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Abstract 

Clinically, activated EGFR mutation associated chemo-drugs resistance has severely threaten NSCLC patients. Nano-
particle based small interfering RNA (siRNA) therapy representing another promising alternative by silencing specific 
gene while still suffered from charge associated toxicity, strong immunogenicity and poor targetability. Herein, we 
reported a novel EGFR-mutant NSCLC therapy relying on edible and cation-free kiwi-derived extracellular vesicles 
(KEVs), which showed sevenfold enhancement of safe dosage compared with widely used cationic liposomes and 
could be further loaded with Signal Transducer and Activator of Transcription 3 interfering RNA (siSTAT3). siSTAT3 
loaded KEVs (STAT3/KEVs) could be easily endowed with EGFR targeting ability (STAT3/EKEVs) and fluorescence by sur-
face modification with tailor-making aptamer through hydrophobic interaction. STAT3/EKEVs with a controlled size of 
186 nm displayed excellent stability, high specificity and good cytotoxicity towards EGFR over-expressing and mutant 
PC9-GR4-AZD1 cells. Intriguingly, the systemic administration of STAT3/EKEVs significantly suppressed subcutaneous 
PC9-GR4-AZD1 tumor xenografts in nude mice by STAT3 mediated apoptosis. This safe and robust KEVs has emerged 
as the next generation of gene delivery platform for NSCLC therapy after multiple drug-resistance.
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Graphical Abstract

Introduction
Lung cancer constantly took over the throne of global 
cancer deaths with over 85% of cases currently classi-
fied as non-small cell lung cancer (NSCLC) [1–3]. Drug 
resistance has been widely known as the leading cause 
to making contribution to the failure of various chemo-
therapies against NSCLC [4–6]. For instance, Epidermal 
Growth Factor Receptor (EGFR) tyrosine kinase inhibi-
tors (TKIs) have developed the third generation but will 
finally make patients progress due to activated mutations 
in EGFR [7]. Further, such small-molecule inhibitors are 
notoriously prone to rapid clearance and off-targeting 
side effects [8], which making it even more challenging to 
treat EGFR-mutant NSCLC.

Signal Transducer and Activator of Transcription 3 
(STAT3) is one of the key downstream signaling media-
tors of activated EGFR, which was proved to be associ-
ated with tumor angiogenesis, cell proliferation, and 
chemo-resistance [9–11]. Targeting STAT3 could thus 
provide a novel and promising approach for NSCLC 
therapy, especially after EGFR mutations [12]. Small 
interfering ribonucleic acid (siRNA) could selectively 
inhibit targeted gene expression in the cytoplasm, thus 
making it promising for various disease treatment, such 
as cancers, hypercholesterolemia, hepatitis B, acute kid-
ney injury etc [13–16]. While naked siRNA is easily 
degraded by RNase enzymes in the bloodstream, further 
making it lose the function [17, 18]. More to the point, 
siRNA is usually immunogenic and lack of the ability of 
penetrating through the membrane to enter the targeting 
cancer cells [18].

Owing to the improved pharmacokinetics and perme-
ability as well as targetability, nanotechnology-based 

siRNA delivery has shed light on the various cancer 
therapies [19–22]. Up to now, the most commonly used 
siRNA delivery systems are still cationic, the majority of 
which are cationic lipid nanoparticles or liposomes fea-
tured with not only efficient loading of siRNA through 
electrostatic interaction but also promoting cellular 
internalization and endosomal escape [23–25]. Onpattro 
was the only one approved siRNA drug delivered by the 
cationic amino MC3 lipid nanoparticle [26, 27]. However, 
it was always accompanied with controversial safety issue 
due to the potential normal cell cytotoxicity and immu-
nogenicity [28, 29]. To solve the problem, its surface 
charge, size and lipid structure needed to be delicately 
controlled, which remain complicated [30–33].

At the same time, with the hollow structure similar 
to above-mentioned cationic liposomes, edible plants-
derived extracellular vesicles (EPEVs) have emerged as 
new alternative for siRNA delivery [34–36]. For exam-
ple, grapefruit, ginger and lemon has been reported for 
making such EPEVs featured with high safety and envi-
able yields for colon cancer and myeloid leukemia ther-
apy, respectively [37–40]. Here, kiwi-derived extracellular 
vesicles (KEVs) were designed as siRNA carriers (Fig. 1). 
To our knowledge, KEVs have not been studied before to 
treat multidrug resistant lung cancer. Meanwhile, kiwi-
fruit extracts were reported to have broad spectrum anti-
tumor effects including lung cancer [41–43]. Here, we 
reported an innovative and simple approach of the sur-
face modification of KEVs with EGFR aptamer to target 
EGFR-mutant NSCLC. It should be noted that fluores-
cent probe could also be tailor-made and integrated into 
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the aptamer, which would allow facile tracking the fate of 
KEVs in vitro and in vivo.

Results and discussion
Characterization of KEVs
KEVs were isolated from Kiwi fruit with a combination 
of extraction, filtration and differential centrifugation 
followed by sucrose density gradient ultracentrifugation 
according to previous reports (Additional file 1: Fig. S1) 
[44, 45]. It showed good colloidal stability in PBS with 
the concentration of 7.35  mg/mL (Fig.  2A). Meanwhile, 
KEVs displayed an average particle size of ~ 198 nm with 
the spherical morphology (Fig. 2B). The surface charge of 
KEVs was determined to be − 14.6 mV. As expected, the 
KEVs exhibited good serum stability with little change in 
size after 24 h incubation in 10% fetal calf serum at 37 ℃ 
(Additional file 1: Fig. S2). The total lipid composition of 
KEVs revealed by LC–MS/MS showed that KEVs mainly 
contained sphingoid base-phosphates (~ 62%), sphin-
goid base (~ 18%) and sphingomyelins (~ 10%) (Fig. 2C). 
Notably, compared with mammalian-derived EVs, KEVs 
do not require cumbersome cell culture thus the yield is 
higher. Although remaining concerns, various liposomal 
therapeutics have been successfully commercialized for 
cancer and virus treatment till now [46–49]. Thus, cati-
onic liposomes were selected here as a control for in vitro 
biocompatibility test against mouse peritoneal mac-
rophages cells IC-21 and human embryonic kidney cells 

HEK293. Interestingly, KEVs showed great biocompat-
ibility (> 90%) even at a high concentration of 22.32 × 10 
[9] particles/mL, while cationic liposomes treated cell 
viability strikingly dropped ~ 50% even at a low concen-
tration of 2.56 × 109 particles/mL (Fig.  2D, E). The safe 
dose of KEVs was up to sevenfold higher than that of 
cationic liposomes without showing obvious cytotoxic-
ity, which is consistent with previous reports [50, 51]. In 
addition, by co-incubating KEVs with PC9-GR4-AZD1, it 
was found that KEVs can inhibit the cell viability of PC9-
GR4-AZD1 (Additional file 1: Fig. S3). When the concen-
tration of KEVs reached to 14.88 × 109 particles/mL, the 
survival rate of PC9-GR4-AZD1 was 89.6%, which was 
slightly lower than that incubated in IC21 and HEK293 
cells (99.1% and 90.8%) under the same concentration, 
respectively.

Characterization of STAT3/EKEVs
EGFR aptamer could be facilely anchored to the sur-
face of KEVs by the hydrophobic interaction of choles-
terol and lipids (EGFR aptamer modified KEVs termed 
as EKEVs) (Fig.  3A). On the other hand, siSTAT3 was 
loaded into EKEVs by the gentle mix of siRNA and 
EKEVs (siSTAT3 loaded EKEVs termed as STAT3/
EKEVs). It should be emphasized that concentrated 
STAT3 expression in tumor site of NSCLC patients in 
early-stage (stage II) was lower than that in late-stage 
(stage III) featured with a poor 5  year survival time 

Fig. 1  Schematic illustration of siSTAT3 loaded EKEVs (STAT3/EKEVs) for efficient treatment of PC9-GR4-AZD1 NSCLC tumor xenograft
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of 15% (Additional file  1: Fig. S4), which was strongly 
related to the evolving and inevitable drug resistance 
[52, 53]. Moreover, the easily preformed procedure 
makes it promising for large scale fabrication, which is 
essential for prospective clinical application. STAT3/
EKEVs had a slightly smaller size of ~ 187 nm (Fig. 3B). 
The stability of STAT3/EKEVs were evaluated at 4 ℃. As 
shown in Fig.  3C, the size of STAT3/EKEVs remained 
similar even after 14  days, indicating its outstanding 
suspension stability. Meanwhile, the spherical mor-
phology of STAT3/EKEVs maintained similar to that of 
KEVs. The detailed structure of STAT3/EKEVs was fur-
ther confirmed using confocal laser scanning micros-
copy (CLSM) (Fig. 3D). The blue aptamer fluorescence 
attached to the green fluorescent and ring shaped KEVs 
which was loaded with Cy3 stained siSTAT3, indicated 
that aptamer and siRNA was successfully introduced in 
KEVs with hollow structure. Moreover, approximately 
800 pmol siRNA can be loaded per 100 μg KEVs which 
was confirmed by agarose gel electrophoresis. The load-
ing Efficiency was determined to be about 57.5% and 

59.6% for siSTAT3 and siScramble, respectively (Addi-
tional file 1: Fig. S5).

The cellular internalization behavior of EKEVs evalu-
ated by CLSM showed strong aptamer fluorescence 
(AF647) in the cytoplasm of EGFR over-expressing 
PC9-GR4-AZD1 cells after incubation for 4 h (Fig. 3E), 
supporting that EKEVs could facilitate targeting 
to PC9-GR4-AZD1 cells. Expectedly, there was no 
remarkable difference in EGFR low-expressing H520 
cell between EKEVs and 3WJ aptamer modified KEVs 
(Fig.  3F), further confirmed that EKEVs could actively 
target to EGFR positive cancer cells. Moreover, the 
FACS results in consist of CLSM images demonstrated 
that EKEVs was internalized 2.15  time more than 
3WJ aptamer modified KEVs in PC9-GR4-AZD1 cells 
(Fig. 3G). Endo-lysosomal degradation is an important 
reason for preventing siRNA from functioning in cells. 
Live-cell confocal microscopy image (Fig.  3H) showed 
that STAT3/EKEVs could efficiently release siRNA 
into cells to avoid phagocytosis and degradation of 
lysosomes.

Fig. 2  Characterization of KEVs. A Picture of KEVs dispersed in PBS. B The particle size distribution and representative TEM images of KEVs, 
respectively. C Lipid profiles of KEVs (SPBP Sphingoid base-phosphates, SPB Sphingoid bases, SM Sphingomyelins, Cer Ceramides, CerP 
Ceramide-phosphates, MIPC Mannosyl-inositolphosphoceramides). Viabilities of IC21 and HEK293 cells after treatment with D KEVs and E cationic 
liposomes at different concentrations. One-way ANOVA. ***P < 0.001, ****P < 0.0001, versus the IC21 group. ###P < 0.001, ####P < 0.0001, versus the 
HEK293 group. Error bars represent SEM (n = 3)
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STAT3/EKEVs inhibition of STAT3 expression in vitro
The inhibition of EGFR was proved to lead to the acti-
vation of STAT3 which displayed limited efficacy of 
EGFR-TKIs against EGFR-mutant lung cancers. Moreo-
ver, higher STAT3 mRNA levels in EGFR-TKI-resist-
ant patients were associated with lower survival [54]. 

Inhibiting STAT3 was known to elicit antitumor activity 
against NSCLC [55, 56]. The in  vitro antitumor activity 
of STAT3/EKEVs was evaluated by CCK-8 assays in PC9-
GR4-AZD1 cells. The results showed that STAT3/EKEVs 
exhibited a significantly enhanced antitumor activity with 
increasing dose of STAT3/EKEVs, but free siSTAT3 due 

Fig. 3  Characterization of STAT3/EKEVs. A Structure diagram of STAT3/EKEVs. B The particle size distribution and representative TEM images of 
STAT3/EKEVs, respectively. C STAT3/EKEVs size change over 14 days at 4 ℃. One-way ANOVA. ns not significant. Error bars represent SEM (n = 3). D 
The detailed structure of STAT3/EKEVs was confirmed using confocal laser scanning microscopy (scale bar: 200 nm). Confocal images of STAT3/EKEVs 
and STAT3/KEVs in E PC9-GR4-AZD1 cells and F H520 cells, respectively. (scale bar: 10 μm). G Flow cytometry characterization of STAT3/EKEVs and 
STAT3/KEVs internalization in PC9-GR4-AZD1 cells. H Endosome/lysosome escape profiles of STAT3/EKEVs in PC9-GR4-AZD1 cells (scale bar: 10 μm)
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to inherent negative charge and large molecular weight 
did not cause obvious cytotoxicity (Fig. 4A). Cell scratch 
experiment is widely used method for evaluating cell pro-
liferation and migration ability [57]. Cell scratch as well 
as corresponding Western Blot and PCR characterization 
experiments procedures are shown as Fig.  4B. The cell 
wound was completely healed after treated with PBS or 
Scramble/EKEVs for 4 + 8  h, supporting that PC9-GR4-
AZD1 has great migration ability (Fig.  4C, D). However, 
cell wound treated with STAT3/EKEVs and STAT3/KEVs 
exhibited much slower wound recovery, in which STAT3/
EKEVs led to minimum wound healing in 4 + 8 h (Fig. 4C, 
D). STAT3 at mRNA level (Fig.  4E) and protein level 
(Additional file 1: Fig. S6) in cells was further quantified 
by qPCR and Western Blot assay, respectively. The data 
showed the same trends as the cell scratch test.

In vivo bio‑distribution of STAT3/EKEVs
In order to further study the targetability of STAT3/
EKEVs in vivo, taking nude mice as an example, a PC9-
GR4-AZD1 NSCLC subcutaneous xenograft model 
was established. Further confirmed EGFR expres-
sion in tumor site was obviously higher than that in 

paracancerous tissue (Additional file  1: Fig. S7). Owing 
to the ligand mediated NSCLC targetability, ex vivo flu-
orescence images showed that STAT3/EKEVs accumu-
lated to tumor sites more efficiently than STAT3/KEVs, 
showing a 2.07-fold higher AF647 signal, while without 
significant enhancement in major organs (Fig.  5A, B). 
Confocal images of tumor tissues further showed that 
STAT3/EKEVs could be enriched inside the tumor and 
could deliver more siRNA into the tumor, with significant 
statistical differences to STAT3/KEVs (Fig. 5C, D).

In vivo antitumor activity of STAT3/EKEVs
Following encouraging in  vitro results, subcutaneous 
PC9-GR4-AZD1 NSCLC tumor xenografts were used as 
model to test the in vivo efficacy of STAT3/EKEVs. Mice 
were intravenously injected with STAT3/EKEVs every 
6 days (on day 0, 6, 12, and 18) at a dosage of 240 nmol 
siSTAT3 equivalents/kg. As expected, STAT3/EKEVs 
significantly inhibited tumor growth compared with 
scramble/EKEVs and the PBS control group (Fig.  6A). 
The photographs of tumors excised on day 24 further 
corroborated the anti-tumor efficacy of STAT3/EKEVs 
(Fig. 6B, C). It should be noted that clinically used EGFR 

Fig. 4  In vitro efficacy. A Viabilities of PC9-GR4-AZD1 cells after treatment at different STAT3/EKEVs and free siSTAT3 concentrations. Two-way 
ANOVA. ****P < 0.0001. Error bars represent SEM (n = 3). B Schematic illustration of in vitro experimental procedures. C Cell scratch experiments 
(scale bar: 200 μm) and D corresponding quantification. One-way ANOVA. *P < 0.05. ns not significant. Error bars represent SEM (n = 3). E RT-PCR 
assays of STAT3 mRNA level in STAT3/EKEVs treated PC9-GR4-AZD1 cells
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tyrosine kinase inhibitors (EGFR TKIs), such as gefi-
tinib, erlotinib, afatinib or osimertinib showed resistance 
against our tumor model [7]. H&E staining images of 
tumors showed that STAT3/EKEVs provoked obvious cell 
necrosis with visible nuclear ablation in contrast to the 
dense cell arrangement in control groups (Fig. 6D). At the 
same time, STAT3 was significantly inhibited at the gene 
level and protein level after treated with STAT3/EKEVs 
(Fig. 6E, F and Additional file 1: Fig. S8). STAT3 and Ki67 

staining displayed less tumor cell proliferation treated 
with STAT3/EKEVs (Fig.  6G–J). In contrast, TUNEL 
assays showed that mice treated with STAT3/EKEVs 
exhibited largest area of tumor cell apoptosis (Fig.  6K). 
Notably, no significant differences were observed in body 
weights between the treatment (STAT3/EKEVs) and the 
negative control (PBS and Scramble/EKEVs) (Fig.  6L), 
indicating that STAT3/EKEVs have little systemic toxicity.

Fig. 5  Ex vivo images and bio-distribution of STAT3/EKEVs. A Ex vivo fluorescence images and B Semi-quantitative analysis of tumors and main 
organs. Student’s t-test. *P < 0.05. Error bars represent SEM (n = 3). C Confocal images of tumors (scale bar: 50 μm) and D quantitative analysis of 
fluorescence distribution in tumors. Student’s t-test. *P < 0.05, **P < 0.01. Error bars represent SEM (n = 3)

Fig. 6  In vivo anti-tumor efficacy of STAT3/EKEVs in PC9-GR4-AZD1 NSCLC subcutaneous xenografts. A Tumor growth in different treatment 
groups. Two-way ANOVA. ****P < 0.0001. Error bars represent SEM (n = 7). B Ex vivo photos of tumors. C Tumor weight in different treatment groups. 
One-way ANOVA. **P < 0.01. ns not significant. Error bars represent SEM (n = 7). D H&E staining images of tumors. E STAT3 Western Blot assays of 
the protein level and F RT-PCR assays of gene level after STAT3/EKEVs treatment. One-way ANOVA. *P < 0.05, **P < 0.01. ns not significant. Error bars 
represent SEM (n = 3). G STAT3 expression in tumors was determined by IHC. (scale bar: 100 μm). H Analysis of STAT3 expression in tumor. One-way 
ANOVA. ***P < 0.001. ns not significant. Error bars represent SEM (n = 3). I Ki67 staining images (scale bar: 100 μm) and J analysis of Ki67 expression 
in tumors. One-way ANOVA. ****P < 0.0001. ns not significant. Error bars represent SEM (n = 3). K TUNEL staining images (scale bar: 1000 μm). L Body 
weight in different treatment groups. Two-way ANOVA. ns not significant. Error bars represent SEM (n = 7)

(See figure on next page.)



Page 8 of 14Huang et al. Journal of Nanobiotechnology           (2023) 21:41 

Fig. 6  (See legend on previous page.)
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Biosafety of STAT3/EKEVs
Inspired by the excellent in vitro biocompatibility data, 
blood biochemical, hematological analysis and his-
tological examinations were further performed. The 
results showed that intravenous injection of STAT3/
EKEVs did not cause significant pathological changes 
in blood cells, lymphocytes and neutrophils (Fig.  7A). 
But the content of lymphocyte and neutrophils still 
increased a little bit compared with that of the con-
trol groups. Thus, the potential anaphylaxis posed by 
the kiwi fruit should be further tested to confirm the 
personal safe dosage before application. In contrast, 
cationic liposome and STAT3 loaded cationic lipo-
some induced obvious tissue toxicity and inflammation 
(Additional file  1: Fig. S9). Moreover, no organ dam-
age and toxicity were detected in the STAT3/EKEVs 
group by assessment of liver enzymes, renal function 
and hematological toxicity (Fig. 7A). In addition, H&E 
staining showed that STAT3/EKEVs caused no dam-
age to hearts, lungs, livers, spleen and kidneys (Fig. 7B). 

Collectively, all results indicated that STAT3/EKEVs 
had no obvious toxic effects both in vitro and in vivo.

Conclusion
In summary, we have developed edible kiwi-derived extra-
cellular vesicles (KEVs) with much higher safety over tra-
ditional used cationic liposomes. More to the point, KEVs 
with controlled size, excellent stability, surface modification 
of aptamer and active loading of small interfering RNAs thus 
could fully release the therapeutic potential of siSTAT3 in 
PC9-GR4-AZD1 NSCLC subcutaneous xenografts in mice, 
which could be emerged as a better clinical choice for NSCLC 
patients after EGFR-TKIs resistance. The work opens up a 
new avenue of safe and robust RNA delivery system.

Materials and methods
Ethics statement, mice and cell lines
All animal experimental protocols were approved by the 
Institutional Animal Care and Committee of Nanjing 
University of Chinese Medicine. Female 6-to 8 week-old 
nude mice were purchased from the Changzhou Cavens 

Fig. 7  In vivo biosafety evaluation of STAT3/EKEVs. A Blood routine, liver function and kidney function. One-way ANOVA. ns not significant. Error 
bars represent SEM (n = 3). B H&E staining of different organs. (scale bar: 200 μm)
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Experimental Animal Co., Ltd. (Jiangsu, China). All mice 
may get free access to food as well as water and were 
housed in temperature-controlled colony room with 
12/12 h dark-light circle. The human non-small cell lung 
cancer cell line PC9-GR4-AZD1 was generously provided 
as a gift by Miguel Angel Molina and Rafael Rosell (Pan-
gaea, Barcelona, Spain) [7]. Cells were cultured in RPMI 
1640, supplemented with 10% fetal bovine serum, 100 U/
mL penicillin, and 100  mg/mL streptomycin (all from 
Thermo Fisher Scientific, USA). All cells were incubated 
at 37 °C in a humidified atmosphere with 5% CO2.

RNA sequence
The sequences of all RNA strands (lower-case letters 
indicate 2′-OME nucleotides) are:

(1) 3WJ-A-Cholesterol: 5′-uuG ccA uGu GuA uGu 
GGG /3CholTEG/-3′.
(2) 3WJ-B: 5′-ccc AcA uAc uuu Guu GAu cc-3′.
(3) 3WJ-B-EGFR: 5′-ccc AcA uAc uuu Guu GAu 
ccG ccu uAG uAA cGu Gcu uuG AuG ucG Auu 
cGA cAG GAG Gc-3′.
(4) 3WJ-C-AF647: 5′-/5Alex647N/GGA ucA Auc 
AuG GcA A-3′.

All the RNA oligos were synthesized by Weinabio med-
icine (Guangdong) Co. LTD.

Purification and characterization of KEVs
After carefully washing and peeling, edible part of fresh 
kiwi fruit was put into a juicer to make the juice. Sequen-
tially, differential centrifugation was performed as the 
following condition: (1) 200 × g, 10  min; (2) 2000 × g, 
20  min; (3) 10,000 × g, 30  min to collect the superna-
tant. The supernatant was further ultracentrifuged at 
100,000 × g for 60  min. Bottom sediment was collected 
and re-suspended in PBS before transferred into sucrose 
solution (8%, 15%, 30%, 45%, 60%) for density gradient 
centrifugation (100,000 × g, 60  min). KEVs were finally 
collected from the band 4 after ultracentrifugation again 
followed by sterilization with 0.45  μm filter (Additional 
file 1: Fig.S6) [44]. KEVs were stored at − 80 ℃ for later 
use. The particle size of KEVs was determined by nano-
particle tracking analysis system (Nanosight3000, Mal-
vern, UK). The morphology of KEVs was characterized 
by transmission electron microscope (HT-7700, Hitachi, 
Japan) before stained with 2% uranyl acetate. The concen-
tration of KEVs was quantified by BCA protein assay kit 
(Beyotime Biotechnology, China) following the manufac-
turer’s instructions.

Lipidomic analysis of KEVs
Lipid samples from KEVs were submitted to the Engi-
neering Center of State Ministry of Education for Stand-
ardization of Chinese Medicine Processing (Nanjing, 
China) for lipidomic analysis. In brief, the lipid composi-
tions of KEVs were investigated by using a tof mass spec-
trometer (AB Sciex TripleTOFTM 5600, AB Sciex, USA). 
The data were reported as percentages of total signals for 
the molecular species, which were determined after nor-
malization of the signals to internal standards of the same 
lipid class.

RNA‑decorated EVs
siRNA was loaded into KEVs (termed as siRNA/KEVs) 
by mixed with 6.67  μM siRNA and 0.34  μg/μL KEVs 
according to the method of Exo-Fect™ Exosome Trans-
fection Reagent kit. The siRNA/KEVs were removed 
by centrifugation. Unloaded siRNA in the supernatant 
was then subjected to agarose electrophoresis and the 
siRNA loading efficiency was analyzed by Image J. The 
cholesterol-modified nanoparticles and the KEVs loaded 
with siRNA were incubated at 37 °C for 45 min, and then 
incubated on ice for 60 min. The siRNA/EKEVs are puri-
fied by ultracentrifugation, and finally re-suspended in 
100 μL sterile PBS, and stored at −  80  °C for later use. 
We defined 3WJ-modified KEVs without EGFR RNA 
aptamer as 3WJ/KEVs, KEVs with EGFR RNA aptamer 
modification as STAT3/EKEVs, and encapsulation of 
siSTAT3 and siScramble as STAT3/EKEVs and Scramble/
EKEVs, respectively.

Characterization of STAT3/EKEVs
The particle size of KEVs was determined by nanoparticle 
tracking analysis system (Nanosight3000, Malvern, UK). 
The morphology of KEVs was characterized by trans-
mission electron microscope (HT-7700, Hitachi, Japan) 
before stained with 2% uranyl acetate. Cy5-labeled siRNA 
was used to load in DiO-labeled KEVs. AF647-labeled 
EGFR-apt was used to modify DiO-labeled KEVs. The 
structure of STAT3/EKEVs imaged with confocal laser 
scanning microscope (Olympus FV3000, Japan).

In vitro targeting of STAT3/EKEVs
FAM-labeled siRNA was used to load in KEVs. AF647-
labeled 3WJ and EGFR-apt were used to modify KEVs 
according to previous description. For confocal micros-
copy imaging: PC9-GR4-AZD1 cells (5 × 105/well) were 
seeded in 24-well plate (Thermo Fisher Scientific, USA) 
and cultured overnight at 37  ℃. The media was then 
replaced with fresh culture media containing STAT3/
KEVs, STAT3/EKEVs (10  μg/mL). After incubation for 
12 h, the cells were fixed with 4% paraformaldehyde for 
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10 min and dehydrated with acetone at – 20 ℃ for 5 min 
after rinsed with fresh PBS for three times. 200  μL of 
4′,6-Diamidino-2-Phenylindole (DAPI, Beyotime Bio-
technology, China) was added and incubated for 30 min 
to stain the nucleus. Finally, cells were coverslip-mounted 
with mounting medium and imaged with confocal laser 
scanning microscope (Olympus FV10i, Japan).

For flow cytometry measurement, PC9-GR4-AZD1 
cells (1 × 106/well) were seeded in 6-well plate (Thermo 
Fisher Scientific, USA). The media was then replaced 
with fresh culture media containing STAT3/KEVs and 
STAT3/EKEVs (10  μg/mL). After incubation for 12  h, 
single-cell suspensions of treated macrophages were pre-
pared in staining buffer. Stained cells were analyzed on 
a FACS Aria II Flow Cytometer (BD Biosciences, USA). 
Data analysis was performed using Flow Jo software (BD 
Biosciences, USA).

Wound‑healing assays
PC9-GR4-AZD1 cells (5 × 105/well) were seeded in 
6-well plate and cultured overnight at 37  ℃. Then the 
6-well plate was scratched vertically with a 10 μL pipette 
tip. PBS, STAT3/EKEVs, STAT3/KEVs and Scramble/
KEVs (300  nM) were incubated for 4  h. After replaced 
with fresh medium, the cells were further cultured for 
8 h. Images were obtained by MShot Image Analysis Sys-
tem. The average of the healed wound area was measured 
by comparing 0 h and 12 h using Image J.

Western blot and antibodies
PC9-GR4-AZD1 cells and tissues were collected and 
lysed with Radio Immunoprecipitation Assay buffer 
(Sigma-Aldrich, USA) containing protease inhibitor 
cocktail (Roche, CH). Primary antibodies used for west-
ern blot analysis were STAT3 Mouse mAb (#9139, Cell 
Signaling Technology, USA) and GAPDH Mouse mAb 
(#5174, Cell Signaling Technology, USA), respectively.

Cytotoxicity assay
The cytotoxicity of KEVs, cationic liposomes and STAT3/
EKEVs were evaluated with CCK8 assay kit (Med Chem 
Express, USA). Mouse peritoneal macrophages cells 
IC-21、human embryonic kidney cells HEK293 and 
human non-small cell lung cancer cells PC9-GR4-ZD1 
cells (5 × 103/well) were seeded in 96-well plates and cul-
tured overnight at 37 ℃. The concentrations of cationic 
liposomes (Yisheng 40802ES02, China) and KEVs as well 
as STAT3/EKEVs treated for cells were ranged from 0 to 
3.2 × 109 particles/mL, 0 to 22.32 × 109 particles/mL and 
0 to 300 nM, respectively. Determination of NP concen-
tration by NTA (Nanosight3000, Malvern, UK). After 
48 h, the cell survival rate was analyzed by CCK8 assay 

on a microplate reader (VARIOSKAN FLASH, Thermo 
Fisher Scientific, USA).

Lysosomal colocalization assay
To examine whether STAT3/EKEVs can escape the lys-
osome-mediated exocytosis pathway, PC9-GR4-AZD1 
cells were incubated with 100  nM Lyso-Tracker Red 
(L8010, Solarbio, China) for 10 min, followed by co-incu-
bation with STAT3/EKEVs (50 nM) for 60 min at 37 ℃. 
Finally, cells were coverslip-mounted with mounting 
medium and imaged with confocal laser scanning micro-
scope (Olympus FV10i, Japan).

Animal experiments
Subcutaneous human non-small cell lung tumor xeno-
grafts were established by inoculating PC9-GR4-AZD1 
cells (2 × 106 cells/mouse) to the right flanks of female 
nude mice (6–8 weeks old). The tumor size was measured 
using digital calipers and tumor volume was calculated 
using the following equation: V = (length × width2)/2. 
After 24 days, the mice were arbitrarily divided into three 
groups (n = 7) and treated with intravenous injection of 
Scramble/EKEVs and STAT3/EKEVs (30 mg KEVs load-
ing 240 nmol siRNA equivalents /kg) via tail vein every 
6 days. PBS was used as the negative control. Tumor size 
and body weight were monitored every 2  days. At the 
end of the treatment, mice of all groups were sacrificed, 
and the tumors and main organs were excised for further 
analysis.

To test the safety properties of conventional cationic 
liposomes, the blood of the mice were collected 24 h after 
intravenous injection of cationic liposome and STAT3 
loaded cationic liposome, respectively. The blood was 
then used for blood biochemical detection.

RNA isolations and real‑time PCR
Total RNA was isolated from PC9-GR4-AZD1 cells after 
treated with TRIzol reagent (Invitrogen, USA) for 5 min. 
The total RNA was reverse transcribed using HiScript 
III RT SuperMix for qPCR (+ gDNA wiper) (Vazyme 
Biotech, China) analysis, ChamQ Universal SYBR qPCR 
Master Mix (Vazyme Biotech, China). Real-time PCR 
was performed using 7500 Real-Time PCR System 
(Applied Biosystems, USA).

Immunohistochemistry analysis
The tumors and main organs were fixed with 4% para-
formaldehyde solution and embedded in paraffin. The 
sliced organ tissues mounted on the glass slides were 
stained by hematoxylin and eosin (H&E) and observed 
by an optical microscope (Olympus, Japan) to ana-
lyze microscopic pathological changes. STAT3 Mouse 
mAb (#9139, Cell Signaling Technology, USA) and Ki67 
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(GB111499, Service Bio, China) were used for staining 
in order to evaluate the infiltration of STAT3, Ki67 in 
tumors. Data analysis was performed using image pro 
plus6 software (Media Cybernetics, USA).

TUNEL
Tumor were de-paraffinized, and apoptotic cells were 
detected by immunofluorescence TUNEL (terminal 
deoxynucleotidyl transferase-mediated dUTP-biotin nick 
end labeling) assay using the In Situ Cell Death Detection 
Kit (GB1501, Service Bio, China). Images were acquired 
using microscope (NIKON DS-U3, Nikon, Japan).

Safety evaluation
After the animal experiment, the blood and various tis-
sues of the mice were collected, the blood was used for 
blood biochemical detection, and the tissues and organs 
were used for H&E staining detection. The blood bio-
chemical detection and H&E staining were performed by 
Wuhan servicebio technology Co. LTD.

Bioinformatics analysis
The data of STAT3 expression level in the NSCLC were 
obtained from CPTAC_2020 cohort data according to 
the previous report and analyzed by the Mann–Whitney 
U test with the one tailed method using the R program-
ming language [52].

Statistics
Each experiment was repeated at least three times with 
triplication for each sample tested. The results were 
presented as mean ± standard deviation, unless other-
wise indicated. Statistical mean differences were evalu-
ated using unpaired Student’s t-test, One-way ANOVA 
or Two-way ANOVA with GraphPad software (P value 
adjusted for multiple comparisons by Holm’s proce-
dure) with R software, and P < 0.05 was considered sta-
tistically significant. (*P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001, #P < 0.05, ##P < 0.01 ###P < 0.001, 
####P < 0.0001).
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