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Abstract 

Bacterial infections, especially those caused by drug-resistant bacteria, have seriously threatened human life 
and health. There is urgent to develop new antibacterial agents to reduce the problem of antibiotics. Biomedical 
materials with good antimicrobial properties have been widely used in antibacterial applications. Among them, 
hydrogels have become the focus of research in the field of biomedical materials due to their unique three-dimen-
sional network structure, high hydrophilicity, and good biocompatibility. In this review, the latest research progresses 
about hydrogels in recent years were summarized, mainly including the preparation methods of hydrogels and their 
antibacterial applications. According to their different antibacterial mechanisms, several representative antibacterial 
hydrogels were introduced, such as antibiotics loaded hydrogels, antibiotic-free hydrogels including metal-based 
hydrogels, antibacterial peptide and antibacterial polymers, stimuli-responsive smart hydrogels, and light-mediated 
hydrogels. In addition, we also discussed the applications and challenges of antibacterial hydrogels in biomedicine, 
which are expected to provide new directions and ideas for the application of hydrogels in clinical antibacterial 
therapy.
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Introduction
At present, human has paid great attention to infec-
tions caused by bacteria the infections caused by drug-
resistant bacteria has posed a great threat to human 
being health [1–3]. As is known to all, humans have been 

plagued by influenza pandemics, which have brought 
misery, disease, and even death to humans over the past 
few hundred years [4]. Secondary bacterial infections 
due to influenza are associated with greatly increased 
mortality, particularly some infections caused by gram-
positive bacteria such as Streptococcus pneumonia and 
Staphylococcus aureus (S. aureus) [5, 6]. Since the discov-
ery of penicillin by Alexander Fleming, the use of antibi-
otics provided a new method of antibacterial treatment 
[7, 8]. However, abuse of antibiotics has resulted in the 
occurrence of multidrug-resistant bacteria, for example, 
methicillin-resistant Staphylococcus aureus (MRSA), 
vancomycin-resistant Enterococcus (VRE) [9], and some 
superbugs [10], which are difficult to deal with, have seri-
ously threatened our health. Research studies have shown 
that if we do not provide treatment strategies for drug-
resistant bacteria, this would result in 700,000 deaths 
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from infectious diseases and a loss of 10 billion dollars 
per year worldwide [11, 12]. Therefore, it is urgent to 
develop new antibacterial strategies or therapeutic meth-
ods for improving the antibacterial effects.

With the development of research, researchers have 
found that inorganic antibacterial agents, organic anti-
bacterial agents, and hydrogel-based agents exhibit 
good antibacterial activity, providing the new strategies 
for the treatment of bacterial diseases [13–15]. Among 
them, hydrogel, as a kind of good antibacterial materi-
als, can be used with a variety of antibacterial agents to 
achieve antibacterial treatment [16]. Hydrogels are a 
kind of hydrophilic polymers with a three-dimensional 
porous structure, formed by physical or chemical cross-
linking of polymer chains [17, 18]. Hydrogels are soft in 
texture, high water-holding capacity, and have good bio-
compatibility close to living tissue [19], and have poten-
tial applications in biomedicine [20], such as cell culture 
[21], drug delivery and loading [22, 23], tissue engineer-
ing [24, 25] and other medical fields. Hydrogels have 
significant advantages in antibacterial materials due to 
their efficient loading, effective release of drugs and anti-
bacterial agents, thus greatly improving the utilization of 
antibacterial agents and reducing the toxic effects of anti-
bacterial agents on cells [26, 27]. Thus, hydrogels have 
attracted increasing attention as alternative materials for 
the treatment of bacterial infections.

However, with the widespread use of conventional 
hydrogels, bacterial resistance to antibiotics has been 
increasing, which has caused conventional hydrogels 
to gradually lose their advantages. Meanwhile many 
advanced hydrogels have been developed to solve the 
problem. Therefore, this article summarizes the progress 
and development of the application of hydrogels in the 
antibacterial field. According to antibacterial therapy 
strategies, antibacterial therapy based on hydrogel could 
be summarized as the following several categories: (I) 
Antibiotic loaded hydrogels, (II) Antibiotic-free loaded 
hydrogels, (III) The stimuli-responsive smart antibac-
terial hydrogels, and (IV) Light-mediated antibacte-
rial hydrogels. Among them, the different antibacterial 
agents incorporated into the antibacterial hydrogels are 
shown in Fig.  1. In this review, from the perspective of 
synthesis processes, properties and mechanisms will be 
introduced in about antibacterial hydrogel of treatment 
strategies and we hope to provide direction and basis for 
reducing the occurrence of bacterial drug resistance and 
improving the antibacterial strategy of hydrogels.

Methods for preparing hydrogels
Hydrogels are 3D polymers formed by combining hydro-
philic polymers with water molecules [28]. The physico-
chemical properties of hydrogels are highly dependent 

on the cross-linking methods. The key to the preparation 
of hydrogels is the cross-linking method. According to 
the type of bonds formed by cross-linking between the 
polymer chains, the preparation techniques of hydrogels 
can be divided into physical cross-linking method and 
chemical cross-linking method. The hydrogels formed 
by physical cross-linking method are called physi-
cal hydrogels, which are cross-linked by non-covalent 
bonding interactions. Physical cross-linking method has 
the advantages of low cost, low cytotoxicity, and sim-
ple operation [29, 30]. Chemical cross-linking method 
to form hydrogels requires the assistance of polymeric 
cross-linking agents [31]. Compared with physical cross-
linking method, chemical cross-linking has the advantage 
of forming stronger chemical bonds with a higher degree 
of cross-linking.

Physical cross‑linking hydrogels
Physical cross-linking is the physical process of form-
ing non-covalent bonds whose products can be revers-
ibly formed or disrupted [32], such as ion interaction 
[33], hydrophobic interaction [34], and hydrogen bonds. 
Among them, the polymer alginates are often cross-
linked through ionic interaction, which are anionic lin-
ear polysaccharides with mannuronic acid residues 
and can be cross-linked by calcium and barium ions to 
form physical hydrogels [35, 36]. Alginate-based hydro-
gels have attracted great attention due to their bio-
compatibility and low cost [37–39]. Choi et  al. mixed 
negatively charged alginates with positively charged chi-
tosan (CS) to form ion interaction to stabilize the struc-
ture. At the same time, β-glucan was added to promote 
wound healing. It has been reported that alginate-CS 
hydrogel patches containing β-glucan were expected to 
be wound dressings with antibacterial properties [40]. 
Besides, Meng et  al. mixed stearyl methacrylate with 
silk fibroin and cross-linked it with the alginate network 
to construct silk fibroin-based hydrophobic-association 
hydrogels [41]. The as-prepared hydrogels by replacing 
sacrificial bonds with hydrophobic interaction not only 
enhanced the strength and toughness of the hydrogel, 
but also achieved self-healing properties. It was worth 
mentioning that the self-healing process of the compos-
ite hydrogel did not require external stimulation at room 
temperature. More importantly, the strategy of biomo-
lecular preparation of physical hydrogels was adopted, of 
which collagen was an example [42]. Collagen is a natural 
polymer that is a major component of the extracellular 
matrix [43]. Lohrasbi et al. incorporated cellulose nanofi-
brils into collagen hydrogels to enhance the mechani-
cal properties and maintain the biocompatibility of the 
hydrogels [44].
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Chemical cross‑linking hydrogels
Chemical cross-linking hydrogels are polymers linked 
by covalent bonds, and some chemical cross-linking 
agents can be triggered under light and high-energy 
radiation. Although some chemical agents are toxic to 
cells, chemical hydrogels form stronger bonds and are 
more thermally resistant than physical hydrogels [29]. 
The way to alter the functional and mechanical prop-
erties of hydrogels is to add small cross-linking agents 
such as glutaraldehyde (GA), dopamine, and tannic 
acid (TA), genipin (GP). Among them, GA, a chemi-
cal cross-linking agent, is extensively used to cross-link 
tissue films and scaffolds for transplantation proce-
dures including heart valve replacement [45]. Due to 
the toxicity of GA to cells, its application is limited 
[29]. However, TA is added to polymer networks as an 
ideal substitute to enhance the function of biomateri-
als [46]. GP extracted from the fruit of Gardenia is an 

active ingredient of Chinese herbal medicine for the 
treatment of liver disease [47]. GP has recently become 
a popular cross-linking agent because of its good bio-
compatibility and low cytotoxicity to cells compared 
with GA [48]. Lu et al. developed an injectable compos-
ite collagen hydrogel that was prepared by cross-link-
ing carbon dot nanoparticles (CD NPs) through using 
GP as a linker [49]. Due to the presence of GP and CD 
NPs, the stiffness of the hydrogel was enhanced, and 
photodynamic therapy could generate reactive oxygen 
species, both of which resulted in improved cartilage 
differentiation.

In addition to the synthesis of hydrogels using 
chemical cross-linking agents, Schiff base formation, 
enzymatic induced cross-linking, photoactivated cross-
linking, and radiation cross-linking have also been 
reported for preparing hydrogels [50]. Among them, 

Fig. 1  The different antibacterial agents incorporated into hydrogels
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photoactivated cross-linking has attracted much atten-
tion and has been widely applied in the preparation of 
cytokine-encapsulated hydrogels [51]. This method can 
rapidly form hydrogel under mild conditions, while the 
mechanical properties of hydrogels can be controlled by 
adjusting the reaction, and the cross-linking sites can 
be precisely selected [52]. Besides, the covalent reac-
tion of enzymatic cross-linking is mild and can be done 
in our body without any additional chemical reagents. 
Therefore, it is non-cytotoxic to cells and more suitable 
for tissue engineering [53, 54]. It is worth noting that 
radiation cross-linking reduces the use of cross-linking 
agents compared to others and can be done under mild 
conditions [55].

In addition to physical and chemical cross-linking 
methods, the third class of hydrogels have been reported 
to combine both types, termed dual-network hydrogels. 
As shown in Fig.  2, the process of preparing physical-
chemical double network hydrogel was roughly as fol-
lows: methacrylated CS formed chemical hydrogels by 
cross-linking, and then CS interacted with chondroitin 
sulfate to form physical hydrogels through electrostatic 
interaction [56]. For example, Liu et  al. synthesized thi-
olate chitosan (CS-NAC) used together with silk fibroin 
(SF) to form dual network CS-NAC/SF hydrogels [57]. 
The CS-NAC/SF gels had stronger mechanical properties 
compared to CS-NAC or SF gels.

Antibacterial treatments based on hydrogels
Antibiotic‐loaded antibacterial hydrogels
Over the past few decades, the use of antibiotics as the 
first choice for antibacterial therapy has been success-
ful in antibacterial therapy [58, 59]. Antibiotics can be 
divided several categories: fluoroquinolones, beta-lac-
tams, macrolides, tetracyclines, and aminoglycosides. In 
general, the effective treatments for infections are direct 
oral or injectable antibiotics. Despite systemic treat-
ment, direct use of antibiotics is difficult to control drug 
usage, which can lead to adverse factors such as bacterial 

resistance [60, 61]. The hydrogel has a porous structure 
suitable for loading antibiotic drugs, allowing direct 
administration at the site of infection thereby reducing 
the incidence of antibiotic abuse and improving the uti-
lization of antibiotics while having good biocompatibility 
[62, 63]. The following was the introduction to the hydro-
gels loaded with antibiotics.

Ciprofloxacin (CIP) is a fluoroquinolone antibiotic with 
broad antibacterial activity for the treatment of bacterial 
infections, including respiratory infections, and skin and 
bone infections [64]. The antibacterial mechanism of CIP 
is the inhibition of bacterial DNA synthesis and gyrases 
resulting in bacterial death [65]. Zhu et al. prepared gra-
phene/silk fibroin composite hydrogels and loaded CIP 
(Fig.  3a) [66]. The antibacterial activities of CIP-loaded 
graphene/SF hydrogel against Pseudomonas aeruginosa 
(P. aeruginosa) and S. aureus were detected by the zone of 
inhibition test. The results suggested that the composite 
hydrogel could effectively inhibit bacterial growth, accel-
erate wound healing, and have good release properties. 
Moreover, this composite hydrogel had good biocompat-
ibility and was nontoxic towards cells, and was suitable 
for use as wound dressings. Zheng et al. successfully con-
structed a hybrid hydrogel (Cip-Ti3C2 TSG) composed of 
CIP and Ti3C2 MXene [67]. The results showed that the 
release of CIP from the hybrid hydrogel could be accel-
erated under certain conditions, thereby improving the 
antibacterial efficiency.

Clindamycin is a lincosamide antibiotic widely used for 
severe skin and soft tissue infections caused by S. aureus 
[68, 69]. Sadeghi et al. used citric acid as a cross-linking 
agent to cross-link carboxymethyl cellulose and human 
hair keratin, and loaded clindamycin to prepare a novel 
antibacterial dressing [70], the results showed that the 
dressing could effectively inhibit the growth of S. aureus, 
the dressing did not affect the activity of fibroblasts, and 
the cell survival rate could reach more than 90%. There-
fore, it had a good application prospect in the field of skin 
tissue repair and regeneration. Jiang et  al. developed a 

Fig. 2  Formation process of double network hydrogel. Reproduced with permission [56]. Copyright 2013 Elsevier Ltd
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novel wound dressing based on glycerin hydrogel loaded 
with clindamycin showing effective antimicrobial prop-
erties as well as good biocompatibility [71]. In addition, 
clindamycin-loaded double cross-linked nanocomposite 
hydrogel had been reported, which exhibited excellent 
antibacterial activity against MRSA and Escherichia coli 
(E. coli) [72].

Gentamicin belongs to aminoglycoside antibiotics, 
which is traditional antibiotics with efficient antibacte-
rial activity, and is widely used in the treatment of bac-
terial infections [73]. If gentamicin acts directly on the 
skin, its absorption rate is low and it acts only locally on 
the superficial layer of skin [74]. In addition, gentamicin 
can also induce nephrotoxicity and ototoxicity, hinder-
ing its clinical application [75, 76]. Zhang et al. success-
fully prepared gentamicin-loaded composite hydrogel 
(CTMCSG) by reacting CS with epichlorohydrin (Fig. 3b) 
[77]. The results showed that this novel hydrogel had a 
good antibacterial effect, and more than 50% of the drug 
was released within 24 h, indicating its good drug release 
performance. The above findings suggested that pre-
pared CTMCSG hydrogel had great potential to promote 
wound healing. Besides, Eltawila et  al. reported a new 
topical antibacterial modality for the topical treatment of 
mandibular osteomyelitis by using injectable gentamicin-
collagen hydrogels [78]. Moreover, gentamicin had been 
commonly used as antibacterial coatings for orthopedic 
implants and showed good antibacterial activity [79].

Vancomycin is a glycopeptide antibiotic with a broad 
antibacterial effect on gram-positive bacteria [80]. 

Despite great concerns about bacterial resistance and 
nephrotoxicity, vancomycin remains a clinically impor-
tant treatment [81]. Liao et  al. prepared vancomycin-
loaded injectable hydrogels using oxidized hyaluronic 
acid (HA) and adipic acid dihydrazide [82]. The antibac-
terial effect of hydrogel against S. aureus was evaluated 
by the disc diffusion method, the results showed that the 
hydrogels had good antibacterial activity, and the average 
release rate of vancomycin could reach 86% on the 3rd 
day, and the as-prepared hydrogels had potential appli-
cations in coating the exteriors of orthopedic implants. 
In addition, vancomycin-loaded dual-function injectable 
hydrogel could effectively kill S. aureus through the pH-
responsive sustained release of vancomycin [83]. Besides, 
collagen hydrogels prepared by Thapa et  al. combined 
with collagen mimetic peptide-conjugated vancomycin 
liposomes (CMP-Van-Lipo) exhibited strong antibac-
terial activity (Fig.  3c) and had potential application in 
treatment of persistent wound infections [84].

In addition to the above antibiotics, the ampicillin-
loaded tragacanth nanohydrogels also had inhibitory 
effects on E. coli [85]. Moreover, levofloxacin-loaded HA 
hydrogel could effectively kill intracellular S. aureus and 
P. aeruginosa [86]. From the progress of antibacterial 
research, antibiotics are still an effective strategy for treat-
ing bacterial infections. However, the overuse of antibiot-
ics can lead to the occurrence of drug-resistant bacteria, 
which seriously endangers human health. Therefore, in 
addition to the development of new antibiotics, the effec-
tive combination of antibiotics and hydrogels can act as a 

Fig. 3  a Schematic synthesis of graphene/silk cellulose composite hydrogel loaded with Ciprofloxacin (CIP) and its application in wound healing. 
Reproduced with permission [66]. Copyright 2021, Springer Nature. b Schematic diagram of the synthesis of hydrogel films loaded with gentamicin. 
Reproduced with permission [77]. Copyright 2021 Licensee MDPI, Basel, Switzerland. c Schematic diagram of the CMP-Van-Lipo loaded co-gels 
structure and antibacterial activity. Reproduced with permission [84]. Copyright 2019. Published by Elsevier Ltd
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slow-release antibiotic and can be administered directly 
at the site of infection thereby reducing antibiotic abuse, 
which is also an effective strategy to address the problem 
of bacterial resistance.

Antibiotic‑free hydrogels
The adverse consequences caused by the misuse of anti-
biotics have brought a severe challenge to the medical 
field [87, 88], antibiotic-free treatment strategies have 
been actively developed [89]. In contrast to antibiotics, 
metal ions and metal oxides can enhance and maintain 
antibacterial activity, and biological extracts, as well as 
antibacterial polymers, have good antibacterial activ-
ity and biocompatibility [90–92]. In general, they can 
replace the use of antibiotics to reduce the incidence of 
drug abuse and resistance.

Antibacterial hydrogels loaded with metal nanoparticles
Hydrogels loaded with metal ions are ideal antibacte-
rial materials due to their broad-spectrum antibacte-
rial effect. The cost and toxicity of metal ions in the use 
process are still problems that need to be further solved. 
Hydrogels as carriers for delivery metal ions have good 
biocompatibility and can provide some strategies for the 
field of antibacterial therapy.

Metal ions, such as Ag+, Cu2+, Zn2+, Co2+, and Au+, 
have broad-spectrum antibacterial effects and are widely 
used in antibacterial materials [93, 94]. Among them, 
Ag nanoparticles (AgNPs) are widely used in the field of 
antibacterial due to their excellent antibacterial proper-
ties [95]. Wang et al. introduced covalently cross-linked 

polyacrylamide (PAM) into AgNPs loaded cellulose net-
works to prepare a hydrogel sensor with good ductility 
and antibacterial properties (Fig.  4a) [96]. In  vitro anti-
bacterial test results showed that the composite hydro-
gels had good antibacterial and effective antibacterial 
adhesion activity. Moreover, Jaiswal et  al. prepared the 
carrageenan-based composite hydrogels incorporated 
with AgNPs synthesized by using lignin as a reducing 
agent, which could promote wound healing [97]. The 
results showed that the composite hydrogels had remark-
able antibacterial effects against S. aureus and E. coli. The 
composite hydrogels could be used as a wound dress-
ing to promote wound healing in Sprague-Dawley rats. 
Besides, the composite hydrogel prepared from marine-
derived polysaccharides, such as sodium alginate and CS, 
and AgNPs loaded in composite hydrogels showed good 
antibacterial activity and had good application prospects 
in the field of antibacterial dressings [98].

Copper-based nanoparticles have also received much 
attention from researchers. Compared with silver-based 
nanoparticles, copper nanoparticles have the advantages 
of lower cost, easy release in vivo, and remarkable anti-
bacterial properties [99]. Copper nanoparticles are an 
excellent alternative to silver in cell imaging and pho-
tothermal therapy [100, 101]. Qian et  al. developed the 
HA-Cu hydrogel by coordinating hydrazide HA and Cu2+ 
as illustrated in Fig.  4b [102], which had good biocom-
patibility and significant antibacterial activity against 
E. coli and S. aureus. The wound-healing ability of the 
HA-Cu hydrogel was tested in a rat skin full-thickness 
model, and the results showed that the hydrogel could 

Fig. 4  Antibacterial hydrogels incorporated with metal nanoparticles. a Preparation process of cellulose composite hydrogel and its 
characterization and application in sensors. Reproduced with permission [96]. Copyright 2021 Elsevier Ltd. b Schematic diagram of antibacterial 
activity of HA-Cu hydrogel and antibacterial activity of HA-Cu hydrogels with different Cu2+ contents. Reproduced with permission [102]. Copyright 
2022 American Chemical Society c Application of nanocomposite hydrogels containing CuO nanoparticles in wound healing. Reproduced 
with permission [112]. Copyright 2021 Licensee MDPI, Basel, Switzerland
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significantly accelerate wound healing. Besides, the 
copper-based antibacterial hydrogel had potential appli-
cations not only in wound healing but also in tissue 
engineering. Furthermore, Qi et  al. prepared composite 
hydrogel for bone defect repair by cross-linking alginate 
with Cu2+ and cannabidiol [103]. The results showed that 
the hydrogel had an obvious inhibitory effect on S. aureus 
and E. coli, and effectively enhanced bone cell differentia-
tion and inhibited inflammatory responses. In addition, 
Malagurski et al. produced Cu-alginate hydrogel by elec-
trostatic extrusion, which showed immediate bactericidal 
effects on S. aureus and E. coli [104].

In addition to the above-mentioned metal nanopar-
ticles, gold nanoparticles (AuNPs) and Zn nanoparti-
cles also exhibited good antibacterial activity. Li et  al. 
designed molybdenum disulfide nanosheets burdened 
with bovine serum albumin-modified AuNPs, which 
were then anchored onto an injectable hydrogel [105]. 
The as-prepared hydrogel could promote wound healing 
by consuming glucose, scavenging bacteria, and reactive 
oxygen species. In addition, Tao et  al. prepared com-
posite hydrogel through the polymerization of the gela-
tin methacrylate and dopamine methacrylate, followed 
by metal coordination between zinc ions and dopamine 
methacrylate [106]. The reactive oxygen species gener-
ated by the composite hydrogel had obvious antibacte-
rial effects on S. aureus and E. coli. At the same time, it 
could also stimulate wound healing and promote collagen 
deposition, which provided a new strategy for the devel-
opment of wound dressings.

Antibacterial hydrogels loaded with metal oxide 
nanoparticles
In addition to the good antibacterial properties of metal 
nanoparticles combined with hydrogels, the hydrogels 
loaded with metal oxides also showed outstanding anti-
bacterial properties. And similar to metal ions, metal 
oxides also have low resistance and broad-spectrum 
antibacterial effects but metal oxide nanoparticles are 
more stable [107]. The disadvantages of metal oxides 
the loaded hydrogels are that metal oxides are not easily 
released, and have some long-term toxicity and environ-
mental cumulative toxicity. However, the combination 
of hydrogels with metal oxides can solve the problem of 
toxicity accumulation and reduce the occurrence of anti-
biotic resistance, as well as achieve a better antibacterial 
effect to some extent.

Among various metal oxides, zinc oxide nanocom-
posite (ZnO NPs) has been reported has been reported 
to have antibacterial activity with low cytotoxicity [108]. 
Kummara et al. prepared HA-ZnO NPs composite hydro-
gel with a one-pot synthesis method [109]. The results of 
the plate diffusion method showed that the composite 

hydrogel exhibited excellent antibacterial activity, and 
the antibacterial activity against E. coli was better than 
that of S. aureus. The composite hydrogel also exhib-
ited good biocompatibility and other properties, which 
indicated its potential application in wound dressings. 
Besides, Tantiwatcharothai et al. used basil seed mucilage 
and ZnO NPs to prepare bacterial wound dressings by 
freeze-drying [110]. The results showed that the hydrogel 
exhibited significant antibacterial properties and water 
retention capacity with low cytotoxicity.

Another metal oxide nanoparticle copper oxide nano-
particles (CuO NPs), is easy to mix with polymers to 
prepare hydrogels with relatively stable physical and 
chemical properties [111]. Thus, copper-based nanocom-
posites have attracted much attention. Abdollahi et  al. 
combined sodium carboxymethylated starch and CuO 
NPs to prepare nanocomposite hydrogel using citric acid 
as a cross-linking agent as illustrated in Fig. 4c [112]. The 
experimental results showed that the composite hydrogel 
had an inhibitory effect on eight kinds of bacteria that 
were pathogenic to humans. The composite hydrogel that 
contained 2 wt.% CuO NPs was low cytotoxicity against 
human fibroblasts. At the same time, the results of 
in  vitro experiments showed that the composite hydro-
gel could accelerate wound healing. Besides, Wahid et al. 
prepared carboxymethyl CS/CuO composite hydrogel 
based on CuO NPs [113]. The results of the colony form-
ing unit method showed that the composite hydrogel 
exhibited excellent antibacterial activity against S. aureus 
and E. coli.

In addition to the above-mentioned metal oxide nan-
oparticles, poly (HEA-AAm)/WO3 hydrogel incorpo-
rating WO3 nanoparticles had been demonstrated to 
possess antibacterial activity against bacteria causing 
bacterial keratitis, such as E. coli, P. aeruginosa, and Can-
dida albicans [114]. Zhang et  al. prepared a novel TiO2 
NPs-β-cyclodextrin-cellulose composite hydrogel that 
showed high antibacterial activity against E. coli. and S. 
aureus under light condition [115]. Meanwhile, the drug 
sustained-release experiment showed that hydrogel could 
completely release curcumin after 120  h. In addition, 
Hanan Albalwi et al. incorporated magnesium oxide nan-
oparticles (MgO NPs) into acrylic acid/polyvinyl alcohol 
(PAA/PVA) hydrogel by using γ-radiation technique, 
which exhibited effective antibacterial effect as the con-
centration of MgO NPs increased [116].

Antibacterial hydrogels loaded with antibacterial polymers
In recent years, antibacterial polymers have attracted 
much attention in antibacterial materials due to their 
high availability, good biocompatibility, and easy degra-
dation [117, 118]. Therefore, the use of antibacterial poly-
mers can enhance the antibacterial efficiency of existing 
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antibacterial agents, and help to delay the occurrence of 
bacterial resistance [119]. Covalent attachment of anti-
bacterial polymers to hydrogels enhanced the steadiness 
and dispersibility of polymers and improved the proper-
ties of hydrogels. Therefore, hydrogels loaded with anti-
bacterial polymers have great potential applications in 
the antibacterial field. Here, we would introduce several 
classes of typical antibacterial polymers.

CS, a natural linear polysaccharide derived from the 
exoskeleton of crustaceans, exhibits excellent biologi-
cal activities including antibacterial activity and wound 
healing promotion [120, 121]. Meanwhile, CS has been 
widely used because of its excellent antibacterial prop-
erties and good biocompatibility (Table 1). For example, 
Lucretia et  al. reported hydrogel scaffolds cross-linked 
by CS and fibrin [122]. The result showed that the scaf-
fold had antibacterial activity against Enterococcus fae-
calis, and could promote a bacteria-free environment 
in the endodontic space. Quaternary ammonium treat-
ment or modified by amino graft hydrophobic alkyl 
could enhance the antibacterial activity of CS [123]. 
In addition, He et  al. successfully synthesized quater-
nary ammonium CS-g-poly(acrylic acid-co-acrylamide) 
superabsorbent hydrogel [124]. With the introduction of 
quaternary ammonium chitosan (QCS), the antibacterial 
activity of the hydrogel against E. coli and S. aureus was 
enhanced. Hydrogel formed by cross-linking of quater-
nary ammonium chitosan/carboxymethyl starch/alginate 
can effectively inhibit bacterial growth and achieve rapid 
hemostasis, which has great prospects for application 
as a hemostatic antibacterial material [125]. Moreover, 
Liu et al. developed a nano-antibacterial hydrogel based 
on QCS, which had a good antibacterial effect against 
methicillin-resistant S. aureus, E. coli, and vancomycin-
resistant Staphylococcus and accelerated wound healing 

[126]. Furthermore, the composite hydrogel prepared 
from carboxymethyl cellulose and QCS demonstrated a 
significant inhibitory effect on bacterial growth [127].

Polylysine (PLL) can inhibit bacterial growth by induc-
ing binding to negatively charged bacterial surfaces 
through positive surface charge [144]. Zou et al. prepared 
a composite hydrogel based on PLL, in which PLL can 
be released rapidly to achieve high bactericidal proper-
ties [145]. In addition, PLL takes advantages of good bio-
compatibility, excellent tissue adhesion and anti-infection 
properties, which widely used in biomedical applications 
such as wound dressings and biological adhesives [146, 
147]. Sun et  al. prepared injectable hydrogels based on 
glycidyl methacrylate and PLL, which had broad-spec-
trum antimicrobial properties as well as good biocom-
patibility [148]. The results showed that the hydrogel 
had an inhibitory effect on S. aureus and E. coli as well 
as promoted wound healing in in  vivo infection model, 
which had potential applications in the field of anti-infec-
tion and wound healing. And, Ran et al. developed with 
calcium ions as coagulant a multifunctional compos-
ite hydrogel composed of poly (glutamic acid) and PLL, 
which has good antibacterial properties, adhesion and 
hemostatic effect [149]. The novel bio-adhesive hydrogel 
was prepared by mixing HA and PLL [150]. The results 
showed that the hydrogel was effective in killing E. coli 
and S. aureus and reduced the wound healing time due 
to the large amount of positively charged on the surface. 
In another study, a hydrogel was prepared from HA and 
PLL, which had good efficacy in preventing wound infec-
tion and promoting wound healing [151].

Polyethyleneimine (PEI) can bind to negatively charged 
bacteria and eventually lead to bacterial lysis and death 
[152]. Meng et  al. reported a viscous hydrogel antibac-
terial coating composed of polydextran aldehyde and 

Table 1  Representative examples of chitosan-based hydrogels

Chitosan-based hydrogels Bacterial Applications References

Modified CS hydrogel Staphylococcus Antibacterial therapy [128–130]

Atechol and methacrylate modified CS-gelatin hydrogel P. aeruginosa
S. aureus

Wound treatment [131, 132]

CS- polyethylene glycol (PEG) hydrogel E. coli
S. aureus

Antibacterial therapy [133, 134]

Cellulose-CS hydrogel E. coli
S. aureus

Antibacterial therapy [135–137]

CS-sodium alginate hydrogel E. coli
S. aureus

Lysozyme delivery and antibacterial 
therapy

[138, 139]

CS-L-arginine hydrogel E. coli
S. aureus

Wound treatment [140]

CS-dopamine hydrogel S. aureus Wound dressing [141]

CS- PVA hydrogel E. coli
S. aureus

Antibacterial therapy [142, 143]
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PEI, which effectively inhibited the growth of E. coli, 
S. aureus, and P. aeruginosa [153]. And Ren et  al. also 
developed a composite bioinspired coating based on PEI 
and TA, which exhibited excellent antifogging and anti-
bacterial properties [154]. In addition, the delivery of 
exosomes using bioactive dressings PEI was a potential 
strategy for the repair of diabetic wounds. Wang et  al. 
prepared an injectable hydrogel scaffold that was com-
posed of Pluronic F127 grafted PEI and aldehyde pullu-
lan and loaded with exosomes [155], which had excellent 
antibacterial activity and rapid hemostasis and could 
release exosomes, promote angiogenesis and wound 
healing. In addition, by modifying polymers with PEI, 
antibacterial properties could be introduced into poly-
mers that lack antibacterial properties. The antibacterial 
hydrogel was prepared from bacterial cellulose and PEI 
by using epichlorohydrin as a cross-linking agent[156]. 
Studies have shown that hydrogel had excellent antibac-
terial effects against S. aureus and E. coli.

Antibacterial hydrogels loaded with peptides
Antimicrobial peptides (AMPs) is a kind of cationic short 
peptide substance, which shows strong antibacterial 
activity against gram-negative and gram-positive bacte-
ria, viruses, and fungi [157]. The antibacterial mechanism 
of AMPs is to combine with the bacterial cell membrane 
and destroy the cell membrane to kill bacteria [158]. It 
is worth mentioning that the antibacterial mechanism 
of AMPs is not easy to cause the emergence of drug-
resistant bacteria. Therefore, AMPs provide new ideas 
for solving the problem of traditional antibiotic resist-
ance. Liu et  al. developed an AMP-embedded hydrogel 
coating using sulfobetaine methacrylate and acrylic acid 
as hydrogel monomers (Fig.  5a) [159]. The AMPs with 
two different amino acid residues were embedded in 
the hydrogel coating by chemical grafting. The results 
showed that the coating had excellent antibacterial 
against gram-negative bacteria and gram-positive bacte-
ria and antithrombotic properties. In addition, AMPs not 
only exhibited excellent antibacterial activity but also had 
potential applications in the field of wound healing [160]. 
Wei et  al. prepared a composite hydrogel formed by 
Schiff base linkage that was composed of oxidized dex-
tran, platelet-rich plasma, HA, and cecropin of a short 
peptide of 23 amino acids as illustrated in Fig. 5b [161]. 
The results showed that the composite hydrogel exhib-
ited an obvious inhibitory effect on three pathogenic 
bacteria and could promote wound healing in diabetic 
mice. Wang et al. developed polymer hydrogel composed 
of polymerized N-acryloyl glycinamide monomer and 
introduced it with the antibacterial peptide polymyxin 
E, the hydrogel (PN-AP hydrogel) showed antibacterial 

effects against E. coli and S. aureus and showed good 
results in promoting wound healing(Fig. 5c) [162].

Antibacterial hydrogels loaded with plant extracts
The antibacterial effect of plant extracts has been an 
important research subject [163]. Facing with the threat 
of multidrug-resistant bacteria, the antibacterial effect of 
plant extracts provided new ideas for treatment methods 
and the development of novel antibacterial agents, which 
brings hope to reduce the occurrence of drug-resistant 
bacteria [164, 165]. At the same time, plant extracts had 
the advantages of wide source, easy extraction, and low 
toxicity as well as good antibacterial properties, which 
provided a new attempt for the development of new anti-
bacterial agents and application in antibacterial therapy 
[165]. In addition, the combination of plant extracts and 
hydrogel could improve their solubility and easy release, 
which was of great significance in antibacterial applica-
tions. Many essential oils (EOs) including thyme oil, pep-
permint, tea tree, cinnamon, lemongrass, and eucalyptus 
had been proven to exhibit antibacterial properties [166–
169]. Hybrid EOs loaded with carbomer hydrogel had 
been reported to have good antibacterial activity against 
S. aureus, E. coli, and P. aeruginosa[170]. Feng et al. pre-
pared the composite hydrogel containing TA that had 
good antibacterial activity against S. aureus and had 
potential application in wound dressings[143].

The stimuli‑responsive smart antibacterial hydrogels
The stimuli-responsive hydrogels are capable of dramatic 
volume change in response to changes in the environ-
ment to which they are exposed, such as pH, tempera-
ture, and light [171, 172]. Environmental conditions 
determine sol-gel phase transition behavior. Compared 
with normal tissues, the infected microenvironment is 
characterized by lower pH, higher local temperature, and 
higher content of secreted enzymes [173, 174]. Moreover, 
the acidic infected microenvironment can act as a switch 
to deliver stimuli-responsive drugs [175]. Due to the dif-
ference between infected and healthy sites, the smart 
responsive hydrogels can target the delivery of drugs or 
directly activate their antibacterial activities, which will 
improve the utilization of drugs and reduce the occur-
rence of drug-resistant bacteria [176]. At the same time, 
the smart responsive hydrogels also provide new thera-
peutic strategies for infection treatment. For example, 
Liu et  al. developed a novel hydrogel that consisted of 
reversible catechol-boronate linkage and pH-respon-
sive between chlorinated catechol and phenylboronic 
acid [177]. The results showed that the hydrogel exhib-
ited good antibacterial activity against gram-positive 
bacteria and gram-negative bacteria including MRSA 
under acidic conditions. On the contrary, under alkaline 
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conditions, the hydrogel had no antibacterial effect. In 
addition, the pH-sensitive hydrogels had potential appli-
cations in wound dressings for wound healing and drug 
delivery [178, 179]. In addition to pH-sensitive hydrogel, 
many hydrogels consisting of poly(N-isopropyl acryla-
mide) (PNIPAM) copolymers were thermally respon-
sive due to the critical solution temperature of PNIPAM 
in the aqueous solution of about 33  °C, which exhibited 
excellent thermally responsive self-shrinkage proper-
ties at body temperature [180]. PNIPAM-based thermal 
response hydrogel was reported that had good antibacte-
rial activity, and biocompatibility, and could assist wound 
closure and promote wound healing [181]. In another 
study, thermos-responsive hydrogels were synthesized 

using Pluronic F127 and cellulose, which showed good 
antimicrobial properties [182]. In addition to the above 
two intelligent response types, enzyme response and oxi-
dation restore response also reflected good bacteriostatic 
effects and the performance of promoting wound recov-
ery [183, 184].

Light‑mediated antibacterial hydrogels
Photothermal antibacterial hydrogels
Photothermal therapy (PTT) is a highly effective mul-
tidrug-resistant treatment strategy with advantages 
such as low systemic toxicity, minimal invasiveness, low 
drug resistance, spatiotemporally control, and negligi-
ble side effects [185, 186]. As at the infectious site, the 

Fig. 5  Antibacterial hydrogel incorporating antimicrobial peptides. a Hydrogel coating embedded with antibacterial peptides. Reproduced 
with permission [159]. Copyright 2021 American Chemical Society. b Schematic diagram of the synthesis of a hydrogel dressing that can be used 
for diabetic wound healing. Reproduced with permission [161]. Copyright 2021 Elsevier Ltd. c Schematic diagram of the preparation of self-fusing 
supramolecular hydrogels and their applications. Reproduced with permission [162]. Copyright 2022 IOP Publishing
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thermal effect caused by PTT can accelerate the release 
of the drug [187]. PTT shows high efficiency and low-
drug resistance, which provides a new way for the treat-
ment of drug-resistant bacterial infections. Although the 
antibacterial activity of photothermal nanomaterials is 
considerable, further evaluation of their long-term bio-
compatibility is needed. The exploration of PTT is still 
at the early stages, but it has potential applications in the 
antibacterial field. Photothermal agents are essential ele-
ments in PTT, which can convert light into heat, caus-
ing protein-denaturing bacteria to lyse and die as well as 
inhibiting the formation of the biofilm [188, 189]. Pre-
cious metal materials are widely applied as photothermal 
agents. Among them, AuNPs are used in photothermal 
sterilization due to their good biocompatibility and high 
photothermal conversion rate [190]. Li et  al. developed 
a composite hydrogel by mixing monomer N-acryloyl 
glycinamide (NAGA) with polydopamine-coated gold 

nanorods (Au@PDA NRs). And then, E. coli or S. aureus-
pretreated macrophage membrane coat the PNAGA-
Au@PDA hydrogel termed as E/SMM-PNAGA-Au@
PDA (Fig. 6a) [191]. The results showed that the hydro-
gel could not only specifically recognize bacteria, but 
also had a rapid antibacterial effect on S. aureus or E. coli 
under near-infrared radiation (NIR) and killed 98% of 
bacteria for 5 min.

In addition, carbon-based nanomaterials includ-
ing graphene derivatives and carbon nanotubes have 
also attracted much attention in photothermal therapy. 
Han et  al. prepared graphene oxide-containing com-
posite hydrogel that had significant antibacterial effects 
against S. aureus and E. coli under NIR [192]. Also, 
Liang et  al. prepared antibacterial hydrogel based on 
HA-grafted dopamine and graphene oxide for wound 
dressings (Fig.  6b) [193]. The results showed that the 
hydrogel exhibited good photothermal properties and 

Fig. 6  Photothermal antibacterial hydrogels. a Preparation process of E/SMM-PNAGA-Au@PDA NRs hydrogel and its application in wound healing. 
Reproduced with permission [191]. Copyright 2020 Elsevier B.V. b Synthesis strategy of HA-DA/rGO hydrogel, shape, and healing under mechanical 
force and schematic diagram of its application in wound healing. Reproduced with permission [193]. Copyright 2019 John Wiley & Sons, Inc. 
c Schematic diagram of the preparation process of hydrogel and its application in promoting wound healing. Reproduced with permission 
[195]. Copyright 2019 John Wiley & Sons, Inc. d Structure of Me-PANI NPs@PAM hydrogels and their application in wound infection. Reproduced 
with permission [197]. Copyright 2021 Wiley–VCH GmbH
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antibacterial effects under NIR. At the same time, the 
hydrogel significantly promoted angiogenesis and facili-
tates collagen deposition, thereby accelerating wound 
healing in rats. Besides, metal coordination complexes 
composed of catechol and iron ions have been reported 
to have good photothermal efficiency due to the absorp-
tion of NIR light from 650 to 1350  nm [194]. Yu et  al. 
developed cryogel with TA/iron ions as photothermal 
agents and CS/silk fibroin as the scaffolds, which exhib-
ited good antibacterial properties and hemostatic abil-
ity and could promote wound healing (Fig. 6c) [195]. In 
addition to precious metals and inorganic non-metallic 
materials, some organic materials are also used in photo-
thermal hydrogel for antibacterial. Polyaniline (PANI) is a 
conjugated polymer widely applied in PTT due to its high 
photothermal conversion rate [196]. Pang et  al. devel-
oped the novel nanoparticles cross-linked hydrogel (Me-
PANI NPs@PAM) by grafting PANI onto methacrylated 
ethylene glycol CS and then cross-linking with PAM as 
illustrated in Fig. 6d [197]. The in vitro research showed 
that the hydrogel could effectively inhibit the growth of S. 
aureus upon NIR and accelerate wound healing.

Photodynamic antibacterial hydrogels
Photodynamic therapy (PDT) is also an effective anti-
bacterial method, which is a non-invasive antibacterial 
and anti-biofilm treatment strategy [198]. PDT relies on 
photosensitizers (PSs) to generate reactive oxygen spe-
cies (ROS) under the light of appropriate wavelength, 
which ruptures bacterial cell membranes, inactivates 
DNA and proteins, and achieves the purpose of steri-
lization [199, 200]. However, hydrophobicity and poor 
water solubility of most PSs require further in-depth 
research and resolution. With the increasing occur-
rence of drug-resistant bacteria, PDT, as a broad-spec-
trum antibacterial therapy, has gradually become one 
of the therapeutic strategies for the treatment of bac-
terial infections. He et  al. prepared a multifunctional 
hydrogel antibacterial coating based on methacrylate 
gelatin encapsulated mesoporous polydopamine nano-
particles, which loaded the photosensitizer Chlorin E6 
through the π-π stacking reactions [201]. When the 
laser irradiation is 660 nm, the coating had been dem-
onstrated to have the ability to the same time antibac-
terial and promote fibroblast activation. And under 
1 W  cm−2 irradiation power, the coating could rapidly 
eliminate bacteria. Besides, Zhang et al. developed the 
photodynamic hydrogel based on a small peptide and a 
fullerene, which demonstrated the ability to target and 
sustain antibacterial therapy [202]. The results in vitro 
and in  vivo antibacterial experiments proved that the 
hydrogel could effectively inhibit S. aureus growth and 
promote wound healing. It is worth mentioning that 

compared with gram-positive bacteria, gram-negative 
bacteria have a thicker outer membrane, which makes 
some PS cannot effectively kill bacteria [203]. In addi-
tion, Bayat et  al. developed a photodynamic antibac-
terial hydrogel using zinc phthalocyanine-colistin 
conjugate as a PS [204]. The binding of zinc phthalo-
cyanine to colistin enhances the permeability of the 
outer membrane of gram-negative bacteria. The results 
showed that the photodynamic antibacterial hydrogel 
had an antibacterial effect on P. aeruginosa.

With the increasing threat of drug-resistant bacteria, 
the advantages of PDT and PTT, such as controllability, 
open new strategies against drug-resistant bacteria. The 
combination of PTT and PDT has a more significant 
bacteriostatic effect compared with single antibacterial 
therapy. The thermal energy generated under the action 
of PTT can damage the cell membrane, while the ROS 
generated under the action of PDT can leak proteins to 
further achieve a bactericidal effect [205, 206]. Therefore, 
the combination of PDT and PTT can not only enhance 
the antibacterial efficiency but also reduce the occur-
rence of side effects, which has potential applications 
in the field of drug-resistant bacteria treatment. Wang 
et  al. prepared a nanocomposite hydrogel (MoOx@
MB-hy) consisting of PVA and PEG loaded with defec-
tive-structured molybdenum oxide nanoparticles (MoOx 
NPs) and PS methylene blue (MB) (Fig. 7a) [207]. Under 
the dual irradiation of NIR and 660  nm laser, the com-
posite hydrogel could break the glutathione antioxidant 
balance and accumulate ROS. The results showed that 
dual-light irradiation could effectively eliminate E. coli 
and Bacillus subtilis (B. subtilis) within 15 min (Fig. 7b). 
Meanwhile, in  vitro experiments showed that hydrogel 
could accelerate the healing of E. coli-infected wounds. 
In another study, they fabricated 3D CuS@MoS2 micro-
spheres using MoS2 and CuS and then incorporated 
them into PVA hydrogel to obtain bifunctional hydrogel 
[208]. The hydrogel could rapidly generate ROS under the 
co-irradiation of 660  nm visible light and 808  nm near-
infrared light, and exhibited a remarkable antibacterial 
efficiency of over 99% against both S. aureus and E. coli. 
In addition, CuS@MoS2 could promote the secretion 
of the hypoxia-inducible factor-1 (HIF-1) and vascular 
endothelial growth factor (VEGF) to promote the prolif-
eration of endothelial cells. Meanwhile, some new inject-
able hydrogels had also shown good antibacterial effects 
under the dual action of PTT and PDT, and could be used 
as candidates for wound dressings [209, 210]. Under the 
action of both PTT and PDT methods, the antibacterial 
efficiency can be improved. The thermal energy gener-
ated by PTT can reduce bacterial activity, while PDT can 
also make bacteria more sensitive. Therefore, the combi-
nation of the two methods can effectively overcome the 
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shortcomings of the other method and has great poten-
tial in the application of antibacterial therapy.

Antibacterial hydrogels with synergistic effects
Hydrogels with synergetic effects can enhance the anti-
bacterial effect under the action of two or more antibac-
terial modes [211]. 	 Incorporating two and more 
types of antibacterial agents (usually metal nanoparticles 
and antibiotics) into hydrogel has been reported to pro-
duce synergistic antibacterial effects. Synergistic effective 
hydrogel incorporating metal nanoparticles shows effi-
cient antibacterial ability and wide spectrum antibacte-
rial effect. In addition, combined use with antibiotics is 
an excellent way to reduce the occurrence of drug-resist-
ant bacteria and reduce the abuse of antibiotics. Com-
pared with a single antibacterial agent, the incorporation 
of two or more antibacterial agents into the hydrogel can 
produce a synergistic effect, which can expand the anti-
bacterial spectrum and enhance the antibacterial effect. 
Due to the different antibacterial mechanisms of vari-
ous antibacterial agents, the synergistic hydrogel is not 
easy to cause the occurrence of drug-resistant bacteria, 

which has certain application prospects in the treatment 
of infection. Among them, AgNPs are most used in com-
bination with antibiotics. AgNPs have good biocompati-
bility and antibacterial effect, which are more suitable for 
use in biomedicine [212]. Yu et al. developed an hydrogel 
antibacterial coating doped with HA/AgNPs/gentamicin, 
which exhibited good antibacterial activity and good 
biocompatibility [213]. Not only AgNPs and antibiot-
ics showed excellent antibacterial ability, but AgNPs and 
other antibacterial agents together also had amazing anti-
bacterial effects. Shome et al. developed an antibacterial 
composite hydrogel containing AgNPs based on amino 
acid in situ self-assembly [214]. The composite hydrogel 
exhibited lethal killing effects on both gram-negative bac-
teria and gram-positive bacteria and had strong biocom-
patibility, which had a variety of potential applications in 
the field of tissue engineering. In addition, the composite 
hydrogel prepared by combining AgNPs with biologi-
cal extracts have promising applications in antibacterial 
therapy. Liu et  al. prepared composite hydrogels intro-
ducing AgNPs and aloe vera, which further enhanced the 
antibacterial effect and showed a synergistic effect [215]. 

Fig. 7  Photodynamic and photothermal synergistic antibacterial hydrogels. a Synthesis process of MoOx@MB-hy hydrogel. b Schematic diagram 
of PTT-PDT synergistic antibacterial effect. Reproduced with permission [207]. Copyright 2022 The Royal Society of Chemistry
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The composite hydrogel not only exhibited good antibac-
terial properties and biocompatibility but also promoted 
cell proliferation and wound healing, which had potential 
application as wound dressings. Anjum et  al. reported 
that the composite hydrogel containing AgNPs, aloe vera, 
and curcumin could exhibit a good inhibitory effect on S. 
aureus and E. coli while promoting rapid wound healing 
[216]. Furthermore, the incorporation of AgNPs into CS-
based hydrogel was also an effective method to enhance 
the antibacterial effect. Masood et al. reported that CS-
PEG-AgNPs based on hydrogel could slowly release sil-
ver nanoparticles, which had certain applications in the 
treatment of chronic diabetic wounds [217]. The experi-
mental results showed that the composite hydrogel 
exhibited inhibitory effect on S. aureus, B. subtilis, P. aer-
uginosa, and E. coli. Some researchers prepared compos-
ite antibacterial hydrogel based on CS-g-PAM and loaded 
with AgNPs synthesized using Curcuma longa [218]. The 
results could prove that the composite hydrogel had high 
antibacterial activity against S. aureus and E. coli, and the 
antibacterial rate could reach 99.99%.

Among the synergistic hydrogels, in addition to the 
metal nanoparticles showing good antibacterial activ-
ity, the antibiotic-loaded hydrogels combined with other 
antibacterial materials also showed highly efficient anti-
bacterial effect and good biocompatibility. Yan et  al. 
combined CS and gentamicin to prepare a scald dress-
ing with antibacterial, anti-inflammatory and promot-
ing wound healing [219]. In another study, Gezgin et al. 
incorporated gentamicin and propolis extracts in a 
thermosensitive hydrogel, which exhibited good anti-
bacterial properties against MRSA [220]. In addition to 
gentamicin, Yang et  al. prepared an injectable hydrogel 
composed of PEI, tobramycin and chondroitin sulfate by 
Schiff base reaction, which showed effective antibacte-
rial effect and had potential application as wound dress-
ings [221]. The hydrogel doped with CIP microspheres 
and ginsenosides also exhibited good antibacterial activ-
ity against S. aureus [222]. The addition of vitamin E and 
levofloxacin to hydrogel contact lenses not only treated 
keratitis caused by bacteria but also prolonged the release 
of antibiotics, which had potential applications for treat-
ing bacterial infections [223].

Conclusion and prospect
This review summarized the latest application progress 
of antibacterial hydrogels in the biomedical field. The 
fabrication process of the hydrogels and the hydrogels 
loaded with various antibacterial agents were described 
in detail. Hydrogels incorporated with antibacterial drugs 
and antibacterial polymers exhibited good antibacterial 
activity. Furthermore, embedding inorganic antibacte-
rial agents, including metal nanoparticles and graphene 

derivatives materials, into hydrogels also exhibited 
promising antibacterial activity [224]. The matrices of 
the hybrid hydrogels could use various organics, includ-
ing natural polymers and man-made polymer materials, 
which demonstrated the biocompatibility of antibacte-
rial agents and controlled as well as the sustained release 
of antibacterial agents. It is worth mentioning that some 
antibacterial agents could enhance the mechanical prop-
erties of the hydrogels, including strength and toughness 
while imparting antibacterial properties to the hydrogel 
[225, 226]. At present, the antibacterial hydrogels are 
widely used in wound dressings to treat wound infections, 
contact lenses, urinary tract coatings, catheter-associated 
infections, gastrointestinal infections, treatment of osteo-
myelitis, and so on [90, 227–231]. Due to their excellent 
biocompatibility, good physical and chemical properties, 
the hydrogels can provide new therapeutic strategies as 
carriers of antibiotics or replace antibiotics relying on 
their inherent antibacterial effects. At the same time, 
the antibacterial hydrogels can not only be used for local 
treatment but also can be used as a drug delivery system 
to deliver drugs that achieve sustainable drug release 
and long-term antibacterial purposes. The hydrogels can 
carry a variety of antibacterial agents, and the antibac-
terial component can play the role in synergistic treat-
ment to enhance the antibacterial effect. Therefore, as a 
novel type of antibacterial biomaterial, the hydrogels can 
have broader antibacterial effects and better antibacterial 
properties, which can further promote the development 
of anti-infective therapy.

Hydrogels loaded with antibiotics and metal nanoparti-
cles show good antibacterial properties in treating infec-
tions and fighting biofilms. However, metal nanoparticles 
have problems of poor biocompatibility and high cyto-
toxicity, and antibiotics are susceptible to resistance, 
which greatly limit their application in the biomedical 
field. It is worth noting that the occurrence and evolution 
of drug-resistant bacteria are mostly caused by the abuse 
of antibiotics [232]. The introduction of new antibacte-
rial strategies has significantly reduced the incidence of 
drug-resistant bacteria. PTT has been widely applied 
in antibacterial applications. In addition to exhibiting 
good bactericidal effects in PTT, ultrasound, and mag-
netic fields can also be utilized to treat bacterial infec-
tions [233]. This is expected to provide a useful case for 
the research and application of antibacterial hydrogels. 
In addition, cross-linking agents are also worthy of our 
attention. The chemical cross-linking agents usually used 
in the preparation of hydrogel are cytotoxic and harmful 
to the environment. Therefore, the development and use 
of green and non-toxic cross-linking agents and prepa-
ration methods still require further research. With the 
continuous development of research, we believe that 



Page 15 of 20Tang et al. Journal of Nanobiotechnology          (2023) 21:300 	

there will be relevant strategies to solve these problems 
to prepare greener, safer, and more efficient antibacterial 
hydrogels.

The key to future research directions is to continu-
ously improve the antibacterial performance of hydrogels 
against multidrug-resistant bacteria. As research contin-
ues, hydrogels have a wide range of antibacterial activity, 
which makes them potentially useful in the treatment 
of bacterial infections. We believe that the hydrogels as 
antibacterial biomaterials will provide broad applica-
tion prospects for anti‐infection treatment through their 
unique combinations and continuous development.
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