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Abstract 

The slightest change in the extra/intracellular concentration of metal ions results in amplified effects by signaling cas-
cades that regulate both cell fate within the tumor microenvironment and immune status, which influences the net-
work of antitumor immunity through various pathways. Based on the fact that metal ions influence the fate of cancer 
cells and participate in both innate and adaptive immunity, they are widely applied in antitumor therapy as immune 
modulators. Moreover, nanomedicine possesses the advantage of precise delivery and responsive release, which can 
perfectly remedy the drawbacks of metal ions, such as low target selectivity and systematic toxicity, thus providing 
an ideal platform for metal ion application in cancer treatment. Emerging evidence has shown that immunotherapy 
applied with nanometallic materials may significantly enhance therapeutic efficacy. Here, we focus on the physiopa-
thology of metal ions in tumorigenesis and discuss several breakthroughs regarding the use of nanometallic materials 
in antitumor immunotherapeutics. These findings demonstrate the prominence of metal ion-based nanomedicine 
in cancer therapy and prophylaxis, providing many new ideas for basic immunity research and clinical application. 
Consequently, we provide innovative insights into the comprehensive understanding of the application of metal ions 
combined with nanomedicine in cancer immunotherapy in the past few years.
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Graphical Abstract

Introduction
Because of its high mortality rate and limited treat-
ment modalities, cancer has become a public health 
threat. As a result, some novel cancer therapies, includ-
ing immunotherapy, photodynamic therapy (PDT), 
and photothermal therapy (PTT), are emerging in 
clinical practice and trials [1]. Cancer immunotherapy 
has attracted increasing attention due to its ability to 
induce powerful immune activation and persistent 
immune memory [2]. As many immune modulators 
or activators have been investigated, metal ions have 
demonstrated their superiority with high efficiency and 
ideal biocompatibility [3].

Metal ions can serve as elements that improve anti-
cancer immunity and exert the function of cancer 
clearance. With the deepening understanding of the 
function of metal ions in cancer immunotherapy, a new 
term, “metalloimmunology”, was proposed in 2020 by 
Jiang et  al. [4], and “cancer metalloimmunotherapy” 
was subsequently described by James J. et  al. in 2021 
[5]. The fewer side effects, feasible accumulation pro-
cess and relative sensitivity to cancer cells indicate the 
advantages of metal ions for cancer immunotherapy.

In recent years, the development of nanotechnology 
has provided novel opportunities for the clinical appli-
cation of tumor immunotherapy [6]. Multifunctional 

nanocarriers for tumor immunotherapy show various 
advantages, such as targeted delivery of immune acti-
vators to immune cells, thermal sensitivity systems of 
PTT/PDT, and reduction of side effects [7].

Nanometallic materials have become a promis-
ing delivery system because of their nanocrystalline 
strengthening effect, high photoabsorptivity, high sur-
face energy, and single magnetic region performance 
[8]. Simultaneously, nanoparticulate delivery systems 
(NDs) are widely applied in tumor treatment because of 
their excellent efficiency [9].

Since the systemic application of metal ions may have 
toxic side effects [10], functionalized nanoparticles are 
needed to carry various metal ions directly into target 
cells. Some metal nanoprobes inherently reflect local 
and systemic information, which allows the integra-
tion of nanodelivery and nanobioimaging technologies 
in cancer metalloimmunotherapy [6, 11]. This combi-
nation of “nanometalloimmunotherapy” shows signifi-
cant potential for facilitating precise drug delivery and 
synergistic effects [11, 12]. Moreover, nanometalloim-
munotherapy overcomes the inherent limitations of 
traditional immunotherapy [13] and the drawbacks of 
metal ion-based antitumor therapeutics, including the 
short circulation time, low target selectivity, and sys-
tematic toxicity [14], exhibiting extraordinary practical 
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potential by eliminating barriers to immunology and 
other fields [15].

The general function of metal ions 
in tumorigenesis and antitumor immunity
Metal ions are essential for cellular life because they par-
ticipate in many fundamental biological processes, such 
as membrane excitability, signal transduction, metallo-
protein catalysis, and cell death [16]. A slight change in 
their concentration or cellular compartments may elicit 
metabolic dysfunction and disrupt the homeostasis of 
metal ions [17, 18]. Since the late 1980s, the application 
of metal ions has become especially prominent in can-
cer treatment because they participate in many cancer 
hallmarks, such as unrestricted proliferation, evasion of 
apoptosis, tissue invasion, and metastasis [19–22].

In addition to directly influencing cancer cell metabo-
lism, metal ions contribute to cancer therapy by regu-
lating hypoxia in the tumor microenvironment (TME) 
[7, 23–25]. The TME is characterized by a lower pH and 
higher levels of glutathione (GSH) and hydrogen perox-
ide  (H2O2), which leads to the accumulation of immu-
nosuppressive cells, including regulatory T cells (Tregs) 
and myeloid-derived suppressor cells (MDSCs) [26, 27]. 
Metal ions can reverse the low response of conventional 
cancer immunotherapy by inducing redox reactions 

serving as reducing agents with simultaneous oxygen 
production [14, 28, 29].

At the same time, metal ions are essential for the acti-
vation and proliferation of immune cells in the TME 
[30]. On the one hand, metal ions can promote innate 
immunity by enhancing the presentation capacity of den-
dritic cells (DCs) and macrophages and the cytotoxicity 
of natural killer (NK) cells [31–33]. On the other hand, 
metal ions can stimulate the activation and proliferation 
of adaptive immune cells, including  CD8+ T cells (Fig. 1) 
[34], which exert a dominant function in antitumor 
immunity [35].

In the TME, the metabolism of metal ions in cancer 
cells and immune cells plays a major role in the develop-
ment and metastasis of cancer. For instance, colon can-
cer cells display enhanced store-operated  Ca2+ entry 
(SOCE), whose molecular players include ORAI1 and 
TRPC1 channels and stromal interacting molecules 
(STIMs) 1 and 2. In addition to abnormal growth, can-
cer cells resist cell death, such as ferroptosis, in a process 
involving metal ions. The disturbed signaling network 
of metal ions determines the features of cancer cells and 
their surroundings and supports the formation of tumor-
associated macrophages (TAMs) and the dysfunction of 
lymphocytes.

Fig. 1 Metabolism of metal ions in cancer cells related to tumorigenesis
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Metal ions participate in innate and adaptive 
immune activation in cancer
Metal ions with innate immune activation ability 
in the TME
Innate immunity involves a wide range of immune cells, 
such as DCs, macrophages, and NK cells [36]. Although 
innate immune cells can detect tumors and induce and 
amplify adaptive immune responses, the immunosup-
pressive microenvironment at the tumor bed represses 
their functions [37]. Metal ions have been revealed to 
promote the pathogen‒host interaction and activate 
the  cyclic GMP-AMP synthase-stimulator of interferon 
genes (cGAS-STING) pathway and NLRP3 (NOD-, LRR- 
and pyrin domain-containing protein 3) inflammasomes, 
which can serve as innate immunity activators and boost 
anticancer immunity.

Fe2+/Zn2+/Cu2+ modulates the pathogen‒host interaction
Dysbiosis is considered a contributing factor in the ori-
gin and development of colon cancer because disturbed 
host-microbe interactions may lead to chronic inflamma-
tion. Metal ions have been confirmed to be essential for 
intestinal inflammation recovery [38, 39].

Mouse experiments have revealed that intestinal stimu-
lation by microbes can induce type 2 conventional DCs 
(cDC2s) to release hepcidin, which is a key regulator of 
systemic  Fe2+ homeostasis. At the same time, cDC2s play 
a dominant role in human intestinal inflammation and 
local mucosal repair by promoting ferroportin-mediated 
 Fe2+ sequestration from intestinal macrophages that 
have phagocytosed erythrocytes [40]. Colorectal can-
cers (CRCs) often result in intestinal bleeding and hence 
anemia, and limited  Fe2+ levels in the intestinal lumen 
can reduce tissue gut infiltration and therefore promote 
intestinal repair [41, 42].

Zn2+ is an essential but toxic microelement in high 
concentrations and can serve as an antimicrobial strat-
egy for Mycobacterium [43, 44], which can provoke 
chronic inflammation related to cancer pathogenesis 
[45]. Meanwhile, the P1B-type ATPase CtpG (Rv3270) 
was recently identified as a  Zn2+ efflux transporter via 
the CmtR-CtpG-Zn2+ regulatory pathway that enhances 
mycobacterial resistance to  Zn2+ toxicity because the 
accumulation of  Zn2+ can contribute to ROS detoxifica-
tion in mycobacterial cells [46].

The intestinal microbiota can also affect the therapeu-
tic effects of antineoplastic agents, such as disulfiram, 
whose anticancer effect is enhanced by combining with 
antibiotics and  Cu2+ by significantly reducing the expres-
sion of phosphorylated protein kinase B (p-AKT)/protein 
kinase B (AKT), Toll-like receptor 4 (TLR-4), and phos-
phorylated nuclear factor kappa-B (p-NFκB)/NFκB in 
tumors [39].

Zn2+/Mn2+/Co2+ activates the cGAS‑STING signaling 
pathway
The stimulator of interferon genes (STING) pathway has 
been proven to play critical roles in the initiation of anti-
tumor immunity. In particular, the STING pathway can 
ameliorate the immunosuppressive network in “cold” 
tumors [37, 38]. In brief, cyclic GMP-AMP synthase 
(cGAS) detects damage-associated double-stranded 
DNA (dsDNA) in the cytosol and catalyzes the genera-
tion of cyclic GAMP (cGAMP), which serves as the sec-
ond messenger to activate STING and induce type-I 
interferons (IFNs) [47, 48]. As a result of chromosomal 
instability, cytosolic dsDNA in cancer cells elicits cancer 
immunogenicity via cGAS-STING pathway activation, 
which originates primarily from the vulnerable mem-
brane of micronuclei [49]. To escape from the suppres-
sive signaling axis, cancer cells inhibit the cGAS-STING 
pathway by reducing the expression of cGAS and STING 
and co-opting STING-dependent DNA sensing [50].

In addition to abnormal dsDNA, some metal ions, such 
as  Mn2,  Zn2+, and  Co2+, have been recently shown to be 
activators of the cGAS-STING pathway [51, 52]. In 2018, 
J. Chen et al. proved that  Zn2+,  Mn2+ and  Co2+ can sig-
nificantly promote the combination activity of cGAS 
in vitro, which could induce DNA-induced cGAS phase 
separation even at low concentrations [53]. Moreover, 
 Zn2+ can largely enhance cGAS activity by binding to 
cGAS and stabilizing the cGAS-DNA complex [47].

Wang et al. revealed that  Mn2+ can replace  Mg2+ as a 
cofactor and markedly enhance activation of the cGAS-
STING signaling axis not only by sensitizing cGAS and its 
adaptor STING but also by largely increasing the STING-
cGAMP binding affinity [53]. In addition, an increasing 
number of studies have shown that  Mn2+ can potentiate 
the STING pathway by amplifying cGAS-STING rec-
ognition in immune cells via a direct interaction with 
tumor cells mediated by  Mn2+ [53]. Additionally,  Mn2+ 
promotes cross-presentation between DCs and  CD8+ T 
cells and the cytotoxic function of NK cells and cytotoxic 
T lymphocytes (CTLs). Among cancer patients with mul-
tidrug resistance or advanced metastatic solid tumors, 
 Mn2+ rescues the clinical efficiency of some cancer treat-
ments such as PD-1/PD-L1 therapy and greatly improves 
their prognosis [51, 54] (Fig. 2).

Mn2+,  Zn2+ and  Co2+ can contribute to cGAS bind-
ing to STING at the endoplasmic reticulum (ER), and 
this complex translocates from the ER to Golgi compart-
ments. STING serves as a signaling platform for TANK-
binding kinase 1 (TBK1) and  IkappaB kinase (IKK). 
TBK1 phosphorylates STING, which in turn recruits 
interferon regulatory factor 3 (IRF3) for TBK1-mediated 
phosphorylation, which stimulates the transcriptional 
expression of IFNs and other immune-stimulatory genes.
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Ca2+/K+/Na+ activates the NLRP3 inflammasome
Chronic inflammation and persistent infection contrib-
ute to different malignancies, such as melanoma, since 
some inflammasomes, including NLRP3 inflammasomes, 
have a pathogenic role in triggering a broad range of cel-
lular perturbations, such as damage-associated molecular 
patterns (DAMPs) [55]. NLRP3 inflammasomes provoke 
the release of the pro-inflammatory cytokines IL-1β and 
IL-18 in the foundation of caspase-1, which is considered 
as a promoting factor for cancer development, invasion, 
metastasis and chemoradioresistance [56, 57]. Metal ions 
such as  Ca2+/K+/Na+ can activate the NLRP3 inflamma-
some and caspase-1, thereby inducing high levels of bio-
active IL-1β and tumorigenesis [58, 59].

The increase in  [Ca2+]e detected by monocytes can 
activate the phosphatidyl–inositol/Ca2+ pathway, which 
in turn leads to NLRP3 activation [60, 61]. At the same 
time, as  Ca2+ uptake through the mitochondrial  Ca2+ 
uniporter (MCU) can enhance the phagocytosis-depend-
ent NLRP3 inflammatory response, the amplified release 
of IL-1β aggravates tissue damage via inefficient inflam-
matory pathways induced by mitochondrial DAMPs, 
which promotes neoplastic disorders [62, 63].

NLRP3 activation is also determined by membrane 
permeability to  K+ and  Na+. In particular, the reduction 
in  [K+]i is necessary and sufficient for caspase-1 activa-
tion [57].  K+ efflux is widely accepted as a conjoint point 
in the activation of the NLRP3 inflammasome since 
internalization by phagocytosis can induce lysosomal 

membrane damage and trigger the opening of mem-
brane pores permeable to  K+ [59, 63]. In addition,  Na+ 
influx can modulate NLRP3 activation independent of 
 K+ efflux but is not an absolute requirement. Recently, 
the correlation of enhanced epithelial sodium channel 
 (ENaC)-dependent  Na+ influx with exacerbated NLRP3 
inflammasome activation was observed in a monogenic 
disease accompanied by increased  K+ efflux [58] (Fig. 3).

Metal ions with adaptive immune activation ability in 
the TME
Adaptive immune responses are crucial for the recogni-
tion and elimination of infective and neoplastic cells [37]. 
Homeostasis of metal ion metabolism is essential for 
the differentiation and function of immune cells, espe-
cially for the main adaptive immune effector  CD8+ T cell 
[64]. Considering that  CD8+ T-cell exhaustion within 
the TME usually causes a low response to cancer immu-
notherapy [26], the regulation of metal ions contributes 
to the infiltration of  CD8+ T cells, thus reversing local 
immunosuppression [65].

K+ is crucial for  CD8+ T‑cell function and stemness
Studies have shown that the increase in extracellular  K+ 
impairs Akt-mTOR phosphorylation driven via TCR 
and facilitates subsequent effector processes, which are 
dependent on the activity of the serine/threonine phos-
phatase PP2A [65, 66]. Overexpression of the  K+ channel 

Fig. 2 Mn2+/Zn2+/Co2+ is indispensable for host defense triggered by cytosolic dsDNA, which activates the cGAS-STING signaling axis and 
produces type-I IFNs
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Kv1.3 in melanoma-bearing mice can increase  K+ efflux 
in tumor-specific T cells and enhance effector functions, 
thus promoting tumor clearance. The elimination of  K+ 
from T cells restores their ability to attack cancer [67]; as 
a result,  K+ can act as an ionic checkpoint blocking T-cell 
function in cancer immunotherapy.

Recently, an increasing concentration of  K+ in the TME 
has been proven to promote the persistence and stemness 
of tumor-infiltrating lymphocytes (TILs) through func-
tional caloric restriction, which promotes autophagy 
and metabolic reprogramming [68]. Increased  [K+]e can 
selectively induce mitochondrial acetyl-CoA (AcCoA) 
synthetase 1, which drives metabolically abundant oxy-
gen utilization for antitumor T cells [69]. As a result, 
 K+ efflux improves T-cell persistence in tumor-bearing 
mice, which enhances tumor clearance and mouse sur-
vival time [70]. The increase in  [K+] in the TME can 
reversibly and durably cultivate the expansion of T cells 
in vitro, indicating its application potential as an adoptive 
immunotherapy modulator.

Mg2+ regulates  CD8+ T‑cell effector function via LFA‑1
Leukocyte function-associated antigen 1 (LFA-1) is an 
integrin that participates in T cell activation via immune 
synapse formation as well as in leukocyte trafficking and 
extravasation [71]. LFA-1 conformational changes are 
mediated by the T cell antigen receptor (TCR) signal 
stimulation, which is regulated by the binding of  Mg2+ 
to metal-ion-dependent adhesion sites (MIDAS) [72]. 
This demonstrates that  Mg2+ can affect T  cell function 
by modulating proximal and distal signaling activity, such 
as focal adhesion kinase (FAK) and extracellular signal-
regulated protein kinase 1/2 (ERK1/2) phosphorylation, 
respectively [73].

Mechanically, the extension and conformational open-
ing of LFA-1 is regulated by  Mg2+ on activated T  cells, 
which is essential for FAK phosphorylation, calcium flux, 
and downstream effector functions in T-cell blasts [74]. 
As  Mg2+ is an essential cofactor for DNA damage repair 
enzymes, deficiency of  Mg2+ results in the accumulation 

Fig. 3 A two-signal model for NLRP3 inflammasome activation [55] @Copyright 2022, Elsevier Ltd
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of DNA damage and contributes to cancer progression. A 
low concentration of  Mg2+ is related to TCR signal sup-
pression, which inhibits T-cell proliferation and contrib-
utes to T-cell exhaustion [65].

Ca2+ promotes  CD8+ T‑cell activation by CD3 
phosphorylation
Ca2+ can bind directly to anionic phospholipids, serv-
ing as a modulator for membrane protein function. The 
ionic interactions between positively charged CD3 cyto-
plasmic domains and negatively charged phospholipids 
in the plasma membrane regulate the activation of TCR. 
Since increasing the  [Ca2+]i concentration can induce the 
dissociation of CD3 from the membrane and the solvent 
exposure of tyrosine residues, CD3 tyrosine phosphoryla-
tion can be significantly enhanced by  Ca2+ influx. Instead 
of initiating CD3 phosphorylation, this  Ca2+ regulatory 
pathway can amplify and sustain CD3 phosphorylation, 
which enhances T-cell sensitivity to some antigens, such 
as major histocompatibility complex (MHC) [75].

Ca2+ influx can increase the accessibility of the immu-
noreceptor tyrosine-based activation motifs (ITAMs) in 
the CD3 cytoplasmic domains to lymphocyte-specific 
protein tyrosine kinase (Lck) phosphorylation and can 
thus trigger the signaling cascade to activate T cells. 
The robust  Ca2+ influx can compete with phospholipids 
to help CD3 ITAMs release from the inner leaflet of the 
plasma membrane. TCR signal transduction is crucial to 
T-cell activation in immune responses; therefore, the par-
ticipation of  Ca2+ in T-cell-engaging therapies deserves 
to be further explored [76, 77].

The application of metal ion‑based antitumor 
therapeutics and the perspective of nanometallic 
materials in cancer immunotherapy
Metal ions exert pivotal functions in cancer immunology 
by modulating cellular metabolism and the TME, which 
enhance the efficacy of cancer immunotherapy and dem-
onstrate their important clinical potential through deli-
cate mechanisms (Table 1).

Traditional therapy: Metallodrugs participate in antitumor 
immunity
Cis-diamminedichloroplatinum(II), known as cisplatin 
(Pt(NH3)2Cl2), is a first-line medicine for a broad range 
of cancers, such as lung, head, and neck cancer [78], 
and, which induces tumor-specific cytotoxicity based 
on structural lesions [79]. In addition to the induction of 
tumor cell apoptosis, cisplatin has been proven to opti-
mize immune checkpoint blockade by increasing PD-L1 
expression in non-small cell lung cancer [80], which indi-
cates that cisplatin-based neoadjuvant chemotherapy 

could improve the clinical effectiveness of PD-1/PD-L1 
treatment.

Sustained exposure to  MnCl2 enhances humoral 
immunity. Nearly 30 years ago, intraperitoneal injection 
of  MnCl2 was shown to enhance the activity of murine 
NK cells, which is probably mediated by the production 
of type I IFNs [81]. In addition, intratumor injection of 
 MgCl2 was recently proven to enhance cellular immu-
nity by regulating  CD8+ T-cell activation and cytotoxic-
ity [73]. In addition, magnesium supplementation has the 
potential to combat cisplatin resistance [82] and to mod-
ulate inflammatory factors, such as tumor necrosis factor 
(TNF-α) [83].

It was considered that sustained exposure to  MnCl2 
enhances humoral immunity. Nearly 30 years ago, intra-
peritoneal injection of  MnCl2 was shown to enhance the 
activity of murine NK cells, which is probably mediated 
by the production of type I IFNs. In the meanwhile, intra-
tumor injection of  MgCl2 is recently proved to enhance 
the cellular immunity by shaping  CD8+ T cells activation 
and cytotoxicity, meanwhile, magnesium supplementa-
tion has the potential of cisplatin resistance repair as well 
as inflammation factors modulation, like TNF-α.

Targeted therapy: Metal ion channels and transporters 
regulate the TME
“Oncochannelopathy” is a term that was first proposed in 
2018 by Prevarskaya et al. and refers to cancer hallmarks 
viewed as pathological states that are mainly caused by 
abnormal expression and/or dysfunction of certain ion 
channels [19]. Metal ion homeostasis and metabolism are 
highly regulated by distinct ion channels. Owing to the 
significant functions of metal ion channels in tumorigen-
esis and metastasis, many novel anticancer therapies have 
emerged that target metal ion transporters as agonists or 
inhibitors [84].

For  Zn2+, the SLC39A (zrt/irt-like proteins; ZIP) fam-
ily and SLC30A (cation diffusion; ZnT)  Zn2+ family are 
widely investigated in cancer immunotherapy. Zinc 
transporters play an important role in B-cell develop-
ment at different stages; for instance, SLC39A10 defi-
ciency leads to a reduced population of both pro- and 
pre-B cells, and, SLC39A7 deficiency is a negative regula-
tor of phosphatases with impaired BCR-dependent sign-
aling in pre- and immature B cells [85, 86]. In addition, 
SLC39A6 in DCs and T cells can indirectly activate the 
TCR activation pathway, which leads to cell proliferation 
and cytokine production [87].Ladiratuzumab vedotin is 
a new drug of antibody drug conjugates (ADCs) targets 
for of SLC39A6, which is under evaluation in an ongoing 
open-label phase Ib/II trial.
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SLC41A1 and SLC41A2 are two key transporters 
expressed in lymphoid cell lines and various immune 
cells, respectively [87]. SLC41A functions as a  Mg2+/Na+ 
exchanger whose overexpression could partially repair 
the deletion of other  Mg2+-permeable ion channels, such 
as TRPM7 (transient receptor potential cation channel 
subfamily M member 7), thus rescuing the reduction in 
cell growth and maintaining the normal growth of lym-
phocytes [88].

Pyroptosis/ferroptosis/cuproptosis: Metal ions induce 
nonapoptotic cell death
Pyroptosis is a special type of inflammatory cell death 
that evokes a proinflammatory signal and stimulates 
tumor immunogenicity via gasdermin D (GSDMD). 
The first metal complex-based pyroptosis inducer was 
recently reported to be carbonic anhydrase IX (CAIX)-
anchored ruthenium(I) photosensitizer CA-Re, which 
promoted the maturation and antigen-presenting abil-
ity of DCs and activated the T-cell-dependent adaptive 
immune response [89].

Ferroptosis is a type of  Fe2+-dependent cell death that 
damages polyunsaturated fatty acid-containing phospho-
lipids in cellular membranes mediated by lipid peroxida-
tion (LPO) [90]. In recent years, increasing numbers of 
natural and synthetic drugs related to ferroptosis have 
been identified [91]. Conventionally, inhibition of GSH 
and glutathione peroxidase 4 (GPX4) expression leads to 
the accumulation of lipid peroxides, inducing ferropto-
sis. Innovatively, vaccination with early ferroptotic can-
cer cells is reported as an inducer of efficient antitumor 
immunity, which promotes the phenotypic maturation of 
bone marrow-derived dendritic cells (BMDCs) and elicits 
adaptive immunity activation [92].

A recent study revealed that  Cu2+-dependent death 
is another type of cell death that relies on mitochondria 
by means of direct binding of copper to lipoylated com-
ponents of the tricarboxylic acid (TCA) cycle. The sub-
sequent lipoylated protein aggregation and iron-sulfur 
cluster protein loss leads to proteotoxic stress and cell 
death [93].  Many studies have noted that the cupropto-
sis-related gene (CRG) signature can predict immune 
characteristics in various cancers, which provides guid-
ance for prognosis, clinicopathological features, immune 
characteristics, and treatment preference in precise and 
individual cancer strategies.

Drawbacks for metal ion‑based antitumor therapeutics 
and possible solutions
Metal ion-based complexes such as cisplatin are only 
effective against limited types of tumors and have a 
variety of serious side effects, such as gastrointestinal 

and nervous system toxicity and bone marrow suppres-
sion. Additionally, intrinsic and acquired drug resistance 
attenuate the effectiveness of these agents. [94] More 
importantly, systemic toxicity, short circulation time, and 
low target selectivity have hampered their clinical appli-
cations to a great extent. While the application of metal 
ions alone has many deficiencies, the clinical application 
of nanometallic materials showed predominant advan-
tages, such as efficient loading, selective delivery and 
responsive release with longer circulation retention time. 
Cisplatin and copper ionophores represent an example.

A multifunctional nanogel (designated Valproate-
D-Nanogel) was capable of reactivating cisplatin and 
enhancing early apoptosis. This nanogel can effectively 
inhibit cisplatin-resistant cancer through combined path-
ways and provides an effective approach for overcoming 
cisplatin resistance in cancer treatment [95]. With the 
development of nanotechnology, many copper iono-
phores, such as dithiocar-bamates (DTCs) and thiosemi-
carbazones (TSCs), have been developed and combined 
with cuproptosis inducers to increase the intracellular 
copper content and elicit efficient cancer cell damage, 
which can greatly improve the efficiency of cuproptosis 
induction and is regarded as a promising cancer strategy.

Several breakthroughs of nanometallic materials 
in cancer immunotherapy
As we have mentioned above, many metal ions exert 
critical functions in antitumor immunity, and the syn-
ergistic strategy can enhance the effectiveness of both 
therapies and overcome their inherent limitations (Fig. 4) 
[11]. Considering that the combination of metal ions 
and nanotechnology possesses predominant advantages, 
including more stability, better efficiency at lower doses, 
and more importantly, fewer side effects than metal ions 
alone, we will introduce several essential metal ion nano-
particles applied in cancer immunotherapy in the last few 
years.

Cancer therapies can be combined with others, result-
ing in a better therapeutic effect and prognosis. Prospec-
tively, the combination of different antitumor modalities 
will provide a new concept for cancer treatment and 
prevention.

Manganese and  MnO2‑based nanoimmune activators
Manganese catalyzes the Fenton reaction but is also an 
activator of the cGAS-STING pathway in antitumor 
immunity. Amorphous porous manganese phosphate 
(APMP) NPs have been designed with a high responsive 
ability to TME, which could be loaded with doxorubicin 
(DOX) and phospholipid (PL)-coated hybrid nanoparti-
cles to maintain stability in systemic circulation and acti-
vate the cGAS-STING signal pathway [104].
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A metal-phenolic network (MPN)-based immune-
active nanoparticle is newly synthesized by coordinating 
tannic acid with  Mn2+ by electroporation and subsequent 
coating with CpG-oligodeoxynucleotides (CpG-ODNs) 
via hydrogen bonding. CpG-ODN-coated Mn-phenolic 
network nanoparticles can effectively internalize into 
macrophages and stimulate M1 polarization to promote 
the release of proinflammatory cytokines as an effective 
immune activator [28].

Manganese oxide  (MnO2) nanomaterials are biode-
gradable with stable structures, excellent physiochemi-
cal features and biosecurity.  MnO2 can catalyze  H2O2 
into dissolved  O2 and consume GSH, which can react 
with ROS within the TME, serving as an enhancer for 
PDT-induced immunotherapy and photothermal agents 
(PTAs) [105]. In addition, Mn@CaCO3/ICG nanopar-
ticles loaded with PD-L1-targeting small interfering 
RNA (siRNA), a type of TME-sensitive  O2-generating 

nanosystem  MnO2@Chitosan-CyI (MCC) and cGAS-
STING activating MnIIIPC@DTX@PLGA@Mn2+@HA 
(MDPMH) nanoparticles have also been designed for 
precise individualized diagnosis and treatment of various 
tumors [106].

Iron and iron oxide derivative‑based nanoimmune 
activators
Iron oxide nanoparticles (IONPs) are ideal magnetic 
drug carriers with reasonable biodegradability and bio-
compatibility. IONPs have been applied as magnetic 
resonance imaging (MRI) contrast agents in cancer 
diagnosis, which could be guided to a specific area of 
interest [107, 108]. The magnetic hyperthermia trig-
gered by IONPs can not only generate effective PTT/
PDT but also enhance antigen presentation and DC 
maturation; at the same time, T lymphocytes can be 
recruited into lymph nodes, and immunosuppressive 

Fig. 4 Various recent therapies for the treatment of cancer patients and the main techniques applied with metal ions of each treatment.
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Tregs are depleted by the enhanced immune response. 
Thus, magnetic-responsive immunostimulatory nano-
agents (MINPs) possessing magnet-guided and immu-
nostimulatory properties have been designed and 
specifically eliminate primary and metastatic tumors 
[109].

Biocompatible PEG-coated ferrihydrite nanopar-
ticles (PEG-Fns) show the therapeutic potential of 
ferrihydrite to combine ROS-based CDT, PDT, and 
M1-activating immunotherapy with  Fe2+ as the con-
necting point (Fig.  5) [110]. Triggered by visible blue 
light instead of UV light, the photoresponsive system 
generates  Fe2+ and ROS and inhibits GPX4, which leads 
to apoptosis- and ferroptosis-dependent cancer cell 
proliferation inhibition [111]. TAM polarization from 
the tumor-promoting M2 type to the tumor-killing M1 
type is simultaneously activated by PEG-Fns, which 
concomitantly inhibits tumor growth and prevents pul-
monary metastasis in vivo [112].

Gold nanoparticle (AuNP)‑based nanoimmune activators
AuNPs are applied in light-triggered thermal therapy in 
the form of gold–gold sulfide nanoparticles, hollow gold 

nanoshells, and gold–silica nanoshells because of their 
high absorption property in the second near-infrared 
(NIR) light window, which can lead to hyperthermia in 
tumor sites for PTT/PDT and facilitate drug release [113, 
114].

Intravenous injection of CpG immunostimulants by 
AuNP delivery systems can lead to better accumulation 
of nanoparticles in the reticuloendothelial system (RES) 
[115]. Moreover, AuNPs can induce macrophage and 
DC infiltration, which can inhibit cancer development 
in the context of B16-ovalbumin (OVA) [116, 117]. This 
provides novel insight and an ideal platform for cancer 
vaccine design; in this context, phagocytosis by mac-
rophages and DCs is favorable for antigen transportation 
to increase the overall amount of the vaccine delivered to 
APCs [117–119].

Mangiferin-functionalized gold nanoparticulate agents 
(MGF-AuNPs) were designed to treat prostate cancer 
by elevating the levels of certain antitumor cytokines, 
such as IL-12 and TNF-α, and simultaneously reducing 
the levels of protumor cytokines, such as IL-10 and IL-6, 
which target macrophages in the spleen via NF-kB signal-
ing pathway activation [120]. Immunomodulatory metal 

Fig. 5 Reproduced with permission from [111] @Copyright 2022, Elsevier Ltd
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nanoparticles transform protumor M2 macrophages into 
antitumor M1 macrophages, substantially improving 
patients’ therapeutic outcomes [121].

An innovative immunological AuNP (AuNP@B16F10) 
has been developed; melanoma B16F10 cells were first 
employed to generate AuNPs, and then these cells shed 
nanoparticles with retained tumor antigen-trapped vesi-
cles into the extracellular environment. AuNP@DCB16F10 
particles were further constructed by introducing the 
nanoparticles into DCs, which can induce hyperthermia 
and provoke antitumor immune responses for combina-
torial PTT and immunotherapy [122].

Ag2S‑based and sliver nanoparticle (AgNP) 
nanoimmune activators
Ag2S with an appropriate size can elicit a photother-
mal-based tumor-killing effect. At the same time,  Ag2S 
is applied in imaging due to its ideal tissue penetra-
tion ability to provide more detailed cancer diagnosis 
information [123, 124]. An NIR light-responsive NO 
delivery system was developed for the controlled and 
precise release of NO to hypoxic tumors during radio-
therapy [125].

Ag2S quantum dots (QDs) coupled with an efficient 
NO source, tert-butyl nitrite, are able to generate NO 
under NIR irradiation induced by the thermal effect 
[126]. These  Ag2S@BSA-SNO NPs can ameliorate the 
immunosuppressive TME by significantly enhanc-
ing anti-PD-L1 immune checkpoint blockade therapy. 
Multifunctional cancer radioimmunotherapy based on 
 Ag2S NO delivery platforms showed a 100% survival 
rate, which remarkably maximized radiotherapy effects 
to inhibit tumor growth in a CT26 tumor model [127].

Among the gut microbiota, Fusobacterium nuclea-
tum (Fn) selectively increases the proportion of MDSCs 
in CRC. M13@Ag was designed by assembling AgNPs 
electrostatically on the surface capsid protein M13 
to specifically clear Fn and remodel the suppressive 
TME by activating APCs to further strengthen the host 
immune system. Combined with immune checkpoint 
inhibitors (α-PD1) or chemotherapeutics (FOLFIRI), 
M13@Ag prolonged overall mouse survival in the 
orthotopic CRC model to a greater extent [128].

Copper and CuS‑based nanoimmune activators
Intratumoral copper levels influence PD-L1 expression 
in cancer cells and contribute to cancer immune eva-
sion. The expression levels of the major copper influx 
transporter copper transporter 1 (CTR-1) and PD-L1 
are closely related across many cancers but not in corre-
sponding normal tissues [101].

The treatment prognosis, sensitivity to chemother-
apy based on immunophenotype, and immunotherapy 
response can be predicted based on cuproptosis-related 
genes in bladder cancer as the infiltrating landscape of 
immune cells (especially T cells and DCs) induce a nona-
poptotic type of programmed cell death caused by excess 
copper [129]. Further application remains to be reported 
in triple-negative breast cancer (TNBC) [130].

Featuring the high photothermal conversion effi-
ciency of copper sulfide (CuS) nanoparticles, abundant 
deposition inside the large pores of dendritic large-pore 
mesoporous silica nanoparticles (DLMSNs), and the 
immune adjuvant resiquimod (R848), AM@DLMSN@
CuS/R848 has been incorporated to treat TNBC by com-
bining photothermal ablation and immune remodeling 
through tumor vaccination and T lymphocyte activation 
[131].

In addition, cancer cell-macrophage hybrid membrane-
coated, NIR-responsive, hollow CuS nanoparticles can 
encapsulate sorafenib and be surface-modified with anti-
VEGFR (CuS-SF@CMV NPs); the other ataxia telangiec-
tasia mutated (ATM) inhibitor-loaded hollow-structured 
CuS NPs with surface modification with anti-TGF-β have 
the function of target specificity and immune activation 
(CuS-ATMi@TGF-βNPs); both these structures show 
application potential in hepatocellular carcinoma (HCC) 
as they synergize with PTT, chemotherapy and immuno-
therapy [132].

Zinc and ZnS‑based nanoimmune activators
Zn2+ is essential for innate and adaptive immune activa-
tion and proper function of innate and adaptive immune 
cells, including the cytotoxic activity of NK cells and T 
cells [133]. Taking advantage of the excellent bioavailabil-
ity of encapsulated ionotropic drugs, hesperidin-loaded 
 Zn2+@ sodium alginate/pectin (SA/PCT) nanocompos-
ites were designed to inhibit the proliferation of colon 
carcinoma cells and induce apoptosis under in vitro con-
ditions [134].

In addition, the innovative delivery system FEGCG/
Zn is integrated with fluorinated-coordinative-epigallo-
catechin gallate (EGCG) and  Zn2+. The robust therapeu-
tic effects of FEGCG/Zn depend on excellent delivery 
of small interfering RNA of PD-L1 (siPD-L1) and fur-
ther siPD-L1 accumulation in tumors, which enhances 
antitumor immunotherapy through alleviation of T-cell 
exhaustion by regulating PD-L1 expression in tumor cells 
[135].

Another new ZnNP is ZnPP@MSN-RGDyK: zinc pro-
toporphyrin (ZnPP)-loaded mesoporous silicon nanopar-
ticles are combined with a new PD-L1 inhibitor RGDyK, 
which was reported recently with high photodynamic 
therapy efficiency, excellent immunotherapeutic effects 
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and precise integrin β3 (β3-int) targeting in an NSCLC-
SM mouse model [136].

ZnS@BSA (bovine serum albumin) nanoclusters have 
been synthesized to activate cGAS-STING signals in 
mice, promoting the infiltration of  CD8+ T cells at the 
tumor site and cross-presentation of DCs, which can 
improve immunotherapy efficacy against HCC [137]. Sys-
temic evaluation of in  vitro cytotoxicity demonstrated 
the good biocompatibility of the proposed BSA-conju-
gated ZnS nanoparticles (Table 2). These studies suggest 
that the prepared BSA-conjugated ZnS nanoparticles are 
promising for future applications in antitumor immunity 
and biomedical engineering.

Synergistic application of multiple metal ions
Sodium alginate (ALG)-Ca-Mn gel is an innovative 
microwave ablation (MWA) nanomaterial developed for 
local thermal ablation of tumors using the heat gener-
ated by the intense oscillation of metal ions under micro-
wave exposure. The combination of increased  [Ca2+]e 
(e.g., 4 mM) with mild hyperthermia (43 °C) induces the 
immunogenic cell death (ICD) of cancer cells by eliciting 
intracellular  Ca2+ overloading as well as mitochondrial 
dysfunction, which leads to effective cancer cell killing. 
Moreover,  Mn2+ can elicit potent innate and adaptive 
antitumor immunity via cGAS-STING activation (Fig. 6). 
This immune nanoactivator based on metal ions shows 
great capacity to improve MWA treatment effectiveness 
[138]. Recently, mPEG-b-PHEP incorporating IR780 
dye and manganese zinc sulfide nanoparticles (ZMS) 
 (PPIR780-ZMS) was established. This thermally responsive 
biopolymer micelle with  Zn0.43Mn0.57S2 nanoparticles can 
readily induce antitumor immunity. With NIR induced by 
IR780 dye, the precise release of ZMS nanoparticles pro-
duces DAMPs and then boosts ICD. In particular,  Mn2+ 
can not only generate ROS but can also enhance immune 
filtration in neoplastic foci, which reverses the suppres-
sive phenotype of the TME to allow effects against the 
primary tumor and pulmonary metastases with safe 
systemic cytokine expression via the synergism of PDT/
CDT and immunotherapy [139].

GNRs@SiO2@MnO2@MDSCs (GSMM) is obtained 
by combining gold nanorods (GNRs) with  MnO2, which 
further disguises the MDSC membrane on its surface. 
 Mn2+ catalyzes  H2O2 into ·OH for CDT, leading to the 
activation of cGAS-STING but also directly acts on 
STING, inducing the secretion of type-I interferons, pro-
inflammatory cytokines and chemokines. Additionally, 
PTT and CDT-mediated ICD of tumor cells can further 
enhance antitumor immunity via exposure to calreticu-
lin (CRT), high mobility group protein B1 (HMGB1) and 
adenosine triphosphate (ATP) [140].

Discussion
As we have generally described, the metabolism of 
several metal ions in the TME, especially concerning 
antitumor immunity, has been well established. The 
slightest change in their extra/intracellular concen-
tration results in amplified effects by signaling cas-
cades that determine cell fate and immunity status 
[141, 142]. Moreover, the self-regulation of metal ion 
metabolism and application of nanometallic materials 
influence the network of antitumor immunity through 
various pathways. Because metal ions influence the 
fate of cancer cells and participate in both innate and 
adaptive immunity, they are widely applied in antitu-
mor treatments [143]. However, there are some issues 
that remain to be resolved.

First, the delivery system and administration route 
should be taken into account. For example, some 
administration routes, including intranasal, intrave-
nous, and intratumoral routes, induce systemic anti-
tumor responses, which might be applicable to cases 
of widely metastatic cancers, whereas local injection 
might be more suitable for early-stage cancers or cer-
tain types, such as retinoblastoma [144].

Secondly, unwanted damage to normal tissues 
should be avoided by designing selective metal ion-
based immune activators in cancer cells. In addition, 
in consideration of tumor diversity and heterogene-
ity, ultrasensitive nanomaterials should be designed 
to distinguish the tumor margin from normal tissues 
based on enzymatic activity and acidity [145].

More importantly, specific drug delivery vehicles 
are essential to realize precise delivery of biomimetic 
drugs in diverse tumor microenvironments with vari-
ous biological barriers. The design of a loading plat-
form depends on the application of nanotechnology in 
the domain of physiopathology concerned with metal 
and tumor physio-biochemical characteristics.

Despite the fact that metal ion application is con-
sidered to be a promising cancer therapy without 
the introduction of exogenous substances, we should 
focus on evaluation before treatment and monitoring 
after treatment because metal ions can directly affect 
cell excitability and manifest cytotoxicity beyond 
a certain dosage [139]. As potential agonists of the 
immune system, we should discover a balance between 
immune surveillance and homeostasis to avoid hyper-
inflammatory reactions that will be a double-edged 
sword for cancer therapy.
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