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Abstract

Background: We investigated the effects of mycophenolate mofetil (MMF) on kidney function and on protein
phosphorylation in a mouse model for the human Alport syndrome.

Methods: COL4A3-deficient (COL4A3−/−) mice were randomly allocated to receive a placebo (PLC COL4A3−/−) or
MMF treatment (MMF COL4A3−/−). Wild type mice (WT) were used as controls. Changes in serum creatinine, total
protein and blood urea nitrogen (BUN), concentrations of mycophenolic acid (MPA) and its glucuronide metabolite
(MPAG), serum protein electrophoresis, urine dipstick chemistry and sediment were measured. Changes in the
phosphorylation status of renal proteins and histology were analyzed.

Results: MMF influenced kidney function and protein phosphorylation. Serum creatinine and BUN were lower in
MMF treated compared to PLC treated COL4A3−/− mice. Serum albumin and alpha-1 globulins were significantly
decreased while serum creatinine, alpha-2 globulins, urine dipstick protein, leukocyte esterase, hemoglobin and red
blood cells were all increased in both COL4A3−/− groups compared to WT. Differential 2DE-gel analysis identified
six phosphorylated kidney protein spots that were significantly altered by MMF.

Conclusions: These data suggest that the MMF treatment in this murine model moderately improved kidney
function and reversed the phosphorylation status of six renal phosphoprotein spots to that seen in WT mice.
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Introduction
Mycophenolic acid (MPA) is the active metabolite of the
pro-drug mycophenolate mofetil (MMF). It effectively
and non-competitively inhibits inosine monophosphate
dehydrogenase (IMPDH, EC 1.1.1.205). Human IMPDH
is present in two isoforms: type I (expressed in nearly all
cells) and type II (expressed in activated lymphocytes).
IMPDH type II is about 5-fold more sensitive to MPA
compared to IMPDH type I [1-3]. MPA inhibits the
proliferation of T- and B-lymphocytes through the de-
pletion of the nucleotides guanosine and deoxyguanosine
thereby suppressing purine synthesis. It also inhibits the
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production of immunoglobulins [4]. MMF is one of the
most commonly used immunosuppressive drugs either
alone or in combination with other immunosuppressive
drugs (e.g. corticosteroids and/or calcineurin inhibitors)
for the prevention of organ rejection after solid organ
transplantation as well as in the therapy of autoimmune
and neoplastic diseases [3,5-8]. It is known that MPA,
through a nonspecific mechanism of action, can also
influence non-lymphatic cells such as fibroblasts [3,9-14].
It has been proposed that MPA also has a positive effect
on the progression of human kidney fibrosis [15-17] based
on numerous in vivo [9,17-22] and in vitro studies
[10,12,17,23]. However, the mechanisms responsible for
the effects of MMF on renal fibrosis, especially changes
in the phosphoproteome, have not been adequately
studied. The aim of the current study was to examine
the effects of MMF treatment on kidney function
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and on the phosphorylation status of renal proteins in
COL4A3-deficient (COL4A3−/−) mice, which represent
an in vivo, non-hypertensive model for the autosomal
form of Alport syndrome.

Results
During the study period no severe MMF-related toxicity
such as diarrhea was observed. However, animals were
excluded from the study that became somnolent, exhib-
ited a decrease in body weight of more than 20%, and/or
had a total body weight of less than 16 g (n = 7). At the
end of the 14 days of MMF treatment the COL4A3-
deficient mice had lost less mean body weight than those
treated with placebo (10% vs. 14%). The mean+/−SD
body weight on the last day of the MMF treatment was
19+/−3 g in the MMF group, 18+/−1 g in the PLC group
and 26+/−1 g in the wild-type control group (Additional
file 1: Table S1A).
Two observers, independently and blinded to the treat-

ment groups of COL4A3-deficient mice, examined the in-
filtration of mesangial matrix in 3653 areas after staining
with hematoxylin and eosin. The tubulointerstitial fibrosis
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Figure 1 Murine serum analysis using routine diagnostic methods. A)
of serum creatinine, blood urea nitrogen, and total protein are stratified
and presented as the mean and standard deviation. B) Drug concentratio
and mycophenolic acid glucuronide (MPAG) are presented for the treatm
Serum electrophoresis: The first fraction (1) stands for albumin, second (2
globulins and the fifth (5) gamma globulins. The rings show the mean relative
(WT n = 3; PLC n = 6; MMF n = 8). Legends: wild-type 129/SvJ mice (WT); place
mycophenolate mofetil per day (MMF); P < 0.05 using the Mann–Whitney-U te
present after 2-weeks treatment of COL4A3−/− mice
was only slightly inhibited by MMF in comparison to
the PLC COL4A3 −/− mice as would be expected for
this relatively short period of MMF treatment (WT: all
areas with score = <1+; PLC: 13% - score 0, 34% - score
1+, 33% - score 2+, 20% - score 3+; MMF: 11% - score
0, 45% - score 1+, 31% - score 2+, 13% - score 3+), and
glomerulosclerosis appeared to be unchanged by MMF
(Additional file 2: Figure S1).
Clinical chemistry protocols for routine measurements

in human samples are applicable even for the small
murine sample volumes used. Serum and urine bio-
chemical parameters are shown in Figure 1 and in
Additional file 1: Table S1. Serum creatinine concen-
trations were significantly increased (P < 0.05; Figure 1A;
Additional file 1: Table S1B) in both COL4A3-deficient
groups compared to WT mice (WT: 0.16+/−0.03; PLC:
1.44+/−0.61; MMF: 1.13+/−0.59 mg/dl). Total protein did
not show any significant differences (P > 0.05; Figure 1A;
Additional file 1: Table S1B) between the three experimen-
tal groups (WT: 5.30+/−0.47; PLC: 5.64+/−0.78; MMF:
5.61+/−0.77 g/dl) but blood urea nitrogen was significantly
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lower (P < 0.05; Figure 1A; Additional file 1: Table S1B)
in the WT group compared to both COL4A3-defitient
groups (WT: 22.47+/−3.97; PLC: 147.00+/−143.61; MMF:
74.75+/−19.67 mg/dl).
Pre-dose MPA and mycophenolic acid glucuronide

(MPAG) serum concentrations were below the lower
limit of quantification (<0.5 mg/l MPA and 5 mg/l
MPAG for 1:5 diluted samples) in the WT and PLC
groups. However, MPA concentrations were between 20
and 41 mg/L (mean+/−SD = 21+/−14) and MPAG con-
centrations were between 9 and 26 mg/l (12+/−10) in the
MMF group of COL4A3−/− mice (Figure 1B; Additional
file 1: Table S1C).
Results of the serum electrophoresis (presented in

Figure 1C and in Additional file 1: Table S1D) revealed a sig-
nificant decrease (P < 0.05) in albumin (WT: 3.02+/−0.26;
PLC: 1.72+/−0.44; MMF: 2.10+/−0.53 g/dl) and alpha-1
fractions (WT: 0.37+/−0.04; PLC: 0.11+/−0.05; MMF:
0.15+/−0.07 g/dl) in both COL4A3-deficient groups but
a significant increase (P < 0.05) in the alpha-2 fractions
(WT: 0.48+/−0.04; PLC: 0.93+/−0.30; MMF: 0.95+/−0.28
g/dl) but no significant difference (P > 0.05) in the beta
fraction (WT: 0.53+/−0.13; PLC: 2.18+/−1.06; MMF:
1.95+/−1.23 g/dl) or gamma fraction (WT: 0.89+/−0.07;
PLC: 0.94+/−0.49; MMF: 0.64+/−0.33 g/dl).
Urine chemistry (Additional file 1: Table S1E) dem-

onstrated increases in total urine protein in both
COL4A3-deficient groups (MMF & PLC: 100–300 mg/dl;
WT: < 15 mg/dl). Hemoglobin and leucocyte esterase
were consistently negative in the WT group in contrast
to both COL4A3-deficient groups (hemoglobin: ca.
100 mg/dl; leucocyte esterase: ca. 250 leucocytes/μl).
None of the other urine chemistry results showed any
significant differences (glucose, bilirubin, urobilinogen,
nitrite, ketones, pH, and specific gravity). The urine
sediment also showed differences between experimen-
tal groups (Additional file 1: Table S1F). Erythrocytes
were observed microscopically only in urine samples from
both COL4A3-deficient groups and these mice also had
less bacteria and amorphous phosphates than was seen in
the WT group. In addition, leucocytes were detected in
urine from WT and MMF-treated COL4A3−/− mice as
well as yeasts and occasionally hyaline cylinders were
found in samples from WTand PLC COL4A3−/− mice.
Differential 2-DE analysis of kidney proteins using a

phosphorylation-specific stain revealed six protein spots
(out of ca. 500) that exhibited significant phosphoryl-
ation changes in WT vs. PLC and MMF vs. PLC (P < 0.05)
groups. There were no significant differences; however,
between WT and MMF groups (P > 0.05; Figure 2;
Additional file 1: Table S1G). Three differentially phos-
phorylated protein spots (numbers 1, 5 and 6) were
down-regulated in PLC COL4A3−/− mice, while another
three spots (numbers 2, 3 and 4) were up-regulated. MMF
treatment reversed the phosphorylation of all six spots
to match that seen in WT mice (Figure 2). These spots
were identified in duplicate samples using mass spec-
trometry from three replicate 2DE-gels each from one
representative WT, one PCL and one MMF mouse.
Identified proteins were considered only if the total
unique peptide count was > = 3. For all replicates,
comparable sets of protein species were identified (see
Additional file 3: Table S2 for a list of proteins derived
from the WT mice). Even after removal of laboratory
contaminants such as human keratin, all of the 2-DE
spots examined contained more than one protein, indi-
cating a potential overlay with neighboring spots. From
the results lists, known phosphoproteins were selected
as potential markers and checked for plausibility by
comparing the observed molecular weight and isoelec-
tric point to the expected values (Table 1).

Discussion
Alport glomerulonephritis is a hereditary disorder lead-
ing to kidney fibrosis that is associated with mutations
in genes encoding for COL4A3, COL4A4 or COL4A5, a
gene necessary for the normal structure of the glomeru-
lar basement membrane. If these genes are mutated, the
glomerular basement membrane will be altered [24]. In
this in vivo study, COL4A3−/− mice served as a model
for progressive renal disease seen in the human Alport
syndrome [25]. Untreated COL4A3 −/− mice die from
renal failure typically after 66 to 71 days [22,26-28],
whereas the normal life span of WT mice is 565 days [27].
COL4A3−/− mice have previously been used to study the
nephroprotective and antifibrotic effects of different drugs.
The life span has been reported to be prolonged by 13%
after treatment with paricalcitol [29], by 19% after treat-
ment with etanercept [26], by 25% after treatment with
BX471 [30], by 28% after treatment with cerivastatin [28],
by >50% after treatment with ramipril [29], by >68% after
combined treatment with paricalcitol and ramipril [29], or
even by >100% after treatment with ramipril [27]. Previ-
ously, we were able to demonstrate improved kidney func-
tion in MMF-treated COL4A3−/− mice although the
overall survival was not improved [22] and we therefore
suggested that, in contrast to the other drugs studied,
MMF might have an inhibitory effect on the initial tubu-
lointerstitial fibrosis but not on glomerulosclerosis. The
proteome changes we found supported this suggestion
[31]. To explore the cause of these contradictory findings
further, we investigated the effects of MMF on renal func-
tion with a special focus on screening for phosphoproteo-
mic differences using total protein extracts from the
kidneys of 7-week old male WT, PLC treated COL4A3−/−
and MMF-treated COL4A3−/− mice.
Pre-dose serum MPA and MPAG concentrations

(Figure 1B, Additional file 1: Table S1C) both showed
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Figure 2 Differentially phosphorylated protein spots in fibrotic kidneys reversed by mycophenolate mofetil. A) Fluorescence: The point
diagram presents the percentage of the relative fluorescence of the whole gel (100%), as well as stratification for all three experimental groups
(WT n = 3 in gray; PLC n = 3 in black; MMF n = 3 in white). B) Cluster check: The hit phosphospots are shown as squares in different colors, depending
on the fluorescence in the original scans of the phospho-stained 2DE gels (using the analysis tool of the Delta2D software). The stratification is done
for all three experimental groups (WT n = 3; PLC n = 3; MMF n = 3). C) Silver-stained 2DE gel: The picture visualizes the phosphospots of one
representative WT mouse, as well as the isoelectric point (pI) and the molecular weight (kDa) in this zoomed-in area. Legends: wild-type 129/SvJ mice
(WT); placebo treated COL4A3−/− mice (PLC); and COL4A3−/− mice treated with 100 mg/kg mycophenolate mofetil per day (MMF).
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inter-individual variability as previously reported [22].
The mean MPA concentration was ca. 21 mg/l and the
mean MPA and MPAG concentrations were ca. 12 mg/l
without any signs of toxicity in these experimental mice as
has previously been reported after treatment with 10, 50,
100 and 150 mg MMF/kg/day [22]. Interestingly, MPA and
MPAG concentrations in the COL4A3−/− mice were much
higher than seen in patients following solid organ trans-
plantation. A preliminary therapeutic range for pre-dose
MPA concentrations in renal transplantation patients
during the first 3 months post-surgery (when used in asso-
ciation with cyclosporine) was only 1.0 to 3.5 mg/l [32]. In
a previous study, female Wistar rats aged 12 weeks were
treated with 20, 30 or 40 mg/kg MMF once daily using
gastric feeding tubes and the group receiving the highest
dose of 40 mg/kg developed diarrhea after 26–28 days of
treatment [33]. This adverse effect was neither seen in our
previous study [22], nor in the present study with COL4A
3−/− mice suggesting a higher tolerance for MMF in our
male mouse model as compared to female Wistar rats.



Table 1 Potential novel biomarkers for Alport syndrome

Phosphospot Phosphoprotein identified
in the spot

Quantitative value
(Normalized total spectra)

Molecular
weight, kDa

Isoelectric point, pI

(Entry Name) WT/PLC/MMF Observed Calculated Observed Basal, unphosphorylated
statea

Prediction for various
phosphorylation statesa

Phosphospot 1 17 9.0

Actin-related protein 2/3 complex subunit 3
(ARPC3_MOUSE)

9/13/53 21 8.78 1-18 phosphosites; 8.28-4.09

Main protein NADH dehydrogenase [ubiquinone] 1 alpha
subcomplex subunit 8 (NDUA8_MOUSE)b

35/49/53 20 8.76 1-11 phosphosites; 8.41-5.45

Phosphospot 2 75 5.5

Plastin-3 (PLST_MOUSE) 2/0/0 71 5.42 1-44 phosphosites; 5.36-4.19

Heat shock cognate 71 kDa protein
(HSP7C_MOUSE)

2/0/0 71 5.37c 1-137 phosphosites; 5.32-2.38c

Adseverin (ADSV_MOUSE) 5/18/58 80 5.64 1-17 phosphosites; 5.57-4.93

Main protein Serum albumin (ALBU_MOUSE) 33/13/99 69 5.75 1-120 phosphosites; 5.69-2.63

Phosphospot 3 45 7.5

ATP synthase subunit alpha, mitochondrial
(ATPA_MOUSE)

16/0/0 60 9.22 1-79 phosphosites; 9.07-3.10

Catalase (CATA_MOUSE) 2/0/0 60 7.72 1-69 phosphosites; 7.19-3.73

Main protein Glutamate dehydrogenase 1, mitochondrial
(DHE3_MOUSE)

43/22/37 61 8.05 1-82 phosphosites; 7.40-3.33

Phosphospot 4 27 6.5

Serine/arginine-rich splicing factor 1 (SRSF1_MOUSE) 4/0/0 28 10.37 1-58 phosphosites; 10.22-3.08

26S proteasome non-ATPase regulatory
subunit 9 (PSMD9_MOUSE)

4/0/0 25 6.00 1-14 phosphosites; 5.83-4.58

Main protein Estradiol 17-beta-dehydrogenase 8 (DHB8_MOUSE)b 9/30/17 27 6.10 1-5 phosphoprotein; 5.81-5.07

Phosphospot 5 15 8.5

Destrin OS (DEST_MOUSE) 15/41/10 19 8.14 1-30 phosphosites; 7.15-3.20

40S ribosomal protein S14 (RS14_MOUSE) 5/0/56 16 10.07 1-15 phosphosites; 9.84-5.26

Main protein Peptidyl-prolyl cis-trans isomerase A
(PPIA_MOUSE)

72/30/44 18 7.73 1-39 phosphosites; 6.75-2.36

Phosphospot 6 26 7.0

Serine/arginine-rich splicing factor 1 (SRSF1_MOUSE) 12/1/27 28 10.37 1-58 phosphosites; 10.22-3.08

Main protein Omega-amidase NIT2 (NIT2_MOUSE)b 49/29/34 31 6.44 1-13 phosphosites; 5.10-4.58
ahttp://www.phosphosite.org; January 2014.
bMain protein identified in each group, not yet described as phosphoprotein.
cInformation for the human protein; March 2014.
The table presents possible phosphoproteins, including the main proteins identified in this mouse model for the human Alport syndrome.
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Serum creatinine, total protein, as well as the 5 serum
electrophoresis fractions did not differ significantly be-
tween PLC COL4A3−/− and MMF treated COL4A3−/−
mice (Figure 1, Additional file 1: Table S1): results which
are consistent with the reported moderate effect of
this immunosuppressive drug treatment on survival [22].
However, the blood urea nitrogen level after 2-weeks treat-
ment with MMF was significantly decreased, consistent
with our previous report [22] and thus suggesting again
that tubulointerstitial fibrosis can be inhibited by MMF
[31]. Albumin and alpha-1 globulins were decreased
while creatinine, alpha-2 globulins, urine dipstick pro-
tein, leukocyte esterase (leukocytes), hemoglobin and
red blood cells were all increased in both COL4A3−/−
groups compared to WT, thereby confirming the pres-
ence of glomerulosclerosis.
We found 6 differentially phosphorylated spots (Figure 2).

The database search included serine, threonine and tyrosine
phosphorylation as variable peptide modifications, however
no phosphorylated peptides were identified at sufficient
confidence. This is likely due to the substoichiometric
nature of protein phosphorylation. Due to the already
low abundance of the protein spots, phosphopeptide
enrichment strategies were not pursued as they usually
require sufficient starting amounts. Protein identifica-
tions are summarized in Additional file 1: Table S1 G
and Table 1.
The differentially phosphorylated protein spot 1 (ob-

served 17 kDa/9 pI) was significantly down-regulated
in PLC COL4A3−/− mice. MMF treatment of the
COL4A3−/− mice increased the phosphorylation to match
that of the WT mice. The major protein in the spots of all
three groups was NADH dehydrogenase [ubiquinone] 1
alpha subcomplex subunit 8 (NDUA8), however NDUA8
is not described as a phosphoprotein. The spot also con-
tained one possible phosphoprotein: actin-related protein
2/3 complex subunit 3 (ARPC3), an actin-binding cyto-
skeleton protein that is involved in cell projection and
lamellipodium and functions as a component of the Arp2/3
complex. The Arp2/3 complex generates branched actin
filaments in motile cells that drive the cell front forward
[34]. In a recent study it was reported that threonine
and tyrosine phosphorylation are important for a subset
of the functions of the Arp2/3 complex, including the
regulation of development [35].
The phosphorylation of phosphospot 2 (observed

75 kDa/5.5 pI) was significantly up-regulated in PLC
COL4A3−/− mice, while the MMF treatment of the
COL4A3−/− mice reversed the phosphorylation to be
similar to that seen in WT mice. This spot contained
four proteins previously described as phosphoproteins:
serum albumin (ALBU), adseverin (ADSV), heat shock
cognate 71 kDa protein (HSP7C) and plastin-3 (PLST).
ALBU was the most abundant protein in the spot as
indicated by spectral counts. Phosphorylation of ALBU
was also observed in the extracellular medium. This
protein is involved in the regulation of the colloidal
osmotic pressure of blood, transport, cellular responses to
starvation, negative regulation of apoptosis, and other
processes. The second possible phosphoprotein was ADSV,
involved in the actin filament capping, the negative
regulation of cell proliferation, as well as in the positive
regulation of apoptosis. HSP7C and PLST were identified
at low abundance: HSP7C inhibits the transcriptional
coactivator activity of CITED1 on Smad-mediated tran-
scription, whereas PLST, the actin-binding protein in
intestinal microvilli and fibroblast filopodia, is involved
in motility, polarity and chemotaxis. Interestingly, PLST
belongs to the plastin protein family of three isoforms with
relatively high homology between: I (plastin-1 expressed
in the intestine and kidney), L (plastin-2 in leukocytes
and cancer) and T (plastin-3 in solid tissues) [36]. Only
L-plastin has been reported (to date) to be phosphory-
lated [37] and it has been identified as a transformation-
induced polypeptide of neoplastic fibroblasts [36].
Moreover, L-plastin is included in a novel serum triple
marker assay for the early detection of malignant kidney
tumors [38].
While the phosphospot 3 (observed 45 kDa/7.5 pI)

showed a significant increase in phosphorylation in PLC
COL4A3−/− mice, MMF treatment of the COL4A3−/−
mice reversed this phosphorylation. This spot matched
three possible phosphoproteins: the main protein was
glutamate dehydrogenase 1 (DHE3), but ATP synthase
subunit alpha (ATPA) (involved in the embryonic devel-
opment and negative regulation of endothelial cell prolif-
eration), and catalase (CATA) were also identified.
Although identified at low spectral count, indicating low
relative abundance in the spot, CATA is still of high
interest with respect to kidney fibrosis. CATA is the per-
oxisome enzyme, oxidoreductase, involved in numerous
biological processes including kidney development,
negative regulation of apoptosis positive regulation of cell
division, and a selenium-centered micronutrient bio-
logical network. Interestingly, CATA promotes growth of
a number of cell types including T-cells, B-cells, and both
normal and transformed fibroblast cells. One recent
study showed that T lymphocytes and IL-6 play import-
ant roles in renal fibrosis [39]. Another group has
reported that monocytes may influence myofibroblast
accumulation via TGF-beta 1, and that monocytes, but
not myofibroblasts, are associated with tubular atrophy
in Alport mice [40].
The phosphoprotein spot 4 (observed 27 kDa/6.5 pI)

showed significantly increased phosphorylation in
PLC COL4A3−/− mice and MMF treatment of the
COL4A3−/− mice reversed this to become similar to that
seen in WT mice. This spot matched two possible
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phosphoproteins: serine/arginine-rich splicing factor 1
(SRSF1) and the 26S proteasome non-ATPase regula-
tory subunit 9 (PSMD9). The most abundant protein
identified in all three groups has not yet been described
as a phosphoprotein: estradiol 17-beta-dehydrogenase
8 (DHB8).
The phosphoprotein spot 6 (observed 26 kDa/7 pI)

was significantly down-regulated in PLC COL4A3−/−
mice, but MMF treatment of the COL4A3−/− mice
increased the phosphorylation to that seen in WT mice.
In all three groups this spot contained one main protein,
omega-amidase NIT2 (NIT2), not previously described
as a phosphoprotein, and one possible phosphoprotein:
the above mentioned SRSF1. We postulate that the
increased phosphorylation of phosphospot 4 and the
decreased phosphorylation of phosphospot 6 are related
to SRSF1 because it is known that increasing phosphor-
ylation of the phosphosites can shift the pI to lower
values (Phosphospot 4, 6.5 pI observed, = 18 phosphory-
lated phosphosites vs. Phosphospot 6, 7 pI observed, =
14 phosphorylated phosphosites, Figure 2C). SRSF1 is
involved in the regulation of constitutive and alternative
splicing. In a recent review it was noted that SRSF1 has
also been shown to promote tumor transformation and
growth by several mechanisms; for example, by stabiliz-
ing mRNA of anti-apoptotic factors 21 and by generat-
ing inactive tumor suppressor proteins by alternative
splicing [41]. Reversible phosphorylation cascades are
able to rapidly conduct signals throughout the cell and
are probably important in mediating extracellular signals
to the spliceosome [42].
The differentially phosphorylated protein spot 5 (ob-

served 15 kDa/8.5 pI) was significantly down-regulated
in PLC COL4A3−/− mice and MMF treatment of the
COL4A3−/− mice reversed this down regulation. This
spot contained three possible phosphoproteins: peptidyl-
prolyl cis-trans isomerase (PPIA), 40S ribosomal protein
S14 (RS14) and destrin (DEST). PPIA, which appears to be
most abundant phosphoprotein in the spot, is involved in
inflammation, acceleration of the folding of proteins, and
in the positive regulation of protein secretion. In a recent
study using human colon cancer cells, DEST appeared to
be required for cell migration and invasion in response to a
pro-invasive neuroendocrine peptide. This property was re-
lated to a DEST-dependent phosphorylation of a p130Crk-
associated substrate (p130Cas) upon cell adhesion [43]. The
structural constituent of ribosome RS14 (regulation of
translation) however was only present in very low quantity
in the spot as indicated by spectral counts.

Conclusions
The current data confirmed the ability of MMF to mod-
erately improve kidney function in a mouse model of
human Alport syndrome, presumably through inhibition
of tubulointerstitial fibrosis. MMF reversed the COL4A3
related phosphorylation status of renal proteins in this
murine fibrotic kidney model to that seen in WT mice.
The involved phosphoproteins are associated with a num-
ber of important cell properties including: cell projection,
motility, migration, invasion, polarity, division, transform-
ation, and cell growth (T-cells, B-cells, fibroblasts). These
results support our in vitro findings using functional
assays with the human epithelial HK-2 cell line from
proximal tubuli [44] and on the monkey renal fibroblast
COS-7 cell line [13]. It may be speculated that the MMF
treatment was initiated too late or the duration was too
short to reverse the changes leading to renal fibrosis in the
treated COL4A3−/− mice. Further studies are necessary
to clarify, validate or extend these preliminary findings.

Methods
COL4A3-deficient mice
This study was approved by the local German authorities
(LAVES, Oldenburg, Germany, 2011) and supervised by
veterinarians. COL4A3−/− mice were obtained from
Jackson Laboratory (Bar Harbor, ME). They were bred on
a 129/SvJ genetic background, to reduce individual differ-
ences, under pathogen-free housing conditions with a 12-
hour dark and light period and unlimited access to food
and water at the local animal facility. DNA was isolated
using the DNeasy kit® (Blood & Tissue Kit; QIAGEN
GmbH, Hilden, Germany). Genotyping of the murine
COL4A3 gene was conducted according to Cosgrove et al.
[24]. Twenty 5-week old COL4A3−/− mice, all male in
order to avoid gender-specific differences, and with a body
weight of more than 16 g, were randomly allocated to two
experimental groups (PLC: n = 10, MMF: n = 10). They
were treated daily by gavage with either an MMF solution
(100 mg/kg) or with an equivalent amount of vehicle
placebo (PLC) as described previously [22]. They were
examined daily and their body weight was documented.
After 14 days of treatment they were sacrificed using an
approved protocol. An additional three wild type mice
were used as controls (WT: mouse strain 129/SvJ), be-
cause reference values for the parameters studied in the
WT mouse strain were not available. Serum, urine, and
kidney tissues were collected 24 hours after the last MMF
treatment and stored at −80°C for further analysis. All re-
sults obtained in serum from COL4A3-deficient groups
were corrected with a dilution factor (1:5 or 1:10 dilution;
vol/vol using 0.9% NaCl). Serum from WT mice was not
diluted except for serum electrophoresis which was di-
luted 1:10 in all three groups.

Histological staining with hematoxylin and eosin
Kidney tissue sections (paraffin-embedded) were pre-
pared from each mouse and histological evaluation was
performed after staining with hematoxylin and eosin by
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two observers blinded to the groups as described previ-
ously [31]. Tubulointerstitial fibrosis was scored semi-
quantitatively using light microscopy in accordance with
the Banff criteria [45]: 0 (no tubulointerstitial changes);
1+ (less than 25%); 2+ (25–50%) and 3+ (more than 50%).
Additionally, histological evaluation and protein isolation
were also done on serial cryo-slides (Microtome, Microm
HM325; Thermo Scientific, Walldorf, Germany).

Clinical chemistry: serum and urine
Serum concentrations of creatinine, blood urea nitrogen,
and total protein were quantified using a Cobas 8000
modular analyzer (Roche Diagnostics GmbH, Mannheim,
Germany) as described elsewhere [22] using pre-diluted
samples (1:5). Serum electrophoresis was also conducted
using pre-diluted samples (1:10) and routine diagnostic
equipment (Hyrys 2, Sebia GmbH, Fulda, Germany).
Urine dipstick chemistries and microscopic examina-

tions were performed as follows: 3–10 μl sample per
analyte were analyzed on 11-field-AUTION dipsticks
(URIFLET S; ARKRAY Factory Inc, Shiga, Japan) using
an AUTION analyzer (AUTION MAX; ARKRAY Factory
Inc, Shiga, Japan) and microscopic evaluations of the urine
sediments were done using a phase-contrast microscope
(Zeiss Standard 14 with objective 5165602 and ocular
K-pl-W 12,5x/18; Carl Zeiss Microscopy GmbH, Jena,
Germany; 400-fold total magnification) on 100 μl samples
after centrifugation (2 min at ca. 3000 × g; centrifuge type
3530; Abbott Laboratories GmbH, Hannover, Germany).

Drug concentrations
Pre-dose serum concentrations of mycophenolic acid
(MPA) and mycophenolic acid glucuronide (MPAG) were
measured in pre-diluted samples (1:5) using a Quattro
Premier XE Triple Quadrupole mass spectrometer
(Waters Corporation, Milford Massachusetts, U.S.A.) as
previously described [22].

Two-dimensional electrophoresis (2DE)
Cryo-slides of kidneys (3 mice per group: WT, PCL, and
MMF) were used for protein isolation as previously
described [31]. Briefly, protein concentrations were deter-
mined with the Bradford method [46]. Two-dimensional
electrophoresis (2-DE) gels each with 125 μg protein/
immobilized pH gradient strip (17-cm; nonlinear pH
range of 3–10; ReadyStrip TM; Bio-Rad) were produced
using the method of Görg et al. [47]. The strips were
passively rehydrated and the proteins were then focused
in a Protein IEF Cell (Bio-Rad). The strips were loaded
onto a vertical 12.5% polyacrylamide gel for further sep-
aration. The gels with spots separated according to both
isoelectric point and molecular weight were stained first
with Ready Solution Pro-Q® Diamond Phosphoprotein Gel
Stain according to the manufacturer’s recommendations
(Invitrogen, Ltd., Paisley, UK) to produce fluorescence
of differentially phosphorylated proteins as previously
described [48]. Subsequently, scans were done using a
fluorescence scanner (FLA 5100; Fujifilm Europa GmbH,
Düsseldorf, Germany). In order to visualize and quantify
the protein spots, the gels were further stained with silver
according the modified method of Blum et al. [49]. Scans
of the phospho-stained gels and silver-stained gels were
densitometrically quantified using the Delta2D software
(Version 4.2, DECODON GmbH, Greifswald, Germany).
The spot intensity was evaluated as a percentage of the
total intensity in each gel. A statistical tool integrated into
the Delta2D software was used to evaluate the differences
in protein phosphorylation between the groups. Protein
spots of interest were those spots that differed significantly
between WT and PLC COL4A3−/− mice but without any
statistically significant difference between WT and MMF
COL4A3−/− mice. A change of at least 50% in phosphor-
ylation was used as the cut off for spot selection. Selected
spots were excised and digested in-gel with trypsin accord-
ing to Shevchenko et al. [50].

Protein identification by mass spectrometry
Mass spectrometric analysis was carried out with peptide
mixtures after preconcentration on a Reversed Phase-C18
precolumn (0.15 mm ID × 20 mm self-packed with
Reprosil-Pur120 C18-AQ 5 μm, Dr. Maisch, Ammerbuch-
Entringen, Germany) and separation by Reversed Phase-
C18 nanoflow chromatography [0.075 mm ID× 200 mm
Picofrit column (New Objective, Woburn/MA, USA) self-
packed with Reprosil-Pur 120 C18-AQ, 5 μm] using a
15 min linear gradient on a nanoLC 425 nanoflow chro-
matography system (AB SCIEX, Framingham/MA, U.S.
A.). The eluent was analyzed using a Top10 method in the
Data Dependent Acquisition mode on a TripleToF 5600+
QqToF mass spectrometry system operated using Analyst
TF1.6 software (AB SCIEX, Foster City/CA, USA). For
database searching, tandem mass spectra were extracted
using AB SCIEX MS Data Converter software v1.3 beta.
All MS/MS samples were analyzed using Mascot v2.4.1
software (Matrix Science, London, UK) set up to search
the UniProt/SwissProt database (release 02/14 filtered for
Mus musculus, 16665 entries) with mass tolerances of
10 ppm for precursors and 0.05 Da for fragments, respect-
ively. Cysteine carbamidomethylation was used as a fixed
modification, methionine oxidation and serine, threonine
and tyrosine phosphorylation as the variable modification.
Scaffold v4.0.5 software (Proteome Software Inc., Portland/
OR, USA) was used to validate MS/MS based peptide
and protein identifications. Peptide identifications were
accepted if they could be established at greater than
95.0% confidence. Protein identifications required a
minimum of three confident peptide identifications and
a protein confidence threshold of 99.0%. Spectral counts
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(i.e. the number of MS/MS sequencing events leading
to identification of the same protein) were used to esti-
mate the relative abundance of proteins contained in a
single spot. From the results list, known phosphopro-
teins were selected using publicly available on-line
resources (http://www.phosphosite.org and http://www.
genecards.org, January 2014).

Statistics
The significance of the differences between the experi-
mental groups was calculated using the Mann–Whitney
U test (IBM SPSS 20, Ehningen, Germany). P < 0.05 was
considered statistically significant.

Additional files

Additional file 1: Table S1. Data Overview. The information derived
from the experimental mice (A: Body weight of mice at 7 weeks of age),
serum (B: Clinical chemistry; C: Drug concentrations; D: Serum protein
electrophoresis) and urine samples (E: Urine dipstick; F: Urine sediment)
as well as kidney tissues (G: Differentially phosphorylated protein spots)
are presented as the mean and standard deviation along with P-value
according to Mann–Whitney-U test if appropriate.

Additional file 2: Figure S1. H & E staining. The pictures illustrate the
histochemical data from one representative wild-type 129/SvJ mouse (WT);
one placebo treated COL4A3−/− mouse (PLC); and one COL4A3−/− mouse
treated with 100 mg/kg mycophenolate mofetil per day (MMF).

Additional file 3: Table S2. Protein Overview. The matrix presents an
unfiltered list of all proteins identified from the total unique peptides
(more than 3) in the six phosphospots of interest. The protein identification
presented here was done in one representative wild-type mouse. The
main spot protein (printed in bold) was the same as in the PLC and
MMF COL4A3−/− mice.
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