common parts of predicted results of Method1 and 
Method2

739 515 81
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515 banana proteins and 81 Foc4 proteins are common 
overlapping PPIs predicted by the interolog method and 
domain-domain method. Method1 represents the inter-
olog method, and Method2 denotes the domain-domain 
method. The detailed data sets of all predicted results are 
given in Supplementary table 1.

It can be seen from the results in Table  1 that the 
number of PPIs predicted by the interolog method is 
less than that of PPIs predicted by the domain-domain 
method. This is because the interolog method adopts the 
homologous sequence-based alignment, which depends 
on the amount of data in the existing database, while 
the domain-domain method is based on the interactive 
domains contained in proteins, and a protein can contain 
two or more interactive domains [45].

We extracted the feature vector of proteins in banana-
Foc4 PPIs, and analyzed the reliability of banana-Foc4 
PPIs predicted by the LSTM neural network-based 
five-fold cross-validation method and independent test 
method. Table 2 shows the results of sensitivity Sn, speci-
ficity Sp, accuracy ACC​, and receiver operating charac-
teristic curve ROC of the predicted banana-Foc4 PPIs.

We can see from Table 2 that for the LSTM model, the 
results predicted by the five-fold cross-validation method 
were better than the ones predicted by the independ-
ent test method, and the results predicted by the LSTM 
model were better than the ones predicted by the SVM 
(Support Vector Machine) model, while the LSTM model 
required much longer computational time than the SVM 
model. On the other hand, the experimental results also 
show that the PPIs between banana and Foc4 predicted 
by five-fold cross-validation and independent test meth-
ods have high structural similarity. It illustrates that the 
PPIs between banana and Foc4 may interact in sequence 
structure characteristics.

The following is to analyze the network structure 
characteristics of the PPIs between banana and Foc4 
predicted by the experiment. By using Cytoscape, each 
protein in the interactions between banana and Foc4 was 
treated as a node, and each interaction between banana 
and Foc4 was treated as an edge. The result of the PPIs 
network between banana and Foc4 is shown in Fig. 2, and 
the detailed information of the PPIs network is given in 
Supplementary table 2.

In the PPI network, the connectivity of a protein is 
defined as the number of all other proteins linking to 
this protein. The connectivity is an index of evaluating 
the importance of a protein in the network. From Fig. 2 
we can see that the average connectivity of Foc4 protein 
was 9.12 and the average connectivity of banana protein 
was 1.43. This indicates that the connectivity of Foc4 pro-
tein was higher than that of banana protein in the PPI 
network for banana and Foc4, and Foc4 protein played 
a more active role, which affected a series of biological 
processes of banana infected by Foc4. It can also be seen 
from Fig. 2 that the PPI network for banana and Foc4 was 
divided into 51 sub-networks, in which the largest sub-
network contains 86 nodes, the smallest sub-network 
has only two nodes, and there are 30 sub-networks with 
more at least to 6 nodes. Some complex sub-networks 
with more nodes contain multiple Foc4 proteins. Some 
sub-networks only contain one Foc4 protein. The small-
est sub-network only has one banana interacting with 
the Foc4 protein. In addition, we found that three pro-
teins of Foc4, namely EMT64532.1, EMT73264.1, and 
EMT73245.1, interact with 72, 58, and 29 proteins of 
banana, respectively. This illustrates that these three pro-
teins of Foc4 play important roles in the interactions, 
and these results will provide a basis for future biological 
experiments.

To annotate the GO function of PPIs for banana and 
Foc4, we first aligned the banana protein with SwissProt 
protein by the software BLAST. Then, we compared the 
obtained Foc4 protein with SwissProt protein. Finally, we 
used the TBTools to annotate the GO function PPIs for 
banana and Foc4. The top 20 annotated results of pro-
teins for Foc4 are shown in Table  3, and the annotated 
results of proteins for banana are shown in Table 4.

It can be seen from Table 3 that in the annotated GO 
function results of Foc4 protein, the top three ones 
are membrane fusion, export from cell, and transport 
respectively. In addition, we can also see that Foc4 pro-
tein annotates vesicle fusion, export across membrane, 
transmembrane transport, and membrane organization, 
which are all related to cell membrane function. Foc4 
protein must cross the cell membrane if it wanted to 
enter banana and interact with banana protein.

Table 2  Values of Sn, Sp, ACC​, ROC, and running time of predicted banana-Foc4 PPIs

Model Test method Sn(%) Sp(%) ACC(%) ROC Time(s)

LSTM five-fold cross validation 90.75 98.52 94.45 0.94 54.37

independent test 85.81 92.85 89.78 0.87 58.63

SVM five-fold cross validation 88.85 88.14 94.45 0.94 0.74

independent test 79.07 84.56 84.23 0.85 12.54
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Table  4 shows that in the annotated GO function 
results of banana proteins, the top three ones are trans-
port, translation, and catabolic process respectively. 
Some banana R-proteins(resistance proteins) are anno-
tated with tropism, cellular homeostasis, cell–cell signal-
ing, and other functions, all of which are related to the 
response of cells to external stress. Foc4 protein enters 
the banana, and the banana uses the specificity of intra-
cellular resistance proteins to recognize the effector and 
trigger immune response [46].

It can be seen from Table  5 that in the annotated 
KEGG function results of Foc4 protein, there are many 

protein annotates membrane transport, ABC trans-
porters, interactions in vesicular transport and trans-
porters, which are all related to the environmental 
information processing pathway. The annotated KEGG 
function results of banana protein in Table 6, there are 
many protein annotates interactions in vesicular trans-
port, membrane transport, ABC transporters, which 
are related to the environmental information process-
ing pathway.

The GO annotation results of predicted PPIs between 
banana and Foc4 show that Foc4 protein were anno-
tated the functions related to cell membrane such as 

Fig. 2  PPIs network between banana and Foc4, where the red node represents Foc4 protein, and the blue node denotes banana protein
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vesicle fusion, transmembrane export, transmembrane 
transport and membrane tissue, and banana protein 
were annotated the functions related to external stress 
response such as transport, tropism, cell automatic regu-
lation and cell signal transduction. The KEGG annotation 
results show that the Foc4 protein annotates membrane 
transport, ABC transporters, interactions in vesicular 
transport and transporters. The banana protein were 
annotated the functions related to the environmental 
information processing pathway. This illustrates that the 
PPIs between banana and Foc4 predicted by our method 

are reliable from the perspective of GO and KEGG func-
tional annotation.

Discussion
One of the characteristics of this study is that the intra-
species and inter-species PPIs downloaded from the 
database were used as interaction templates, the PPIs 
between banana and Foc4 were predicted by the inter-
olog method and the domain-domain method respec-
tively, and the intersection of PPIs predicted by these two 
methods was taken as the final predicted result which 
was more accurate. In addition, the problem studied here 
is inter-species protein interaction, which uses not only 
intra-species protein interaction of model species as pre-
diction template but also uses inter-species protein inter-
action of multiple species as prediction template. The 
template of interspecific interaction prediction comes 
from the database HPIDB, which contains PPIs of 66 
species of animals, plants, and many pathogens, includ-
ing interspecific protein interactions between animals 

Table 3  Top 20 GO annotated results of proteins for Foc4

GO Name in Biological Process GO ID P_value Hit Counts

membrane fusion GO:0,061,025 6.87E-08 8

export from cell GO:0,140,352 1.49E-07 17

transport GO:0,006,810 2.63E-07 47

establishment of localization GO:0,051,234 4.96E-07 47

vesicle fusion GO:0,006,906 8.42E-07 6

export across plasma membrane GO:0,140,115 8.91E-07 8

localization GO:0,051,179 1.56E-06 49

organelle membrane fusion GO:0,090,174 2.50E-06 6

vesicle organization GO:0,016,050 3.15E-06 9

organelle fusion GO:0,048,284 3.18E-06 8

transmembrane transport GO:0,055,085 4.18E-06 28

membrane organization GO:0,061,024 4.82E-06 15

xenobiotic detoxification by 
transmembrane export across the 
plasma membrane

GO:1,990,961 7.81E-06 6

xenobiotic transport GO:0,042,908 9.77E-06 6

intracellular transport GO:0,046,907 2.64E-05 21

organophosphate ester transport GO:0,015,748 2.67E-05 7

cellular localization GO:0,051,641 3.48E-05 27

organic substance transport GO:0,071,702 4.36E-05 33

mitochondrial transport GO:0,006,839 8.27E-05 8

establishment of localization in 
cell

GO:0,051,649 1.00E-04 22

Table 4  GO Annotated results of proteins for banana

GO Name in Biological Process GO ID P_value Hit Counts

transport GO:0,006,810 3.33E-16 262

translation GO:0,006,412 3.53E-10 63

catabolic process GO:0,009,056 1.54E-05 129

protein metabolic process GO:0,019,538 2.48E-05 194

tropism GO:0,009,606 1.45E-04 20

cellular homeostasis GO:0,019,725 5.13E-04 34

embryo development GO:0,009,790 1.15E-02 61

cellular component organization GO:0,016,043 1.16E-02 206

cell–cell signaling GO:0,007,267 2.25E-02 21

Table 5  KEGG Annotated results of proteins for Foc4

Pathway p-value hits

membrane transport 4.02E-07 7

ABC transporters 4.02E-07 7

interactions in vesicular transport 6.88E-07 5

environmental Information Processing 6.24E-05 7

signaling and cellular processes 8.55E-04 22

transporters 1.91E-03 14

folding, sorting and degradation 2.29E-03 10

Ribosome 5.68E-03 6

chaperones and folding catalysts 1.32E-02 5

genetic Information Processing 1.48E-02 18

enzymes with EC numbers 3.80E-02 6

Table 6  KEGG Annotated results of proteins for banana

Pathway p-value Hits

ubiquitin mediated proteolysis 0 67

interactions in vesicular transport 0 38

Ribosome 0 55

protein processing in endoplasmic reticulum 2.22E-16 56

folding, sorting and degradation 4.44E-16 126

genetic Information Processing 5.55E-16 191

membrane transport 2.19E-10 12

ABC transporters 2.19E-10 12

translation 1.18E-07 63

ribosome biogenesis in eukaryotes 1.98E-02 8
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and microorganisms and the ones between plants and 
microorganisms.

In this paper, we coded the sequence of PPIs by the 
combined use of CT method and AC method. The CT 
method regards every three consecutive amino acids as 
a basic unit and counts the class frequency of all basic 
units in protein, while the AC method mainly pays close 
attention to the proximity effect. In this way, the continu-
ous and discontinuous sequence information of proteins 
can be used at the same time, which makes the predic-
tion result more accurate. We verified the PPIs dataset 
between banana and Foc4 by LSTM neural network-
based five-fold cross-validation method and independent 
test method.

By observing the results of GO and KEGG function 
annotation and PPIs network analysis, we found that 
there were many Foc4 interacting with host protein in 
PPIs between banana and Foc4. In addition, we also dis-
covered that many Foc4 protein GO annotations were 
related to vesicle fusion, export across membrane, trans-
membrane transport, and membrane organization. The 
Foc4 protein KEGG annotations were related transport-
ers, environmental information processing, ABC trans-
porters, and membrane transport pathway. This indicates 
that Foc4 protein needs to be secreted outside the cell 
and must cross the cell membrane in order to infect 
bananas. At the same time, we can see that in the pre-
dicted PPIs between banana and Foc4, the functions of 
proteins related to external stress, cellular homeostasis, 
and cell–cell signaling are enriched, and the pathogenic 
molecules in vitro are recognized by proteins in banana 
and a series of immune responses downstream are stimu-
lated. Therefore, these enriched proteins may be involved 
in the identification of pathogenic proteins of Foc4. This 
illustrates that the PPIs between banana and Foc4 pro-
teins predicted by our method are reliable from the per-
spective of GO and KEGG functional annotation.

Conclusion
The innovation and characteristic of this paper is that both 
the interolog method and domain-domain method were 
applied to predict the PPIs between banana and Foc4, and 
the dataset of PPIs between banana and Foc4 was obtained 
by computing means for the first time. The combination of 
the CT and AC methods was used to encode protein char-
acteristics to obtain the continuous and discontinuous 
sequence information of proteins. The predicted banana-
Foc4 PPIs dataset was verified by LSTM neural network-
based five-fold cross-validation method and independent 
test method. The GO, KEGG annotation, and interaction 
network analysis of banana and Foc4 protein interactions 
shows that there were indeed PPIs between banana and 
Foc4, and several Foc4 proteins interact with host protein 

together. The dataset of PPIs between banana and Foc4 
predicted by computing method will provide a basis for 
the study of banana Fusarium wilt, and also offer a new 
means for analyzing the molecular mechanism of inter-
actions between banana and Foc4. In the future, we will 
investigate the biological experiment method to verify 
whether there may be some false positives in the protein 
mutual network between banana and Foc4 constructed by 
the computation method.
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