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Abstract

Norcantharidin (NCTD) is a demethylated derivative of cantharidin (CTD), the main anticancer active ingredient
isolated from traditional Chinese medicine Mylabris. NCTD has been approved by the State Food and Drug Adminis-
tration for the treatment of various solid tumors, especially liver cancer. Although NCTD greatly reduces the toxicity
of CTD, there is still a certain degree of urinary toxicity and organ toxicity, and the poor solubility, short half-life, fast
metabolism, as well as high venous irritation and weak tumor targeting ability limit its widespread application in the
clinic. To reduce its toxicity and improve its efficacy, design of targeted drug delivery systems based on biomateri-
als and nanomaterials is one of the most feasible strategies. Therefore, this review focused on the studies of targeted
drug delivery systems combined with NCTD in recent years, including passive and active targeted drug delivery
systems, and physicochemical targeted drug delivery systems for improving drug bioavailability and enhancing its
efficacy, as well as increasing drug targeting ability and reducing its adverse effects.
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Graphical Abstract

Introduction

Worldwide, cancer is a serious health problem and is the
second leading cause of death [1]. Recently, traditional
Chinese medicine has attracted more and more atten-
tion in cancer treatment. Mylabris is the dried body of
the Chinese blister beetle, which is one of the earliest dis-
covered medicines with antitumor effect in China. The
species of Mylabris used in medicine usually are Mylabris
Pphalerata Pallas and Mylabris cichorii Linnaeus. Cantha-
ridin (CTD) is the main active ingredient of Mylabris [2].
CTD (exo, exo-2,3-dimethyl-7-oxobicyclo [2.2.1] hep-
tane-2,3-dicarboxylic acid anhydride) is a colorless, odor-
less and shiny crystal. The molecular formula of CTD is
C,0H1,0,, and the molecular weight is 196.2 g/mol. CTD
has been confirmed to exert inhibitory effects on multi-
ple types of cancers, such as liver cancer [3], acute mye-
loid leukemia [4], pancreatic cancer [5], gastric cancer
[6], breast cancer [7], osteosarcoma [8] and lung cancer
[9]. Moreover, it could recruit white blood cells, and may
potentiate immune response [10, 11]. However, CTD is
highly toxic, and oral and intravenous CTD have serious
implications on both urinary system and digestive system
[12—14]. In order to attenuate these adverse side effects,
a series of CTD derivatives have been produced based on
the structural optimization of CTD, such as norcanthari-
din (NCTD), disodium cantharidinate, sodium demethyl-
cantharidate, and methylcantharidinmide (Fig. 1). These
cantharidin derivatives retain the antitumor effect of
CTD and reduce its toxic and side effects, showing good
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application advantages [15—18]. Currently, several antitu-
mor chemicals based on the above CTD derivatives and
several antitumor Chinese patent medicines containing
Mylabris have been approved by the State Food and Drug
Administration for the treatment of various solid tumors,
especially liver cancer. Table 1 summarizes the names,
dosage forms, compositions, indications, specifications,
and usage of these marketed preparations in China.
NCTD (7-oxabicyclo [2.2.1] heptane-2, 3-dicarboxylic
anhydride), a chemically demethylated analog of CTD,
was extracted from CTD [19], or was synthesized from
furan and maleic anhydride [20]. The molecular for-
mula of NCTD is CgHgO,, and the molecular weight is
168.150g/mol. As an effective antitumor drug, NCTD
has higher antitumor activity than CTD, and has been
administered for years to treat cancer patients in China
[21]. Whether NCTD is administered orally, or sodiun
demethylcantharidate is administered by intravenous
drip or intratumoral injection, the tumor growth can be
effectively inhibited [22-25]. Moreover, NCTD/sodiun
demethylcantharidate combined with radiotherapy,
chemotherapy [oxaliplatin, fluorouracil, cisplatin, pacli-
taxel, gemcitabine, docetaxel, carboplatin, doxorubicin
(Dox) and other chemotherapy drugs], iodine 125 seed
implantation or transarterial chemoembolization can
not only effectively improve the treatment effect of vari-
ous cancers, such as esophageal cancer, colorectal cancer,
gastric cancer, liver cancer, cervical cancer, non-small cell
lung cancer, but also can effectively reduce the incidence
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of adverse reactions, such as leukopenia, neutropenia,
thrombocytopenia, nausea and vomiting, bone marrow
suppression, liver damage [26-39]; it can also improve
the immune function of cancer patients by regulating T
lymphocyte subsets and IgG levels, thereby improving
the life quality of patients and prolonging the survival
time of patients [40, 41]. Although NCTD greatly reduces
the toxicity of CTD, there is still a certain degree of uri-
nary toxicity, and organ toxicity in high-dose or long-
term use [42, 43]. Moreover, the poor solubility, short
half-life, fast metabolism, as well as high venous irritation
and weak tumor targeting ability limit its wide clinical
application [44—46].

Design of targeted drug delivery systems based on bio-
materials and nanomaterials is one of the most feasible
strategies to solve the aforementioned problems. Tar-
geted drug delivery systems can effectively improve the
solubility and in vivo drug distribution of poorly solu-
ble drugs; nanoparticles are passively targeted to tumor
cells through the enhanced penetration and retention
(EPR) effect of solid tumors, or modified specific ligands
or antibodies on the surface of nanoparticles are actively
targeted to tumor cells, can also improve the selectivity
of the drug to tumor cells, increase the concentration
of the drug in the target area, reduce the distribution of

the drug in the non-target site, and reduce adverse reac-
tions [47-49]. Design endogenous tumor microenvi-
ronment-responsive drug delivery systems based on the
special differences between tumor tissue and normal tis-
sue microenvironment, and design exogenous stimulus-
responsive drug delivery systems by utilizing the unique
properties of the carrier itself, such as light, temperature,
charge, and magnetism, can also effectively solve problem
of in vivo localized drug release through responsive drug
release by chemical bond cleavage or structural depolym-
erization of nanocarriers [50-53].

In order to better exert the anticancer activity of
NCTD, reduce toxicity, and change its pharmacokinetics
and in vivo distribution characteristics, many research-
ers have adopted different targeted drug delivery systems,
such as microspheres, microemulsions, liposomes, nano-
particles to overcome its clinical limitations. This review
focused on the studies of targeted drug delivery systems
combined with NCTD in recent years, including passive
and active targeted drug delivery systems, and physico-
chemical targeted drug delivery systems for improving
drug bioavailability and enhancing its efficacy, as well as
increasing drug targeting ability and reducing its adverse
effects, thereby providing new ideas for the clinical appli-
cation of NCTD in the future (Fig. 2).
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Fig. 2 Schematic diagram of the classification of norcantharidin
targeted drug delivery systems

Passive targeted drug delivery systems

Passive targeted drug delivery systems are drug deliv-
ery systems that passively enriche drugs in tumor tis-
sue based on EPR effects at the tumor site, including
liposomes, micelles, nanoparticles, microemulsion and
self-microemulsion, chitosan (CS)-based drug delivery
systems, microsphere, and so on. The EPR effect has been
the rationale behind the field of nano-drug delivery sys-
tems for cancer treatment [54]. Passive targeted drug
delivery systems of NCTD are summarized in Table 2.

Liposome-based NCTD delivery

Liposomes are spherical vesicles created by a lipid
bilayer of phospholipids. Due to their weak immuno-
genic response and good biocompatibility, liposomes
have emerged as a promising nano-drug delivery sys-
tem [55]. Wu et al. [56] prepared a NCTD liposome by
using film hydration method. The ratio of drug to lipids
was 1: 20, the ratio of phospholipid to cholesterol was
2: 1, and pH of water phase was 6.8. The average particle
size of the prepared liposomes is 360 nm, and the encap-
sulation efficiency (EE) reached 47.5%. Miao et al. [57]
prepared a powdered NCTD proliposome with average
size of 580nm, EE of (38.34+0.06) % and zeta potential
of -44.23 mV. It exhibited good antitumor effect by intra-
peritoneal injection and tail vein injection on H22 tumor-
bearing mice, with tumor inhibition rate of 43.8% and
48.4%, respectively. Moreover, the LD, of NCTD proli-
posome is 47.4mg/kg, and its toxicity is much lower than
that of free NCTD (LDg,=25.4mg/kg). Liu et al. [58]
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also prepared a NCTD liposome by using ethanol injec-
tion method, and then freeze-dried to prepare the NCTD
proliposome. The optimal preparation process was as
follows: the ratio of drug to lipids was 0.346, the ratio of
cholesterol to phospholipid was 0.038, and the content
of phospholipid was 0.9%. The EE of proliposome after
dispersion was 33.10%. Comparing the pharmacokinetic
behavior of NCTD injection and NCTD proliposomes, it
is proved that the distribution of the drug in liver is sig-
nificantly increased. Therefore, the preparation of NCTD
liposomes can make the drug more concentrated in the
liver to exert its effects, while reducing adverse reactions.
Moreover, Zhang et al. [59] prepared a disodium norcan-
tharidate liposome by using reverse evaporation method,
with average size of 243.1 nm, zeta potential of -22.94mV,
pH value of 7.544+0.13 and EE of (34.344+1.21) %. The
disodium norcantharidate solution was completely
released within 1h, while the disodium norcantharidate
liposome could continue to release for 12h. In addition,
the liposome improved the circulation time of the drug
in the blood, increased the accumulation of the drug in
the tumor tissue, and improved the targeting of the drug
in various tissues, especially the uterus, and also reduced
the toxicity to the kidneys. Besides, Gu et al. [60] pre-
pared a NCTD liposomes by using reverse film evapora-
tion technique. The phospholipid-drug quality ratio was
10:1, the phosphatide-cholesterol mass ratio was 5:1, and
ultrasonic frequency was 10 times. The prepared lipo-
some had a particle size of (90.50+2.40) nm and an EE of
(34.7£1.3) %, and have significant in vitro slow-release
characteristics.

Micelle-based NCTD delivery

Polymeric micelles are self-assembled nanoparticles with
a hydrophilic shell core and a hydrophobic core formed
by self-assembly of amphiphilic polymers. The hydro-
philic shell of micelles can provide steric stability and
avoid the rapid uptake of the reticuloendothelial system,
thereby prolonging the circulation time of drugs in the
body; while the hydrophobic core has good compatibility
with the encapsulated hydrophobic drugs, which endows
the micelles with high drug-carrying capacity and can
control the release of the drug [61]. Based on the above
advantages, polymeric micelles have become an excellent
antitumor drug delivery system.

Chen et al. [62] prepared a NCTD polymer micelle
by volatile dialysis method, with a particle size of
(95.6£10.1) nm, a drug loading of (6.0+0.3) %, and
an EE of (79.14+0.8) %. After 72h, the amount of drug
released from the micelles at pH 6.5, 7.0 and 7.4 was
(83.4+2.5) %, (80.0+1.6) % and (72.0+1.5) %, respec-
tively, indicating that the drug-loaded micelles could
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release more drugs in the tumor slightly acidic environ-
ment. Compared with NCTD injection (47.50%), the
same dose (2mg/kg) of drug-loaded micelles had a tumor
inhibition rate of 61.36% in S180 tumor model, and the
tumor inhibition rate of 4mg/kg drug-loaded micelles
reached 77.63%. Yin et al. [63] prepared a NCTD-loaded
polymeric micelles by thin-film hydration method with
poloxamer F127 as the drug carrier. This polymeric
micelle has an average particle size of 10.3nm, EE of
98% and drug-loading coeffieient of 4.67%. Furthermore,
Wang et al. [64] prepared a NCTD nano-micelle using
the triblock copolymer distearyl phosphatidylethanola-
mine-polyethylene glycol-maleimide as the carrier. This
nano-micelle has a particle size of (138.6+£45.8) nm,
EE of (83.67+1.78) %. Compared with NCTD injec-
tion (54.78%), the same dose (1 mg/kg) of drug-loaded
micelles enhanced the antitumor effect in A549 tumor
model, with a tumor inhibition rate of 64.35%.

Nanoparticle-based NCTD delivery

In recent years, biodegradable polymers have been play-
ing an important role in its functions of targeted drug
delivery and controlled drug release. Poly (lactic-co-gly-
colic acid) (PLGA) is a polymer of poly (lactic acid) (PLA)
and poly (glycolic acid) (PGA) that has been approved by
the FDA for the treatment of human diseases. The poly-
mer is non-toxic, non-irritating, and has good biocom-
patibility and biodegradability. PLGA nanoparticles can
increase anticancer drugs solubility and stability in the
biological milieu, and can control the slow and sustained
release of the drug according to the design, thereby
prolonging the circulation time of the drug in vivo and
improving the bioavailability [65]. Zeng et al. [66] pre-
pared a NCTD-loaded PLGA nanoparticle. The NCTD
release from the nanoparticle showed biphasic pro-
file with an initial rapid and a following slower release
phase for more than 10days. Compared with NCTD, the
NCTD-PLGA nanoparticles showed better antitumor
efficacy in mice models bearing ascites hepatoma and
pulmonary adenocarcinoma. Moreover, NCTD-PLGA
nanoparticles had no obvious side effects at LD;, dose
level [(66.7+3.9) mg/kg], while NCTD induced severe
prostration, apathy, and catatonia at LDj, dose level
[(25.4 £1.9) mg/kg]. PLA-polyethylene glycol (PLA-PEG)
amphiphilic block copolymer as a drug carrier could
also increase the drug loading of hydrophobic drugs,
reduce the burst effect, extend blood circulation time and
improve the bioavailability of drugs [67]. Ren et al. [68]
prepared a NCTD nanoparticle using PLA-PEG as car-
rier by phase separation method. Compared with the
naked drug, NCTD nanoparticle has good sustained-
release property and can more effectively inhibit the
growth of GBC-SD cell for 48 h. CS, obtained through the
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deacetylation of chitin, is an avirulent, biodegradable nat-
ural cationic polymer with good biocompatibility. CS and
its derivatives have been widely used in the pharmaceu-
tical industry as carriers for drug delivery, which could
control drug release, improve drug efficacy, reduce drug
side effects, increase drug stability and improve the tar-
geting capabilities [69]. Feng et al. [70] prepared a NCTD
hydroxypropyl-CS nanoparticle by ionic crosslinking
method. Compared with the original drug, the drug-
loaded nanoparticles have obvious sustained-release
properties in vitro, and the release time can be extended
to about 3 times of the original drug. The IC;, of free
NCTD on liver cancer cells BEL-7402 was (283.72 4-4.55)
pg/mL, while the IC;, of the prepared nanoparticle was
(194.26 £ 3.69) pug/mL, which was about 30% lower than
that of free NCTD. As an amphiphilic polymer, polyvi-
nylpyrrolidone-K;, (PVP-K;,) could be used as a coating
material for nanoparticles to improve the nanoparticles
stability [71]. In order to enhance the stability of NCTD
CS nanoparticles, Ding et al. [72] also prepared a PVP-
K3o-coated NCTD CS nanoparticles (PVP-NCTD-NPs),
which showed a relative bioavailabilities of 173.3% and
325.5% by p.o. and i.v. administration, respectively, than
in the NCTD group. The half-life (t;,,) increased and the
clearance (CL) obviously decreased. Besides, the PVP-
NCTD-NP improved the liver targeting effect of NCTD.
Solid Lipid Nanoparticle (SLN) is a solid colloidal drug
delivery system with a particle size of 10-1000 nm formed
by solid natural or synthetic lipid-encapsulated drugs. It
is the first generation of lipid nanoparticles [73]. It can
effectively improve the solubility and bioavailability of
NCTD. Tian et al. [74] prepared a NCTD-loaded SLN
(NCTD-SLN) by thin film-ultrasonic dispersion method.
The NCTD-SLN significantly improved the bioavailabil-
ity of free NCTD in vivo. Moreover, the relative uptake
rate of NCTD-SLN to NCTD solution in liver tissue was
1.59, the targeting efficiency was 1.45, and the peak con-
centration ratio was 1.36, indicating that NCTD-SLN
improved the targeting of free drug in liver tissue. Nano-
structured lipid carrier (NLC) is a class of nanoparticle
prepared by mixing solid and liquid lipids on the basis of
SLN, which improves the disadvantages of easy leakage
and low drug-loading capacity of SLN, and can prolong
the circulation time and improve the therapeutic effect
by increasing the stability of the drug and producing a
sustained-release effect [75]. Yan et al. [76] prepared a
NCTD-loaded NLC (NCTD-NLC). Compared with free
NCTD, NCTD-NLC promoted apoptosis of HepG2 cells,
and enhanced the antitumor effect via tail vein injec-
tion in HepG2 tumor model, with a tumor inhibition
rate of 27.48%. Cubic liquid crystalline nanoparticle is a
thermodynamically stable dispersion system spontane-
ously formed by amphiphilic lipid materials and suitable
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Fig. 3 The antitumor efficacy of NCTD, DMCA-Zn1 NPs and DMCA-Zn2 NPs for liver cancer in vivo. a The administration process of NCTD,
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surfactants in water. The special structure and properties
of cubic liquid crystal enable it to simultaneously encap-
sulate water-soluble, lipid-soluble and amphiphilic drug
molecules, thereby effectively improving drug solubil-
ity, release rate and bioavailability [77]. Li et al. [78] pre-
pared a NCTD cubic liquid crystalline nanoparticle by
emulsification method. The NCTD solution was basically
released completely within 4h, while the NCTD cubic
liquid crystalline nanoparticle released about 80% of the
drug within 12h, which had an obvious sustained-release
effect.

As an inorganic nanomaterial, mesoporous silica nano-
particle (MSN) has unique and excellent properties such
as large specific surface area, adjustable pore size, ordered
pore structure, good stability, and high drug loading
capacity, which can achieve controlled drug release, and
then improve the therapeutic effect and reduce adverse
reactions [79]. Xiong et al. [80] prepared a NCTD-loaded
MSN by modified Stober method and saturated solution
adsorption method. Free NCTD was released rapidly,
and the release amount within 4h was 90.6%, while the
release rate of drug loaded MSN was 83.34% in 12h with
the sustained-release properties.

Hydroxyapatite can deliver antitumor drugs, and its
composite material hydroxyapatite/CS can repair bone
defects [81, 82]. Strontium (Sr), a trace element in the
human body, has been found to have the ability to pro-
mote bone formation and inhibit osteoclasts, which have
positive effects on improving the osteogenic activity of
the composite [83]. Huang et al. [84] developed a novel
Sr/CS/hydroxyapatite/NCTD composite biomaterial by
coprecipitation and freeze-drying method. The compos-
ite biomaterial had good biocompatibility, which do well
in antitumor properties by upregulating the expression
of caspase-3/-9, and downregulating the expression of
matrix metallopeptidase (MMP)-9. In addition, the com-
posite material effectively promoted the mineralization
of osteoblasts by downregulating the expression of alka-
line phosphatase (ALP), runt-associated transcription
factor 2, and osteocalcin, and upregulating the expression
of osteopontin. In summary, the composite showed good
potential for treating osteosarcoma and repairing tumor-
related bone defects.

Zinc is an essential trace element for life. Zinc coor-
dination polymers are also a new type of drug delivery
carrier with great application potential. It can lead to the
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protonation of the coordinate bonds of Zn-based metal-
organic coordination polymers in the slightly acidic
tumor environment, thereby realizing the targeted drug
release [85]. In addition, based on the concentration
level of adenosine triphosphate (ATP) in cancer cells is
high expression, and the coordination bonding of ATP
and Zn*" is much stronger than that of the ligand, Zn-
based coordination polymers can further enhance the
therapeutic effect on tumor [86]. Wang et al. [87] synthe-
sized two Zn(;) coordination polymers [Zn,,(DMCA),,]
O,, (DMCA =demethylcantharic acid, DMCA-Znl)
and [Zn(DMCA)](H,0), (DMCA-Zn2) from NCTD and
Zn(NO,),-6H,0O under solvothermal conditions. Then
they transformed DMCA-Znl and DMCA-Zn2 crystals
into nanoparticles (DMCA-Znl NPs and DMCA-Zn2
NPs) by a simple process of mechanical grinding with
a biocompatible polymeric surfactant F127, ultrasonic
treatment and filtration, with average sizes of around
190nm and 162nm. The release rate of DMCA from
nanoparticles under slightly acidic conditions (pH=5.5)
is much higher than that under neutral environment,
indicating that the two nanoparticles have pH-responsive
drug release properties. The two nanoparticles could
effectively inhibit the proliferation of HepG2 and Hep3B
cells, while they exhibited relatively low toxicity to L927
normal cells. The in vivo studies indicated that they can
more effectively suppress Hep3B tumor growth with few
side effects compared with free NCTD (Fig. 3). In addi-
tion, Zhang et al. [88] prepare a NCTD nanosuspension
using hydroxypropyl cellulose-SL and sodium dodecyl
sulfate as stabilizers by wet media milling method. The
in vitro dissolution of NCTD nanosuspension was 3.27
times that of the micronized NCTD drug at 90 min, indi-
cating that the nanosuspension effectively improved the
bioavailability of the free NCTD.

Microemulsion and self-microemulsion-based NCTD
delivery

Microemulsion is defined as a low viscosity, isotropic and
thermodynamically stable system composed of oil phase,
water phase, surfactant and cosurfactant in appropriate
proportions [89]. It can improve the solubility and bio-
availability of the free NCTD, and enhance the target-
ing effect of the drug in vivo. Zhang et al. [90] prepared
a NCTD-loaded W/O microemulsion, with an average
size of (44.5+£8.6) nm. Compared with NCTD injec-
tion, the elimination t;,, mean residence time (MRT)
and area under the curve (AUC) of NCTD microemul-
sion were increased by 2.62, 1.3 and 3.2 times, respec-
tively, indicated that NCTD-loaded microemulsion had
relatively longer circulating time in vivo. Moreover, the
overall drug targeting efficiency of liver was enhanced
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from 3.66% to 6.10%. The microemulsion vehicles also
decreased the kidney distribution of NCTD.

Self-microemulsion, an isotropic mixture of sur-
factants, co-surfactants, oil and drugs, can spontaneously
form O/W nanoemulsion ranging 1-100 nm upon contact
with aqueous medium under the digestive movement of
the stomach or upper small intestine. It has the advan-
tages of easy preparation, good stability, and high bioa-
vailability [91]. Zeng et al. [92] prepared a NCTD-loaded
self-nanoemulsifying drug delivery system (NCTD-
SNEDDS) containing 50% Ethyl Oleate, 35% Cremophor
EL, 15% ethylene glycol and 10mg NCTD. The opti-
mized SNEDDS had a size of 36.31 nm and a polydisper-
sity index (PDI) of 0.05, which could withstand extensive
dilution and exhibit a sustained drug release property,
thereby improving the bioavailability of NCTD. Gui et al.
[93] also prepared a NCTD solid self-microemulsion by
spherulite technology one-step curing method. The parti-
cle size of NCTD solid self-microemulsion was 22.76 nm,
the zeta potential was —2.77 mV, the average EE and yield
was 77.39% and 84.5%, respectively, and the self-emulsifi-
cation could be completed within 50s.

Polymer-conjugated NCTD delivery

Based on the EPR effect of macromolecular drugs, con-
jugation of drugs to suitable macromolecules is consid-
ered to be a useful approach to prolong drug retention at
target sites or to deliver drugs to target sites. Based on
the repeating structure of (1,4)-linked-2-amino-2-deoxy-
B-D-glucan of CS, CS or CS derivatives-anticancer drug
conjugates are used as drug delivery carriers received
widespread attention [94]. Several studies have shown
that the anticancer drug NCTD conjugated with CS or
CS derivatives can significantly improve the water solu-
bility and in vivo pharmacokinetics of NCTD, and pas-
sively accumulate NCTD into tumor tissues, thereby
greatly enhancing the antitumor effect and reducing the
toxicity of NCTD. Xu et al. [94] synthesized NCTD-
conjugated CS conjugates (NCTD-CSs) with different
degrees of substitution (DS, 60.2% and 97.9%). Compared
with CS, the conjugates had better water solubility and
exhibited sustained drug release behavior, releasing less
than 6% NCTD from the conjugates within 16days via
the hydrolysis of ester bonds in PBS (pH 5.0 and 7.4). The
NCTD-CSs could arrest MGC80-3 cell cycle at G2/M
phase and induce cell apoptosis similarly to NCTD.
Moreover, Li et al. [95] also synthesized a NCTD-CS via
alcoholysis reaction. Due to the EPR effect, NCTD-CS
displayed higher tumor inhibition rate (45.82+12.12) %
than that of free NCTD (35.87 £6.25) % in EMT6 breast
cancer model.
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The application of CS was often hampered largely
by its solubility only in acidic environments with pH
values lower than 6 [96]. Hydroxypropyltrimethyl
ammonium chloride chitosan (HACC) is a partially
quaternized CS derivative that could be soluble over
the entire pH range, and its quaternized cationic nature
provides strong electrostatic interaction with nega-
tively charged tumor cells [97]. Xu et al. [97] synthe-
sized NCTD-conjugated HACCs (NCTD-HACCs) (DS,
12.2% and 24.8%) with good water solubility. NCTD
was released from the NCTD-HACCs via hydrolysis,
which was faster at pH 5.0 than at pH 7.4, showing a
biphasic drug release pattern with an initial fast release
followed by a slow release. Compared with free NCTD,
the NCTD-HACCs showed higher tumor growth inhi-
bition in S180 tumor-bearing mice due to the EPR
effect.

Carboxymethyl chitosan (CMCS) is a kind of carboxy-
methylated CS derivative. Due to its excellent water solu-
bility, and the presence of functional groups (amino and
carboxyl groups), CMCS has become a promising carrier
for conjugating the hydrophobic drugs such as NCTD to
improve the therapeutic efficiency [98]. Jiang et al. [99]
synthesized a NCTD-conjugated CMCS (CMCS-NCTD),
which had a good anti-hepatocellular carcinoma effect
and a better ameliorating effect on liver damage caused
by tumor cells than NCTD. CMCS-NCTD significantly
increased the levels of tumor necrosis factor-a (TNF-a),
interferon-y (IFN-y), tissue inhibitor of matrix metal-
loproteinase (TIMP)-1 and E-cadherin, and reduced the
levels of alanine aminotransferase (ALT), aspartate ami-
notransferase (AST), vascular endothelial growth factor
(VEGF) and MMP-9, indicating that CMCS-NCTD may
prevent tumor growth by regulating key cytokines asso-
ciated with tumor immunity, angiogenesis, extracellular
matrix degradation and epithelial mesenchymal transi-
tion. Furthermore, CMCS-NCTD could protect liver
from oxidative damage causing by tumor via enhancing
the levels of superoxide dismutase (SOD) and glutathione
peroxidase (GSH-Px). Chi et al. [98] also prepared a
NCTD-conjugated CMCS conjugate (CNC), which
exerted enhanced inhibitory effects and reduced systemic
toxicity in H22 hepatocellular carcinoma model com-
pared with free NCTD. Additionally, CNC could enhance
immune responses through regulating the expressions
of TNF-a and IFN-y. Moreover, CNC displayed strong
hepatic tropism with Re value of 1.438, and decreased
distribution in the heart and kidneys compared to NCTD,
thereby displaying reduced toxicity to these organs.
CMCS-NCTD could also exert anti-metastasis effects
by inhibiting tumor angiogenesis and decreasing deg-
radation of extracellular matrix by regulating the levels
of VEGEF, MMP-9 and TIMP-1 in Lewis lung carcinoma
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metastasis model [100]. Besides, the conjugate showed
a high antitumor effect in SGC-7901 tumor model with
a tumor inhibition rate of 59.57%, and which might be
mediated by increasing the levles of TNF-a, Bax and Cas-
pase-3 and reducing the levels of CD34, VEGF, MMP-2,
MMP-9 and Bcl-2 [101]. Overall, CNC conjugate based
on CMCS as polymer carriers might be used as a poten-
tial clinical alternative for NCTD in cancer therapy.
Besides, poly(vinyl alcohol) (PVA), a high molecular
weight polymer with multiple hydroxyl groups and good
biocompatibility, can easily be conjugated with NCTD
to increase the accumulated drug amount in the tumor
tissue by the EPR effect, thus enhance the drug delivery
efficiency. Li et al. [95] synthesized a NCTD-PVA via
alcoholysis reaction. NCTD was released from the con-
jugates via hydrolysis, faster in PBS (pH 5.0) than that in
PBS (pH 7.4). NCTD-PVA could inhibit human esopha-
geal carcinoma ECA-109 cell and murine breast cancer
EMT6 cell growth in a dose-dependent manner. NCTD-
PVA could also induce ECA-109 cell apoptosis and
arrested cell cycle at the S phase, activate caspase-3/-8.
In the EMT6 tumor-bearing mouse model, NCTD-PVA
displayed higher tumor inhibition rate [(56.17 £11.34) %]
than that of free NCTD [(35.87 £ 6.25) %]. The structure
of four polymer-conjugated NCTD are showed in Fig. 4.

Microsphere-based NCTD delivery

Lipid microspheres refer to a particle dispersion system
with an average particle size of less than 200 nm, which is
prepared by dissolving drugs in fatty oil, and then emul-
sified and dispersed in water phase by phospholipids.
Lipid microspheres have the advantages of increasing the
solubility of poorly soluble drugs, reducing drug irrita-
tion and toxic side effects, sustained and slow release of
drugs, prolonging the half-life of drugs in the body, and
improving drug bioavailability and targeting ability. They
are physically stable, biodegradable, biocompatible, and
easy to prepare [102]. Consequently, lipid microspheres
are ideal carriers for NCTD. Wang et al. [45] prepared
a NCTD-loaded lipid microsphere by high-pressure
homogenization process and localizing the drug at the
interfacial surface of the oil and aqueous phases. NCTD-
loaded lipid microsphere with over 80% NCTD loaded in
the interfacial surface were stable for 2 months, and were
suitable for i.v. injection with less pain and irritation. Lin
et al. [103] prepared a NCTD-loaded lipid microsphere
by homogenization method. Compared with NCTD
injection, the microsphere significantly reduced the car-
diac and renal toxicity in A549, BEL7402 and BCAP-37
tumor model. Moreover, The LD, value of NCTD injec-
tion for female mice and male mice administered i.v.
was 10.10 and 8.93 mg/kg, respectively; while the LD;,
of NCTD-loaded lipid microsphere was 15.67 mg/kg for
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female mice and 16.64mg/kg for male mice, which was
twice higher than that of NCTD injection. Moreover,
Ma et al. [104] prepared a NCTD-phospholipid complex
(NPC)-loaded lipid microsphere (NPCLM). The NPC
was firstly produced to increase the lipophilic properties
of NCTD and a concentrated homogenization method
was then used to prepared the NPCLM. The lipophilic-
ity of NPC was significantly increased almost 224-fold
compared with NCTD. After optimizing the emulsifi-
cation process, the EE was significantly increased from
21.6 to 84.6%, and a highly sterilization stability was
achieved with only a small change in particle size from
(168.2+39.4) nm to (173.44+43.5) nm. NPCLM had slow
drug release properties, only releasing 4.68% and 14.21%
of NCTD within 15min and 4h, respectively. Further-
more, NPCLM showed an increased accumulation of

NCTD in the liver, spleen and lung, which were 1.67, 1.49
and 1.06 times higher than in the injection group, while
the content of NCTD was reduced 0.96-fold in the kid-
ney. Therefore, this NPCLM increased liver targeting and
reduced renal toxicity of NCTD.

Human serum albumin (HSA) is a natural drug carrier
of the human body, which can increase the solubility of
poorly soluble drugs in plasma and reduce the toxicity
of drugs. As a material for pharmaceutical preparations,
it has the characteristics of high compatibility and low
reactogenicity [105]. The preparation of NCTD-loaded
microspheres with HSA as a carrier can not only increase
the solubility of the drug, but also protect the drug from
the external environment and improve the stability of the
drug. The NCTD encapsulated in the microspheres have
a sustained-release effect, which can reduce the toxicity
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and side effects while prolonging the therapeutic efficacy.
Yan et al. [106] prepared a NCTD encapsulated albumin
microspheres by the emulsion crosslinking method. The
microspheres had a good sustained-release efficacy, and
significantly prolonged the drug circulation time, and had
higher AUC inside liver than the NCTD injection with
a target index of 3.49. Moreover, no histological change
occurred in the rat liver. Wang et al. [107] also prepared
a NCTD-loaded CS microsphere by emulsification cross-
linking process with liquid paraffin as oil phase, Span-80
as emulsifier, and formaldehyde as cross-linking agent.
The CS microsphere showed a sustained drug release
property compared with free NCTD.

Liposome and emulsion hybrid delivery system-based
NCTD delivery

In order to further improve EE, increase sterilization
stability, and enhance antitumor effect of NCTD-loaded
drug delivery systems, some researchers have also pro-
posed that the delivery of NCTD in a liposome-emul-
sion-hybrid (LEH) nanoparticle carrier (NLEH), which
encapsulates the emulsions into liposomes. Phospholipid
complexes methods were used for increasing the lipo-
philicity of NCTD, then NCTD phospholipid complexes
were not only loaded in the oil phase and oil-water inter-
face surface of emulsions, but also encapsulated in phos-
pholipid bilayers. NLEH has good size distribution, with
a particle size of (163.84+1.082) nm (PDI<0.084), and
exhibited an improved EE (89.3%) and an excellent steri-
lization stability. Compared with NCTD liposomes and
NCTD emulsions, NLEH had a better antitumor effect by
promoting absorption (1.93-fold), extending circulation
time (2.08-fold), improving tumor targeting ability (1.19
times) and tumor penetration, and enhancing antitumor
immune effect. Moreover, NLEH decreased the targeting
efficiency in the heart and kidneys, and achieved a bet-
ter biosafety [108]. Therefore, the liposome and emulsion
hybrid delivery systems are potential carriers for NCTD
delivery in the treatment of hepatocellular carcinoma
(HCCQ).

Active targeted drug delivery systems

Actively targeted drug delivery systems mainly use some
specific or highly expressed biomarkers at the tumor site
to deliver drugs to specific cells in a targeted manner. The
surface of the drug delivery system is modified with spe-
cific ligands, such as proteins, antibodies, polypeptides
or small chemical molecules, which can specifically bind
to highly expressed receptors or antigens on the surface
of the cell membrane, triggering endocytosis, thereby
achieving drug delivery [109]. Based on some antigens
or receptors that are highly expressed on the surface of
tumor cells, such as CD19, carbonic anhydrase IX (CA
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IX), glycyrrhetinic acid (GA) receptors, asialoglycopro-
tein receptor (ASGPR), integrin o5 (ITGA5) receptor and
folate acid (FA) receptor, some researchers have designed
and constructed a variety of NCTD-loaded actively tar-
geted nano-drug delivery systems to increase the con-
centration of NCTD in target cells, thereby enhancing
its efficacy and reducing its toxicity and side effects
(Table 3).

Monoclonal antibody-based active targeted drug delivery
Anti-CD19 monoclonal antibody-based NCTD delivery

CD19 is highly expressed on B-lineage leukemia stem
cells (B-LSCs) and their progeny, but not on the nor-
mal hematopoietic stem cells, granulocytes and plate-
lets [110]. Based on this, Zhang et al. [111] prepared
a NCTD-encapsulated liposome modified with a
murine anti-human CD19 monoclonal antibody 2E8
(2E8-NCTD-liposomes) by using post-incorporation
technology, with average size of 118.32nm and average
EE of 46.51%, which can specifically target CD19" leu-
kemia cells for the treatment of B lineage hematologic
malignancies. Moreover, the immunoliposomes were
able to specifically target the B-LSCs and their prog-
eny by inducing B-LSCs apoptosis by downregulating
the HLF and upregulating the NFIL3 (nuclear factor,
IL3 regulated) expressions. They also prepared NCTD-
encapsulated liposomes modified with a novel human-
ized anti-human CD19 monoclonal antibody, Hm2E8b
(Hm2E8b-NCTD-liposomes) that specifically target the
B-LSC-related E2A-HLF/SLUG axis against B-LSCs. This
liposome reduced HLF protein levels and induced HAL-
01 cell apoptosis by regulating the expression of SLUG,
nuclear factor interleukin-3 (NFIL3) and c-myc, thereby
inducing p53 and mitochondrial caspase cascades [112].
Anti-CA IX monoclonal antibody-based NCTD delivery

CA IX is a transmembrane protein that belongs to the
carbonic anhydrase family. CAIX is lowly expressed
in normal human tissues, but highly expressed in lung
cancer and other malignant tumor tissues, and plays an
important role in the growth, infiltration and metasta-
sis of tumor cells [113, 114]. Wang et al. [115] prepared
an anti-CA IX NCTD nano-micelle with drug load-
ing ability, EE, size and zeta potential of (1.26£0.03) %,
(80.93+1.01) %, (146.5+£48.9) nm and —(14.79£0.67)
mV, respectively. Compared with NCTD nano-micelle,
anti-CA IX NCTD nano-micelle specifically binded to the
highly expressed CA IX antigen at the tumor site, which
can not only inhibit the catalytic activity of CA IX to
prevent tumor deterioration, but also guide drug-loaded
micelles to the tumor tissue, thus exhibiting enhanced
antitumor effect on A549 cells and A549 tumor-bearing
mice, with a tumor inhibition rate of 75.67% in vivo.
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Receptor-based active targeted drug delivery

GA receptors-based NCTD delivery

The GA receptors are expression-rich on the liver cell
membrane. By targeting these receptors, drugs can be
specifically delivered into liver cancer sites, thereby
reducing the accumulation of drugs in normal tissues
[116]. Zhu et al. [117] prepared a NCTDloaded liposome
modified with stearyl glycyrrhetinate (SG) (SG-NCTD-
LIP), which showed an enhanced antitumor effect (1.42-
fold) by the interaction between SG and GA receptors
on the cell membrane compared with NCTD-LIP. Zhang
et al. [118] designed a GA-conjugated NCTD-loaded
polymeric nanoparticles (AT NPs), which had higher tar-
geting ability on HepG2 cells and increased cell apopto-
sis and enhanced the G2 and S phase arrest compared to
non-conjugated nanoparticles (NAT NPs). In vivo anti-
tumor evaluation indicated that the AT NPs significantly
inhibited tumor growth, prolonged survival of tumor-
bearing mice, and decreased microvessel density (MVD).
Chang et al. [119] constructed a NCTD-loaded liposome
modified with GA and (trans-activator of transcription,
TAT). This dual-targeted liposome has good sustained-
release properties, and its inhibitory effect on HepG2
cells was 2.14 times higher than that of NCTD.

ASGPR-based NCTD delivery

ASGPR, also known as the “Ashwell-Morell recep-
tor”, was the first cellular mammalian lectin discovered
by Ashwell and Morell when they were studying the
metabolism of mammalian plasma glycoproteins [120].
ASGPR is a receptor expressed mainly on the surface of
liver sinusoidal and basolateral cells. It can exclusively
recognize, bind and clear desialylated glycoproteins with
exposed non-reducing D-galactose (Gal) or N-acetylga-
lactosamine (GalNAc) as end groups [121]. NCTD is a
commonly used drug for the treatment of liver cancer in
clinical. Therefore, ASGPR-mediated targeted drug deliv-
ery systems combined with NCTD for liver cancer ther-
apy has drawn extensive attention.

Hu et al. [122] prepared an active liver-targeting CS
nanoparticles (Lac-NCTD-NPs) by ionic cross-linkage
process using synthesized lactosyl-NCTD (Lac-NCTD)
as antitumor drug. Compared with free NCTD and
Lac-NCTD, Lac-NCTD-NPs can significantly prolong
the action time of drugs and enhanced the antitumor
effect of ASGPR-expressed HepG2 and SMMC-7721
cells. Moreover, the tumor inhibition rate of Lac-
NCTD-NPs was 63.9% on H22 tumor model, which
was significantly higher than that of Lac-NCTD (41.7%)
at the dose of 6.6 mg/kg. Lac-NCTD-NPs can also sig-
nificantly increase the thymus and spleen indices of
nude mice, indicating that they have the function of
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protecting organs and improving immunity [123]. Guan
et al. [96] also prepared lactosyl-NCTD N-Trimethyl
chitosan (TMC) nanoparticles (Lac-NCTD-TMC-NPs).
Compared with Lac-NCTD and Lac-NCTD CS NPs
(Lac-NCTD-CS-NPs), Lac-NCTD-TMC-NPs had the
strongest antitumor effect both on the HepG2 cell and
the murine hepatocarcinoma 22 tumor models, indicat-
ing that the recognition of ASGPR located on the sur-
face of hepatoma cells can enhance the liver targeting
ability.

Wang et al. [124] prepared NCTD-associated galacto-
sylated CS nanoparticles (NCTD-GC-NPs) using galac-
tosylated CS as carrier. The nanoparticles have significant
slow drug release properties and pH-sensitive release
properties that followed Higuchi equation. Compared
with NCTD-loaded CS nanoparticles (NCTD-CS-NPs),
NCTD-GC-NPs showed stronger cytotoxicity and com-
patibility with SMMC-7721 and HepG2 cells. Hu et al.
[125] also prepared a NCTD-GC-NPs. The IC;, values
of NCTD, NCTD-CS-NPs and NCTD-GC-NPs were
(18.84+1.87), (16.38+1.48), (7.12+1.94) pg/mL for
Bel-7402 cells. The inhibition ratios of 2.0mg/kg NCTD,
NCTD-CS-NPs, NCTD-GC-NPs on mice bearing H22
liver tumor were 28.97%, 37.86% and 43.56%. Therefore,
NCTD-GC-NPs had stronger antitumor activity than
NCTD and NCTD-CS-NPs by targeting ASGPR. Wu
et al. [126] prepared a glycyrrhetinic acid derivatives
(stearin glycyrrhetinic acid ester-3-O-galactosidase, Gal-
GAOSt) modified NCTD liposome (Gal-GAOStNC-LP)
by thin film dispersion method. The liver targeting index
of Gal-GAOStNC-LP reached 5.213, indicating the lipo-
some has obvious liver targeting ability by the interaction
of Gal and ASGPR. Zhou et al. [127] also synthesized
galactose-cholesterol conjugates using galactose and cho-
lesterol chloroformate as substrates. Then, they prepared
galactose-cholesterol modified NCTD liposomes (Gal-
NCTD-Lips) by thin-film ultrasonic dispersion method.
In vitro release results showed that the liposomes had
good sustained-release characteristics compared with
NCTD solution.

Zhang et al. [128] prepared NCTD-loaded polymer
micelles by conjugating arabinogalactan (AG) on the
surface of N-(4-methylimidazole)-hydroxyethyl-chitosan
(MHC) (NCTD-M). The micelles have a significant liver-
targeting effect through the specific recognition of AG
and ASGPR, which resulted in higher cytotoxicity and
cell apoptosis rate, and stronger ability to inhibit cell
invasion than that of free NCTD, and in vivo study results
also supported this conclusion. Jiang et al. [129] designed
a multifunctional self-assembled micelles of Galactosa-
mine-hyaluronic acid-Vitamin E succinate (Gal-HA-VES)
for targeting delivery of NCTD to HCC. NCTD/Gal-HA-
VES micelles could quickly release NCTD in acidic (pH
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5.5) and rich-hyaluronidase tumors tissue, thereby show-
ing higher cytotoxicity toward CD44-overexpressing
MCE-7 cells, MCF-7/Adr cells and ASGPR overexpress-
ing HepG2 cells by CD44 receptor and ASGPR medi-
ated endocytosis. Moreover, Gal-HA-VES could act as
a P-glycoprotein (P-gp) inhibitor to block drug efflux in
MCE-7/Adr cells. In vivo study also demonstrated that
this micelle improved tumor targeting ability and antitu-
mor effect with low toxicity.

ITGAS5 receptor-based NCTD delivery

Cancer stem cells (CSCs) play key roles in cancer metas-
tasis [130]. The canonical Wnt/pB-catenin pathway plays
critical roles in CSCs generation and maintenance [131,
132]. Therefore, strategies targeting CSCs by specifi-
cally inhibiting the Wnt/B-catenin pathway may greatly
reduce cancer metastasis. Several studies have suggested
that NCTD may inhibit the B-catenin pathway through
its potent inhibition of protein phosphatases, thereby
impairing the stemness of pancreatic and other cancer
cells [133, 134]. Moreover, based on the high expression
of ITGAS in triple-negative breast cancer (TNBC) and its
lung metastases, ITGA5 ligands such as RGD motif (Arg-
Gly-Asp) modified nano delivery system can actively
deliver drugs to TNBC. Based on this, Li et al. [135]
reported an ITGAS5-targeting diacidic norcantharidin-
loaded lipid-polymer hybrid (LPH) nanoparticle (RGD-
LPH-NCTD) for targeted therapy of TNBC (Fig. 5). It
is worth noting that RGD-modified LPH showed more
accumulation than LPH in orthotopic TNBC tumor and
their lung metastases. Compared with NCTD and LPH-
NCTD, RGD-LPH-NCTD more significantly reduced
orthotopic TNBC tumor growth and metastasis by atten-
uating p-catenin. Therefore, RGD-LPH-NCTD may offer
a promising approach for the treatment of metastatic
TNBC by specially down-regulating 3-catenin.

FA receptor-based NCTD delivery

The FA receptor is a single-chain membrane glycoprotein
receptor that binds folate with high affinity and trans-
ports it into cells. Studies have found that FA receptors
are underexpressed in normal tissues, but overexpressed
in various tumor cells (such as liver cancer, colon can-
cer, lung cancer, prostate cancer, ovarian cancer, and
breast cancer), so they can be used as targets for tumor
therapy [136]. Liu et al. [137] prepared a FA-conjugated
NCTD-loaded stealth niosomes with average size of
100.87nm and average EE of 52.3%. The release t,, of
FA niosomes at pH 7.4 was 1.98 times higher than that
at pH 5.0, indicating that FA vesicles have pH-sensitive
properties and are more likely to release drugs in the
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tumor microenvironment. They also increased the tumor
cell uptake towards the drug and enhanced tumor cell
cytotoxicity (IC;,=46 pg/mL) than non-targeted stealth
niosomes (IC;,=148 pg/mL). Liu et al. [138] also devel-
oped a FA-modified DM-NCTD-loaded PEGylated (DM-
NCTD/FA-PEG) liposome for targeting HCC. Compared
with DM-NCTD/PEG liposomes [relative intake rate (Re)
4.86, tissue/tumor-targeting efficacy (Te) 12.81%, relative
targeting efficiency (Rp) 2.36, and peak concentration
ratio (Ce) 4.78], DM-NCTD/FA-PEG liposomes showed
enhanced tumor-targeting efficiency (Re 9.25, Te 24.44%,
Ry, 4.50, and Ce 9.24). Moreover, the antitumor activity
of DM-NCTD/FA-PEG liposomes on H22 tumor-bearing
mice was enhanced, and tumor-cell apoptosis was more
pronounced and there was no obvious toxicity to the tis-
sues of model mice or to the liver tissue of normal mice.

Physicochemical targeted drug delivery systems
Nanotechnology-based targeted drug delivery has shown
promising results in preclinical animal models. However,
drug delivery systems that rely on the EPR effect and
ligand recognition still have problems in clinical appli-
cation, which may be limited by various tumor micro-
environmental factors such as tumor heterogeneity,
hypoxia, endosomal escape and the facile inactivation of
many targeting ligands and the difficulty of nanocarri-
ers in controlling drug release [139, 140]. Therefore, the
drug delivery system is designed according to the tumor
microenvironment to simulate biological responsiveness
and realize the on-demand response release of drugs,
which is beneficial to the precise treatment of tumors.
Such delivery systems can release drugs in response to
specific physical or chemical conditions, so they are also
called physicochemical targeted drug delivery systems
[141, 142]. Existing physicochemical targeted delivery
systems for NCTD mainly rely on chemical endogenous
stimuli (pH) of tumor microenvironment and exogenous
physical stimuli (temperature, charge, light and interven-
tional embolization) to achieve targeted drug delivery
(Table 4).

Thermosensitive hydrogel-based NCTD delivery

Thermosensitive hydrogels, which are free-flowing liq-
uids at room temperature while convert to semi-solid
gels at body temperature, have been widely used for
controlled drug delivery due to their sustained-release
properties [143]. Poloxamer (Pluronic), a poly(ethylene
oxide)-poly(propylene oxide)-poly(ethylene oxide)
(PEO-PPO-PEO) triblock copolymer, exhibits amphi-
philic properties and undergoes a thermoreversible sol-
gel transition that is used widely in the thermo-gelling
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Fig. 6 Thermal-sensitive analysis of the PF127 hydrogel drugs. A Morphology of the blank hydrogel (a) and drug-loaded hydrogel (c) at room
temperature; the blank hydrogel (b) and drug-loaded hydrogel (d) at 37 °C. Rheological analysis as a function of temperature: B the blank hydrogel
and C drug-loaded hydrogel. PF127 Pluronic F127. Reproduced with permission from reference [149]. Copyright 2021, DOVE Medical Press
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system [144]. Recently, many studies have showed that
delivery of NCTD through poloxamer-based gel systems
can increase drug concentration at administration sites,
reduce adverse reactions and irritation, thereby improv-
ing efficacy and safety.

Zhou and Xie et al. [145-147] prepared a NCTD-
loaded thermosensitive in situ gel using poloxamer 407,
poloxamer 188 and hydroxypropyl methyl cellulose
(HPMC) as drug carriers. This gel solution could rap-
idly undergo a phase transition to form a semi-solid gel
at 34°C, resulting in stable and slow drug release. Com-
pared with NCTD injection, treatment with NCTD
thermosensitive gel showed enhanced antitumor activ-
ity and better improved survival of H22 tumor-bear-
ing mice by inhibiting VEGF and CD44 expression. Li
et al. [148] established a NCTD-loaded multifunctional
metal-organic framework (IRMOF-3) coated with a
poloxamer thermosensitive gel (NCTD-IRMOE-3-
Gel), which prolonged the action time of the drug from
the IRMOF carrier, therefore increased the antitumor
effect of NCTD by blocking the Hepal-6 cell cycle in
the S and G2/M phases and inducing cell apoptosis.

Gao et al. [149] developed a Pluronic F127 (PF127)-
based thermosensitive hydrogel (NCTD-NPs/Dox Gel)
by encapsulating NCTD-loaded poly (e-caprolactone)-
PEG-poly (e-caprolactone) (PCL-PEG-PCL, PCEC)

nanoparticles (NCTD-NPs) with Dox. This hydrogel
showed good thermal sensitivity, sustained drug release
effect, and enhanced cytotoxicity in HepG2 cells.
Thermal-sensitive analysis of the PF127 hydrogel was
showed in Fig. 6. Moreover, intratumoral administra-
tion of the NCTD-NPs/Dox Gel significantly inhibited
tumor proliferation and angiogenesis by reducing the
expression of Ki-67 and CD31, relieved side effects, and
extended survival of H22 tumor-bearing mice.

pH-sensitive-based NCTD delivery
The pH of normal human tissue is around 7.4, while
cancer cells have a high glycolysis rate under aerobic or
anaerobic conditions. Glycolysis converts glucose into
lactic acid, resulting in an acidic tumor microenviron-
ment (pH 6.0-7.2), and a lower pH of endosomes and lys-
osomes in tumor cells, ranging from 4.0 to 6.0. Using the
above pH changes to design nano drug delivery systems
with pH-responsive drug release function is helpful to
achieve targeted drug release in tumor tissue [150].
CMCS has both cationic groups (-NH;") and anionic
groups (-COO7), and is an amphiphilic polyelectrolyte.
It is negatively charged in the physiological pH and posi-
tively charged in the acidic environment of the tumor.
CMCS undergoes conformational changes at different
pH values, leading to the destabilization of the liposome
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bilayer and the release of the drug [151]. A research
group synthesized a Lac-NCTD phospholipid complex
(LPC) loaded liposome (pH-LPC-lips), in which soybean
phosphatidylcholine was employed to increase the lipo-
solubility of Lac-NCTD and CMCS was incorporated
onto the liposomal surface by electrostatic adsorption.
The results of the in vitro and in vivo studies proved the
improvement of therapeutic efficacy and tumor targeting
of pH-LPC-lips on HCC [152, 153].

Polyorthoesters are acid-sensitive biomaterials that can
control the release of drugs in response to the slightly
acidic environment inside and outside the tumor cells
[154]. In addition, cisplatin and NCTD can achieve syn-
ergistic antitumor effect when combined with a molar
ratio of 1:2 [155]. Based on this, Wang et al. [156] synthe-
sized the small cisplatin-NCTD prodrug molecule in the
optimal ratio, then cross-linked the main chain polyor-
thoester to obtain the amphiphilic cross-linked polymer
prodrug, and further self-assembly formed a nano-prod-
rug coordinated delivery system. The prepared nano-
prodrug could release about 15% of the drug at pH="7.4
within 24h, release about 30% of the drug at pH=6.8,
and release about 80% of the drug at pH=5.0/GSH, indi-
cating that it has excellent pH responsive drug release
properties. On H22 and HepG2 liver cancer models, the
nano-prodrug can not only exist stably in the blood cir-
culation, but also efficiently respond to the intracellular
and extracellular physiological microenvironment of the
tumor to enhance the ability of tumor-targeted enrich-
ment, cellular uptake, and synergistic killing of cancer
cells, while reducing toxic side effects on major organs.

Charge-based NCTD delivery
(3-carboxypropyl)triphenylphosphonium bromide (TPP)
cations are positively charged, and cell membranes and
mitochondrial membranes are negatively charged. In
view of the attraction of positive and negative charges,
TPP can be used to mediate tumor drugs to overcome
the barriers of cell membranes and mitochondrial mem-
branes, and ultimately target into the mitochondria [157,
158]. Han et al. [159] prepared a TPP-modified NCTD-
loaded PEG-PCL nano-micelle by thin-film hydration
method, with a particle size of (16.8+0.2) nm and a
zeta potential of (14.3£0.2) mV. NCTD-loaded TPP-
PEG-PCL nano-micelle can promote the cellular uptake
of NCTD, escape lysosomal capture, and finally target
aggregation at the mitochondrial site. This nano-micelle
also had a good effect on promoting apoptosis of liver
tumor cells by reducing mitochondrial membrane poten-
tial, increasing intracellular reactive oxygen species
(ROS) levels, increasing pro-apoptotic protein Bcl-2, and
reducing resistance, which is a potentially effective drug
delivery system for targeting tumor cell mitochondria.
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Moreover, He et al. [160] designed an acidic tumor
microenvironment-responsive  charge-reversal  poly-
mer nanoparticle (SPpycN) that can specifically release
immunomodulator (NCTD) and enhance tumor penetra-
tion for combinational photodynamic cancer immuno-
therapy. SPpN is constructed by conjugating NCTD to
the side chains of a semiconducting polymer via an acid-
liable B-carboxylic amide bond. SPpyN had a size of
about 12 nm at physiological pH (zeta potential: -17mV),
while in the acidic condition, the acid-labile amides of
SPpumceN hydrolyzed into free amines to form SP-NH,
(zeta potential: +12mV), which resulted in deep tumor
penetration of the nanoparticles and localized release of
NCTD. Upon near-infrared laser irradiation, the SP core
of SPpcN generated 'O, to ablate the primary tumors,
simultaneously inducing immunogenic cell death (ICD)
and promoting dendritic cells (DCs) maturation. In addi-
tion, NCTD specifically inhibited protein phosphatase
2 (PP2A), which significantly decreased regulatory T
lymphocytes (Tregs), and in turn remarkably promoted
cytotoxic T lymphocytes (CTLs) infiltration, afford-
ing a significant increase in CD87/Treg ratio. Therefore,
SPppeN showed superior antitumor efficacy against both
primary and distant tumors with a tumor inhibition rate
over 88% and low adverse reactions (Fig. 7).

Light-based NCTD delivery

Light-responsive polymeric delivery systems are attractive
drug delivery systems due to their inactive and stable under
normal conditions but can release intact drugs in response
to light, thus providing better control on drug release and
resulting in less side effects [161]. Wang et al. [162] designed
a light-responsive dual prodrug polymer nanoparticle (DPP
NP) for precise synergistic chemotherapy guided by drug-
mediated computed tomography (DMCT) imaging, in
which NCTD was conjugated to a light-activatable Pt(IV)
prodrug to construct the dual prodrug (DP) monomer. After
endocytosis and visible light irradiation, the polymer back-
bone is cleaved and the Pt(IV) prodrug is activated to release
the Pt(Il) drug, resulting in DNA damage. Afterwards,
NCTD released in the acid endo/lysosome microenviron-
ment would block the repair of damaged DNA by inhibiting
PP2A, thereby exhibiting synergistic chemotherapy (Fig. 8).
Notably, the ratio of the Pt(II) drug and NCTD in DPP NP
was fixed at an optimal value (Pt/NCTD=1/2) even after
endocytosis. Moreover, the DPP NP could be used as a CT
imaging contrast agent to monitor the distribution of drugs
due to the high Pt content, thereby guiding the intensity
and time of light exposure. Guided by Pt DMCT imaging,
this nanoparticle exhibited excellent antitumor activity with
complete cure in 75% of tumors.
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Chemoembolization-based NCTD delivery

Clinically, transcatheter arterial embolization (TAE) can
be used as an effective method of non-surgical treat-
ment for patients with unresectable advanced cancer or
patients who are unwilling to undergo surgery. TAE could
effectively inhibit tumor growth by injecting embolic
materials into the arteries of tumors, cutting off the blood
supply to the tumor, making it unable to obtain the oxy-
gen and nutrients needed for survival. In TAE technol-
ogy, the choice of embolization material determines the
therapeutic effect of interventional embolization [163].
Drug embolization microspheres not only have a large
specific surface area, but also can combine chemotherapy
and embolization, which has become a hot spot of cur-
rent research [164]. In recent years, a variety of NCTD-
loaded embolic microspheres have been developed, and

have shown good therapeutic effect in the treatment of
liver cancer.

Liu et al. [165] prepared a NCTD-loaded PLGA-alg-
inate microsphere (NPAM) for synergistic chemother-
apy and embolization. NPAM were more effective than
NCTD solution and blank microspheres in inhibiting
tumor growth and extending survival in a liver cancer
tumor model. Song et al. [166] prepared a NCTD-CS
microsphere (NCTD-CS-MS) by emulsification-chemical
cross-linking method. The average particle size of the
microspheres was (143.54 +4.24) pm. The microspheres
were used as embolizing agent for hepatic artery embo-
lization therapy for rabbit VX-2 hepatocarcinoma. Since
the microspheres can be embolized to the presinusoi-
dal arterioles through the hepatic artery administration,
the nutrition source of the tumor can be well cut off.
While exerting the embolization effect, the drug in the
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Fig. 8 Schematic diagram of the light-activatable dual prodrug polymer nanoparticle (DPP NP) for precise synergistic chemotherapy guided by Pt
drug-mediated computed tomography (DMCT) imaging. Reproduced with permission from reference [162]. Copyright 2019, Elsevier
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microspheres can be continuously and slowly released
locally in the liver cancer, so that the local concentration
can be maintained at a high level, which has a good anti-
cancer effect and can significantly reduce the systemic
toxicity. Zhou et al. [167] prepare a NCTD sustained-
release microsphere (NCTD-MS) for hepatic arterial
embolism by inner gel technique with alginate-chitosan
as carrier. The microsphere was of average diameter
(309.75+2.19) um. Drug release rate of the microsphere
in phosphate buffer solution and normal saline was 80%
in 24h, while NCTD raw material released completely
in 3h. Zhou and Zhang et al. [168, 169] also prepared
two lipid-solid dispersion of NCTD-loaded alginate/
CS microspheres (LSD/NTCD-ACMs), which showed a
well-sustained release profile after a mild burst release.
LSD/NTCD-ACMs administration via the hepatic artery
can also achieve better therapeutic effect than that of
NCTD solution in the VX2 liver cancer model, with
higher degree of hepatocyte necrosis, longer survival
time and less toxic side effects. Therefore, LSD/NTCD-
ACMs are potential candidates for embolization of liver
cancer.

Silk fibroin is a biomedical material extracted from silk
with good biodegradability and biocompatibility, as well

as non-toxic, non-sensitizing and non-irritating effects
to the body. It can be used as a carrier material for sus-
tained drug release to improve the bioavailability of drugs
[170, 171]. Zhang et al. [172] prepared a NCTD-loaded
silk fibroin/CS microsphere (NCTD-SF/CS-MS) using
silk fibroin and CS as carriers by the emulsification-gela-
tion method. The microsphere had an average diameter
of (184 +5) pum. The release profile of NCTD-SF/CS-MS
followed Weibull distribution in vitro and sustained for
about 14days, better than NCTD-CS-MS. Therefore,
the tumor necrosis area and the life prolonging rate in
NCTD-SE/CS-MS group was better than that in NCTD-
CS-MS group, and angiograms showed a complete occlu-
sion with litter collateral formation. Wen et al. [173, 174]
also prepared a NCTD-N-CS/silk fibroin microsphere
(NCTD-N-CS/SE-MS) through the emulsification-gela-
tion method. NCTD-N-CS/SF-MS had an average size of
(117 £4.3) um. The releasing test in vitro manifested that
60% of NCTD was steadily released in 7 days. The tumor
inhibition rate and tumor cell necrosis rates in NCTD-N-
CS/SE-MS group was 85.01% and 56.78%, respectively,
better than that in blank N-CS/SF-MS+NCTD solution
groups. 30days after TAC, CT imaging showed that the
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NCTD-N-CS/SE-MS group had smaller tumor volume,
more pronounced necrosis area and longer survival time
(36.25days) than other groups. Angiograms showed a
complete occlusion with collateral formation.

New developments of NCTD drug delivery system
Dual drug-loaded drug delivery system-based NCTD
delivery

Compared with single drug therapy, the strategy of
multi-drug combination therapy can simultaneously act
on multiple pathways and multiple targets to exert syn-
ergistic antitumor effects, reduce the toxicity and side
effects caused by a single drug, and overcome treatment-
related multidrug resistance (MDR), and so on. However,
the different physicochemical properties and pharma-
cokinetic properties of drugs may lead to the inability of
drugs to reach tumor cells synchronously to exert anti-
tumor effects [175]. The nanocarrier-mediated multidrug
delivery system can improve the deficiencies of existing
antitumor multidrug delivery strategies, and deliver the
drugs to tumor cells synchronously in the best synergis-
tic ratio, thereby enhancing drug efficacy and reducing
toxicity [176, 177]. Several studies have shown that the
co-loading of NCTD and other chemotherapeutic drugs
such as oleanolic, tetrandrine (Tet) and ABT-737 in the
same nanocarrier can significantly improve the antitu-
mor effect of chemotherapeutic drugs, reduce the toxic

and side effects of chemotherapeutic drugs, and reverse
MDR.

Oleanolic acid is a pentacyclic triterpenoid compound,
which has a certain inhibitory effect on various cancers
such as liver cancer, colon cancer, and breast cancer
[178]. Liu et al. [179] developed dual-drug liposomes
containing NCTD and oleanolic using film hydration
method. The EE of NCTD and oleanolic were 45.6% and
84.5%, respectively.

Tet, one of the main active ingredients of Stephania
tetrandra S. Moore, is a bisbenzylisoquinoline alkaloid
with broad-spectrum antitumor activity [180]. Xiong
et al. [181] prepared dual-drug liposomes using NCTD-
mesoporous silica nanoparticles (MSN-NCTD) and Tet.
The dual drug loaded liposomes had uniform particle
size of (207.5+3.6) nm, zeta potential of (1.345+0.173)
mV and high EE (86.62% and 79.19% respectively for
NCTD and Tet), showing sustained drug release charac-
teristics. In addition to its own antitumor activity, TET
is also a reversal agent for MDR of tumors [180]. Xiong
et al. [182] constructed a FA receptor-targeted NCTD/
Tet dual-drug loaded lipid nanoparticles [(FA-LP@Tet/
(MSNs@NCTD)] based on MSNs, with an average size
of (153.17£3.17) nm (Fig. 9). The FA modification sig-
nificantly increased intracellular uptake of FA-LP@Tet/
(MSNs@NCTD) on HepG2 cells. Moreover, FA-LP@Tet/



Zhai et al. Journal of Nanobiotechnology (2022) 20:509

Page 37 of 46

DM-NCTD@CHMSN

Film hydration

© Eéég MSN (NH, modified) Chlorodimethyloctadecylsilane (CH)
+-(j)

D) ()—() Lipid bilayer (LB)  \~ PEG Cholesterol
PO

= ;iii\/ P> Folic acid (FA) < DM-NCTD 0 ABT-737
e

Fig. 10 Schematic illustration of the synergistic co-delivery of diacid metabolite of norcantharidin and ABT-737 based on folate-modified lipid
bilayer-coated mesoporous silica nanoparticle. Reproduced with permission from reference [184]. Copyright 2020, BIOMED CENTRAL

FA-LB(ABT-737)-(DM-NCTD@CHMSN)

(MSNs@NCTD) could reverse MDR by inhibiting P-gp
in HepG2/Adr cells.

ABT-737 is an antagonist of small molecule Bcl-2,
which could induce tumor cell apoptosis without causing
damage to normal cells. NCTD combined with ABT-737
has a synergistic effect on the treatment of HCC [183].
Liu et al. [184] prepared a FA-lipid bilayer (LB)-chlo-
rodimethyloctadecylsilane (CH)-coated MSN (FA-LB-
CHMSN) with diacid metabolite of NCTD (DM-NCTD)
loaded in CHMSN and ABT-737 loaded in lipid bilayer
[FA-LB(ABT-737)-(DM-NCTD@CHMSN)]  (Fig. 10).
This nanoparticle enhanced intracellular uptake of
the drugs through FA receptor-mediated endocytosis,
thereby inducing marked cell apoptosis on H22 cells and
showing significant antitumor activity on H22 tumor
model, with no apparent systemic toxicity.

Exosomes-based NCTD delivery

Exosomes are one of the most important ways of cell-
to-cell communication in living lives. Due to its excel-
lent compatibility, good permeability, natural stability,

and low immunogenicity and toxicity, exosomes have
attracted the attention of many researchers in recent
years as a new drug delivery system [185]. Yang et al.
[186] prepared an NCTD-loaded rat serum exosome.
The optimal process conditions for exosome-embed-
ded NCTD were: NCTD level was 0.4mg/mL, incu-
bation temperature was 30.81 °C, and incubation time
was 3.28 h. The average EE of NCTD was 15.36%, and
the average particle size was 97.45nm. Mesenchymal
stem cell-derived exosomes (MSC-Exos), nanoscale
lipid bilayer multivesicular bodies (40—100 nm) that are
secreted by MSCs under physiological or pathologi-
cal conditions, also have potential as NCTD delivery
vehicles for HCC therapy. Liang et al. [187] prepared
an NCTD-loaded bone mesenchymal stem cell-derived
exosomes (BMSC-Exos) (BMSC-Exos-NCTD) via elec-
troporation, with an average particle size of 127nm
and in vitro sustained drug release properties. BMSC-
Exos-NCTD significantly enhanced cellular uptake,
induced cell cycle arrest, inhibited tumor cell prolif-
eration, increased apoptosis, and exerted excellent
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in vivo antitumor activity with no apparent systemic
toxicity compared with the free NCTD. Furthermore,
the BMSC-Exos carrier has an in situ homing effect on
the tumor sites of HCC in mice. BMSC-Exos-NCTD
also repaired damaged liver tissues in liver sections, as
reflected by the increase in cellular proliferation and
the inhibition of liver cell oxidation on the normal liver
cell line L02. Therefore, BMSC-Exos, as drug delivery
systems, have great potential in the HCC treatment in
combination with NCTD (Fig. 11).

Conclusion

NCTD, a synthetic derivative of CTD, is a promising
anticancer drug first developed in China for the treat-
ment of liver cancer. Compared with CTD, it not only
significantly improves the anticancer effect, but also
greatly reduces the nephrotoxicity and the strong irri-
tation to the urinary system. NCTD used clinically is
mainly in tablets and injections. It has unique advantages
in the treatment of tumors, including increasing white
blood cells, regulating immunity without producing bone
marrow suppression, and so on. In many cases, it is the
first-choice adjuvant drug for various cancers such as
liver cancer, esophagus cancer, gastric cancer and cardia

cancer, especially for primary liver cancer, and it can be
used before and after surgery, radiotherapy and chemo-
therapy. NCTD can also improve liver function and can
be used to treat hepatitis, cirrhosis and hepatitis B virus.
These advantages make NCTD have a good application
prospect. Mechanically, NCTD can inhibit proliferation
through inhibiting the Wnt/p-catenin, epidermal growth
factor receptor (EGFR) and c-Met pathways, and sup-
pressing the activity of Protein phosphatase 5 (PP5) phos-
phatase [188—190]. NCTD can also inhibit proliferation
through cell cycle arrest and inhibition of DNA replica-
tion by blocking protein kinase B (Akt) and extracellular
signal-regulated kinase (ERK) signaling, inducing cell
division cycle 6 (Cdc6) degradation and regulating the
expression of cyclins, cyclin-dependent kinases (CDKs)
and cyclin-dependent kinase inhibitors [191-193].
Moreover, NCTD can induce tumor cell apoptosis by
promoting ROS production, regulating the caspase-mito-
chondrial pathway and mitogen-activated protein kinase
(MAPK)-related pathways, blocking the phosphatidylino-
sitol 3-kinase (PI3K)/Akt/nuclear factor-kappaB (NF-«kB)
pathway, decreasing the Bcl-2 and survivin expression,
and increasing the caspases, p53 and Bax expression
[194-198]. NCTD can also induce apoptosis and inhibit
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proliferation via suppressing the activity of PP2A [199,
200]. NCTD can inhibit the invasion and metastasis
through reducing the activity of MMP-2/-9 by upregulat-
ing the signal transducer and activator of transcription
1 (STAT1) and inhibiting the transactivation of Sp1, and
inhibit the epithelial-mesenchymal transition (EMT) pro-
cess via blocking the avp6-ERK-Etsl and YAP pathways
[201-203]. NCTD can inhibit angiogenesis by downregu-
lating the expression of VEGF, VEGFR-2, angiopoietin-2
(Ang-2), and upregulating the expression of thrombos-
pondin (TSP) and TIMP-2 [204, 205]. NCTD can inhibit
the tumor vasculogenic mimicry via suppressing MMP-2
expression and blocking the Ephrin Type a Receptor 2/
Focal Adhesion Kinase/Paxillin pathway [206, 207].
NCTD can also enhance the anti-vasculogenic mim-
icry activity of TIMP-2 by downregulating MMP-2 and
membrane type 1-MMP (MT1-MMP) expression [208].
NCTD can inhibit lymphangiogenesis by downregulating
the expression of VEGF-A/-C/-D and VEGFR-2/-3 [209].
NCTD can overcome MDR by inhibiting the MDR-1/P-
gp and Mcl-1 expression, the Met/PI3K/Akt pathway and
the sonic hedgehog (Shh) signaling [210-212]. Further-
more, NCTD can positively regulate macrophage-medi-
ated immune responses via the Akt/NF-«kB pathway, and
can decrease the number of tumor-infiltrating Tregs and
increase the number of CD4+and CD8+T cells [213,
214].

However, although NCTD greatly reduces the toxicity
of CTD, there is still a certain degree of urinary toxicity
and organ toxicity. For example, Li et al. [215] found that
intraperitoneally administered with NCTD (0.8 mg/kg,
1.6 mg/kg and 6.0mg/kg) every 24h for 12weeks could
increase ALT, AST, albumin (ALB), ALP liver function
indexes and creatinine (CRE), blood urea nitrogen (BUN)
kidney function indexes. Microscopic examination
showed that liver, lung and kidney had different degrees
of pathological changes, and the toxicity changes showed
a certain time and dose correlation. Fan et al. [216]
showed that after NCTD (10mg/kg) was administered
by gavgae for 2weeks, the contents of ALT and BUN in
serum of mice were abnormally increased; and NCTD
could lead to inflammatory cell infiltration in liver, vacu-
olar changes in liver cells, and diffuse damage of glomer-
uli and tubules. Martinez-Razo G et al. [217] showed that
intraperitoneally administered with NCTD (3.0 mg/kg
and 6.0 mg/kg) every 24 h for 6 days significantly modified
the phosphorylase, alanine transaminase, and y-glutamyl
transferase activities. Histopathological analysis revealed
a significant elevation in hepatocytes’ nuclei average size
and total area (3mg/kg), as well as centrilobular vein
and adjacent sinusoidal capillaries showed a significant
difference. The portal triad presented a significant dif-
ference in veins and capillarity count in 6 mg/kg. Renal
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samples showed cortex convoluted tubules’ average size
significantly augmented in both doses’ groups, and tubule
count was found augmented in 6 mg/kg. The mechanism
of NCTD toxicity needs to be further studied. In addi-
tion, the poor solubility, short half-life, fast metabolism,
as well as high venous irritation and weak tumor target-
ing ability limit its wide clinical application. Researchers
at home and abroad have tried to solve these problems
by means of preparations, and have made great progress
in recent years. NCTD-loaded passive targeted drug
delivery systems including liposomes, micelles, nanopar-
ticles, microemulsion and self-microemulsion, polymer-
conjugated drug delivery systems and microspheres,
significantly improved the solubility and in vivo phar-
macokinetics of NCTD, and could passively accumu-
late NCTD into tumor tissues by EPR effect, and could
release the drug slowly and continuously, thereby greatly
enhancing the antitumor effect and reducing the toxicity
of NCTD. Moreover, monoclonal antibodies or ligands-
modified drug delivery systems could deliver NCTD to
tumor cells more precisely through highly expressed
antigens or receptors on the cell surface, reducing the
distribution of drugs in normal tissues, thereby further
enhancing the antitumor effect and reducing the toxicity
of NCTD. NCTD-loaded drug delivery systems designed
and constructed based on physicochemical character-
istics such as pH, temperature, charge and tumor blood
vessels are of great significance in controlling drug release
at target sites. The multi-drug co-loading nano-delivery
system developed by NCTD combined with other chem-
otherapeutic drugs such as oleanolic acid, tetrandrine
and ABT-737 can simultaneously deliver multiple drugs
to tumor cells, which can not only enhance the antitu-
mor effect of chemotherapeutic drugs, but also reduce
the toxicity and side effects of chemotherapeutic drugs,
and has the effect of reversing the multidrug resistance
of tumors, showing a good application prospect. Besides,
as a new drug delivery system, exosomes endow NCTD
with better biocompatibility and immune evasion ability,
providing new ideas for personalized treatment of tumor
patients; in the future, other biomimetic nano-delivery
systems such as erythrocyte membrane, tumor cell mem-
brane, and endothelial cell membrane-coated nanopar-
ticles can be further developed, thereby opening up new
directions for NCTD delivery.

Among the numerous targeted drug delivery systems,
nanohydrogels that can be used for topical drug deliv-
ery are a very promising drug delivery system. Clinically,
surgical resection is still the main means of tumor treat-
ment, but the tumor resection process is often accom-
panied by residual tumor cells. According to statistics,
about 90% of cancer patients eventually die because of
tumor recurrence or metastasis [218, 219]. Immediate
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implantation of controlled release nanohydrogels into
surgical wounds is an effective strategy to prevent tumor
recurrence. Chemotherapy and radiotherapy are often
used after surgery to prevent tumour recurrence and
metastasis, but these therapies often cause toxicities
[220, 221]. The nanohydrogel can efficiently load and
deliver drugs, and make the drugs concentrated near the
residual tumor tissue for a long time and slow release,
which greatly reduces the toxic and side effects of drugs.
Moreover, the hydrogel has good plasticity and is suit-
able for surgical wounds of any shape. It can also absorb
local bleeding during tumor removal, prevent the spread
of tumor cells and wound infection [222-225]. In addi-
tion, the modified nanohydrogel can also achieve on-
demand drug release through light response, magnetic
response, ultrasonic response, electrical response, pH
response, ROS response, enzyme response and MMPs
response [226-229]. Furthermore, some nanomateri-
als can give hydrogels luminescence and imaging func-
tions to better monitor drug release behavior [230, 231].
For example, Zhu et al. [232] developed an injectable
MMPs- and ROS-responsive hydrogel. These hydrogels
exhibited postoperative environmental responsiveness
and achieved sustained temozolomide (TMZ) release in
the surgical cavity. The anti-glioma effects in the incom-
plete operation models of C6 and U87 glioma indicated
that these hydrogels effectively inhibited postsurgical
glioma recurrence while minimizing systemic toxicity.
Wu et al. [233] developed a tumor-targeted nanocom-
posite double-network hydrogel by NIR-induced polym-
erization of polyethylene glycol acrylate (PEGDA) and
endogenous Ca*"-crosslinked alginate with the addition
of radioisotope-labeled 12°I-GNR-RGDY. The hydrogel
exhibited excellent photothermal therapeutic efficacy
and brachytherapy after in situ injected into the cavity of
postoperative breast cancer tissue. Furthermore, photo-
thermal ablation could simultaneously eliminate poten-
tial pathogenic bacteria to prevent postoperative wound
infection. Notably, the embedded *°I-GNR-RGDY also
endowed the hydrogel with long-term isotope-imaging
properties. Yan et al. [225] prepared an in situ formed
magnetic hydrogel with promising bioapplicable ther-
mal-responsiveness, strong adhesion in wet conditions,
high magnetic hyperthermia, and efficient hemostasis
function, which effectively reduced the recurrence rate of
liver cancer after surgery. Chen et al. [234] also developed
an in situ formed immunotherapeutic bioresponsive gel.
The fibrinogen solution containing anti-CD47 antibody-
loaded CaCOj; nanoparticles and thrombin solution can
be quickly sprayed and mixed within the tumour resec-
tion cavity after surgery to form the gel in situ. CaCOj,
nanoparticles can gradually dissolve and release the
encapsulated aCD47 in the acidic and inflamed tumor
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microenvironment, thus promoting the activation
of MIl-type tumor-associated macrophages (TAMs),
inducing macrophage phagocytosis of cancer cells via
blockade of the CD47 and signal regulatory protein-a
(SIRPa) interaction as well as boosting antitumor T cell
responses. After treatment, 50% of the melanoma mice
survived at least 60 days without tumor recurrence, while
none of the control mice survived longer than 30days.
NCTD can inhibit and kill tumor cells through multiple
pathways and multiple targets, which is a promising anti-
tumor drug. Therefore, the research and development of
NCTD nanohydrogels is of great significance for inhibit-
ing tumor recurrence after surgery.

Although there are many studies on NCTD-targeted
drug delivery systems, there are still many problems to
be solved before these drug delivery systems are applied
to clinical practice. For example, the research on NCTD
loaded liposomes should pay attention to the low EE of
drugs, leakage during storage, sterilization stability and
other problems arising in the process of industrialization.
Microemulsion can well solve the problems of high irrita-
tion and fast elimination of NCTD, but screening of safe
and efficient surfactants should be a focus of research.
NCTD microspheres can enhance the anti-HCC effect by
embolization and sustained release of microspheres, and
the embolization microspheres have large particle size
and high drug loading, which has a very broad prospect
for the treatment of HCC. However, the preparation pro-
cess of microspheres still need further research to meet
the requirements of high drug loading and high EE. In
addition, the drug release behavior, solvent residual tox-
icity and drug stability of microspheres also need to be
further studied. With the continuous emergence of new
nanomaterials and the in-depth research on the prepa-
ration, physical and chemical properties and biological
properties of nanoparticles, the nanoparticle drug deliv-
ery system has made great progress in improving the
tumor targeting efficiency of NCTD, but the steriliza-
tion and storage stability, degradation characteristics,
drug release characteristics, drug loading, EE and surface
modification of nanoparticles, and the solvent residual
toxicity of nanoparticles and the safety of nanomateri-
als in vivo should be further explored [235]. If the above
problems can be continuously solved in the research, it
will be very conducive to the development and clinical
application of NCTD targeted drug delivery system.
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