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Abstract

Parkinson’s disease (PD) significantly affects patients’ quality of life and represents a high economic burden for health
systems. Given the lack of safe and effective treatments for PD, drug repositioning seeks to offer new medication
alternatives, reducing research time and costs compared to the traditional drug development strategy. This review
aimed to collect evidence of drugs proposed as candidates to be reused in PD and identify those with the potential to
be reformulated into nanocarriers to optimize future repositioning trials. We conducted a detailed search in PubMed,
Web of Science, and Scopus from January 2015 at the end of 2021, with the descriptors “Parkinson’s disease”and “drug
repositioning” or “drug repurposing”. We identified 28 drugs as potential candidates, and six of them were found in
repositioning clinical trials for PD. However, a limitation of many of these drugs to achieve therapeutic success is their
inability to cross the blood-brain barrier (BBB), as is the case with nilotinib, which has shown promising outcomes

in clinical trials. We suggest reformulating these drugs in biodegradable nanoparticles (NPs) based on lipids and
polymers to perform future trials. As a complementary strategy, we propose functionalizing the NPs surface by adding
materials to the surface layer. Among other advantages, functionalization can promote efficient crossing through the
BBB and improve the affinity of NPs towards certain brain regions. The main parameters to consider for the design of
NPs targeting the central nervous system are highlighted, such as size, PDI, morphology, drug load, and Z potential.
Finally, current advances in the use of NPs for Parkinson’s disease are cited.

Keywords: Drug repositioning, Drug repurposing, Parkinson’s disease, Nanoparticles, Nanocarriers, Pharmaceutical
nanotechnology

Introduction

Neurological disorders are considered a leading cause
of disability [1]. Parkinson’s disease (PD) is the second
most frequent neurodegenerative disease worldwide only
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after Alzheimer’s disease [2] and has overgrown in recent
years. In this respect, 6.1 million people were registered
with PD worldwide in 2016, and it caused 211,296 deaths
only in that year [3]. PD affects approximately 1% of the
population over 60 years old; the prevalence is around 1.4
times higher in men than in women, increasing with the
population aging [3, 4]. Since life expectancy has been
increasing in the last years, patients with PD are expected

©The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeco
mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12951-022-01612-5&domain=pdf

Hernandez-Parra et al. Journal of Nanobiotechnology (2022) 20:413

to increase. According to a PD’s global burden study, the
number of PD patients will be approximately 13 million
in 2040 [3]. Thus, it is expected an enormous social and
economic burden for both health systems and the people
in charge of patient care.

Notwithstanding advances in understanding PD, cur-
rently available therapies are symptomatic but do not
stop the disease’s progression [5]. Besides, drugs used for
PD treatment produce side effects that can be very seri-
ous and disabling, such as dyskinesias. Therefore, it is
necessary to implement new drug search and discovery
methods that offer more effective and safer treatment
alternatives. In addition to these worldwide efforts, drug
repositioning has been applied, which reduces costs and
research times compared to the traditional de novo drug
development strategy [6].

Currently, numerous drugs are under study, of which
promising results have been reported [7-12]. However,
despite these results, some drugs present limitations to
achieving therapeutic success, such as bioavailability
problems and reduced capacity to cross the blood—brain
barrier (BBB). This review analyzes information on drugs
proposed for repositioning in the treatment of PD in the
last six years. Those drugs with limitations in their bio-
availability and targeting to the brain are identified, and
pharmaceutical nanotechnology strategies are proposed
to optimize future repositioning studies of these drugs.
The most effective treatment is levodopa, but its benefits
are compromised by unpredictable absorption and exten-
sive peripheral metabolism, leading to motor fluctuations
and loss of efficacy [13].

Parkinson’s disease

Although the exact etiology of PD is not known, the risk
of developing it seems to be determined by biological fac-
tors (such as age), genetic factors (such as the presence of
specific polymorphisms or mutations), and environmen-
tal factors (e.g., exposure to pesticides such as rotenone
and paraquat) [14—16]. PD is characterized by causing
progressive degeneration of dopaminergic neurons of
the substantia nigra pars compacta (SNpc) that project
towards the striatum and other brain nuclei [17]. Another
of its main characteristics is the presence of Lewy bodies,
intraneuronal inclusions formed by insoluble aggregates
of abnormally folded alpha-synuclein protein [18].

The physiological basis of PD is dysfunction of the
basal ganglia due to the loss of dopamine (DA), its cen-
tral modulator [18]. DA is a neurotransmitter that is pro-
duced in the neurons of the substantia nigra; it is released
into the striatum to execute uniform and deliberate
movements [14]. In this context, the loss of DA produces
brain nerve activity abnormalities that cause impaired
movement. Degeneration of dopaminergic neurons
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occurs mainly in the SNpc, in which DA is usually syn-
thesized and released to the brain regions that regulate
movement. However, some reports estimate that motor
symptoms appear when more than half (between 50 and
70%) of dopaminergic neurons of the SNpc are degraded
[19]. This delayed effect on motor symptoms is due to
the striatum downstream of the SNpc triggering com-
pensatory mechanisms, which can respond to a certain
degree, as eventually, neurons in the striatum also begin
to die [20]. Both genetic factors (in familial PD) and envi-
ronmental factors (in sporadic PD) converge on specific
pathways, including mitochondrial dysfunction, oxidative
stress, protein aggregation, impaired autophagy, and neu-
roinflammation, leading to the clinical manifestations of
PD [21, 22]. The activation of the c-Abl protein (Abelson
tyrosine kinase) is related to various pathogenic pathways
that could lead to neuronal death in response to oxidative
stress in PD. Oxidative stress has been considered a criti-
cal process in sporadic PD and familial PD. When acti-
vated, the c-Abl protein acts as an oxidative stress sensor
that can generate multiple downstream signals that
lead mainly to parkin inactivation, p38a activation, and
a-synuclein phosphorylation. The inactivation of parkin
causes the accumulation of pathogenic substrates (PARIS
and AIMP2), leading to neuronal death, p38a activation,
and a-synuclein phosphorylation, which are potentially
related to cytotoxicity and neuronal death [23]. In this
respect, the inhibition of the c-Abl protein could repre-
sent a powerful therapeutic target for PD [24, 25].

Burden of Parkinson’s disease

PD symptoms are motor and non-motor and can affect
the patient’s quality of life (QoL) since it is a highly dis-
abling disease. The disabling and progressive effect in a
patient with PD requires other people (caregivers) to
carry out daily activities. The burden for these caregiv-
ers is a broad topic since they must provide emotional,
physical, and social support, and as PD progresses, care
must be more rigorous, so much so that the QoL of car-
egivers can be seriously affected, developing stress, anxi-
ety, depression, and other health problems [26]. PD’s
economic burden is borne by the patient and their fami-
lies, although it also represents a significant burden for
each country’s health systems. In a study conducted in
the US, it is estimated that at least until 2017, PD repre-
sented a total economic burden of $51.9 billion; the total
burden includes direct medical costs of $25.4 billion and
$26.5 billion in indirect and non-medical costs [27]. In
that same study, a total economic burden is projected
for 2037, exceeding 79 billion dollars. Considering that
the greater the disease’s progression, the greater the eco-
nomic cost, we believe that new interventions are neces-
sary and urgent to delay the progression of the disease
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and alleviate the burden of symptoms, and in this way,
the future burden of PD could be reduced.

Treatment for Parkinson’s disease

At present, no treatment cures or stops PD progres-
sion; however, various therapeutic options are limited
to partially alleviating the signs and symptoms, allowing
patients to improve their QoL by less for a time, which
depends on the disease’s progression. Treatment options
include surgical and pharmacological therapies.

Surgical treatment: Deep brain stimulation; Focused
ultrasound; Cell replacement therapies. Many patients
with moderate to advanced disease resort to this type
of treatment in conditions where they do not respond
to pharmacological medication. However, in this type of
treatment, essential aspects such as cost and risk must be
considered, which are generally high. Its success depends
on the appropriate selection of patients and the surgeon’s
experience and skill to optimize results and minimize
complications [28]. In this respect, it is preferable to use
less invasive, cheaper, and less risky therapies, so phar-
macological therapies are used as first-choice treatments.

Pharmacological treatment: Most of these drugs have
focused on restoring neuronal dopaminergic transmis-
sion [18]. However, drugs targeting the glutamatergic,
noradrenergic, serotonergic, and cholinergic systems are
also being used, playing a fundamental role in the basal
ganglia circuits. Nevertheless, these do not stop the pro-
gression of the disease if they have managed to improve
the characteristic symptoms.

Treatment of motor symptoms:

Levodopa 1t is an oral precursor of DA and is to date
considered the “gold standard” of PD treatment [29], and
it is the most effective drug for the treatment of motor
manifestations [18].

Anticholinergics Like trihexyphenidyl and benztropine,
which antagonize acetylcholine’s effects at postsynaptic
muscarinic receptors to striatal interneurons, they are
used primarily to reduce tremor and have no effect on
bradykinesia [28].

Antiglutamatergics Amantadine (glutamate/NMDA
receptor antagonist). A prolonged-release formulation of
amantadine, administered before bedtime, improves dys-
kinesia and motor fluctuations [28].

Monoamine oxidase inhibitors (MAQOIs) Include sele-
giline, rasagiline, and safinamide, which, although more
frequently used in mild and early PD, these MAOIs are
also effective in patients with moderately advanced PD
with levodopa-related motor complications [28, 30].

Dopamine agonists Like the non-ergot derivatives, the
most common of which include pramipexole, ropinirole,
rotigotine, and apomorphine, can be used as mono-
therapy for motor symptoms or add-on therapy when
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symptoms are not controlled by levodopa or when motor
fluctuations are present [31].

Catechol-O-methyl transferase inhibitors (COMTI)
Like entacapone, tolcapone, and opicapone, which block
the degradation of peripheral levodopa and the central
degradation of levodopa and DA, increasing the central
levels of these [28].

Adenosine A2 receptor antagonist Istradefylline (Nouri-
anz) is an add-on treatment to levodopa/carbidopa in PD
patients who experience inactive episodes [32].

Treatment of non-motor symptoms:

There are a wide variety of non-motor symptoms,
including depression, anxiety, apathy, psychosis, to
name a few, and each of them must be treated specifi-
cally. As an example, we cite the treatment of some of
the common non-motor symptoms. Such as donepezil,
rivastigmine, and memantine provide a modest benefit
in patients with PD-associated dementia [28]. Alterna-
tively, pimavanserin, a serotonin inverse agonist with a
high affinity for the 5-HT2A receptor, was approved by
the Food and Drug Administration (FDA) in 2016 to treat
hallucinations and delusions associated with PD [33].

Complications related to drug treatment
Currently available treatment for PD can significantly
improve symptoms. However, with prolonged use, the
efficacy of the drugs tends to decrease, and complica-
tions related to the treatment appear. Patients with PD
show significant variability in response to drugs in terms
of efficacy and adverse effects. Some studies have asso-
ciated interindividual variability in response to treat-
ment with genetic and environmental factors [34-37].
Currently, many studies focus on the genetic variability
in response to levodopa, the main drug used in clinical
practice to treat PD. Some patients have been found to
develop low toxicity at high doses of dopaminergic treat-
ment, while others have severe side effects [38]. Many
patients respond positively to treatment with levodopa
for many years, while others fail to achieve a therapeutic
effect in a few years. Evidence shows that around 40% of
patients develop motor complications within the first 4
to 6 years of treatment with levodopa [39, 40]. Although
several genes have been studied, only some of them have
been investigated in large cohorts, such as the DRD2,
COMT, and SLC6A3 gene polymorphisms [34]. Some
authors associate the decreased efficacy of drugs with the
worsening of the disease and the presence of dopaminer-
gic brain lesions and underlying non-dopaminergic ones
[41]. However, it is believed that other genes and factors
could influence the variability in response to drugs and
the decrease in clinical efficacy.

Other complications related to pharmacologi-
cal treatment are motor and motor and non-motor
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fluctuations, dyskinesias, impulse control disorder
(ICD), dopaminergic dysregulation syndrome (DDS),
DA agonist withdrawal syndrome (DAWS), and levo-
dopa withdrawal syndrome [42]. These complications
associated with pharmacological treatment can be
treated specifically, as is the case of Levodopa-induced
dyskinesia (LID), which is reduced by concomitant
administration of amantadine, which is currently the
main drug for its treatment [28]. These side effects can
be even more disabling than those of the disease itself
in the early stages. Among the most recurrent adverse
effects, in general, we find; for DA agonists, drowsi-
ness, nausea, vomiting, dizziness, swelling of the legs,
and sweating; for COMTI, dyskinesias, dizziness,
nausea, vomiting, diarrhea, hallucinations, drowsi-
ness, dry mouth, and abdominal pain; for MAO-B
inhibitors, dizziness, drowsiness, heartburn, nausea,
and weight loss. Also, other drugs can have serious
adverse effects, such as amantadine (which can cause
dizziness, hallucinations, confusion, constipation, hair
loss, and possible exacerbations of heart failure) and
trihexyphenidyl (which cause cognitive impairment,
blurred vision, and urinary retention) [28].

As mentioned, levodopa remains the “gold standard”
in treatment, and response to levodopa is even used as
part of the diagnosis of PD. Unfortunately, treatment
with levodopa after several years of use loses effi-
cacy. Its prolonged use is associated with side effects,
such as response fluctuations and LID, representing
a significant disadvantage of continuous therapy [19].
Levodopa-related fluctuations have various clinical
manifestations, and non-motor fluctuations generally
precede and/or accompany motor fluctuations [43].
Among the motor fluctuations, the one with the earli-
est appearance is the “wearing-off” (end-of-dose dete-
rioration) [44] which is characterized by a progressive
shortening of the period between the intake of one
dose and another levodopa; motor complications also
include dyskinesias [42], different from those char-
acteristics of the natural progression of PD. The ICD
is pathological gambling, compulsive shopping, and
hypersexual disorders, among other behavioral disor-
ders associated with various drugs, such as levodopa,
amantadine, and rasagiline [45, 46]. It is also essential
to consider that not all clinical manifestations of PD
are dopaminergic and that non-dopaminergic symp-
toms (such as sleep disorders, pain syndromes, mood
disorders, and dementia) do not respond effectively to
therapeutic possibilities currently available [42]. It is
necessary to search for novel pharmacological options
and approaches that optimize these drugs and promis-
ing search strategies, as is drug repositioning.
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Drug repositioning

The reuse of drugs already approved for different medical
indications is becoming a compelling alternative for the
scientific community and the pharmaceutical industry
[47]. In the future, it could be of even greater interest to
health financing organizations [48]. Drug repositioning
consists of providing new therapeutic use to an existing
drug and is a widely utilized strategy in recent years as
an alternative to de novo drug development [6, 49]. De
novo drug development has become increasingly chal-
lenging as approximately 90% of drugs fail during devel-
opment in phase I clinical trials, making this process very
risky, expensive, and requires a long time of experimenta-
tion [50]. Pharmaceutical companies increasingly explore
drug repositioning with these risks and the low probabil-
ity of success [49]. In recent years, it has been estimated
that roughly a third of approvals are for drug reuse, and
these repurposed drugs generate roughly around 25% of
the annual revenue of the pharmaceutical industry [51,
52].

Drug repositioning takes advantage, considering that a
single molecule can perform on multiple biological tar-
gets. This is known as polypharmacology [36]. It could be
beneficial when additional targets are relevant or part of
some other pathology for which the drug was not indi-
cated initially (Fig. 1). Candidate drugs for repositioning,
because they are already approved for use in humans,
have exceeded regulatory standards, including preclini-
cal, clinical, and post-marketing pharmacovigilance stud-
ies [52]. These studies allow the repositioning process to
be in less time, with less economic investment, and with a
greater probability of success. In this context, if the dose
required for the new indication is the same as that used
for the original symptom, part of the preclinical trials and
even phase I clinical trials can be avoided [52]. However,
new pharmacological safety studies will be necessary if
the dose is higher or lower than that used in the origi-
nal indication. Another advantage is that they can repre-
sent a desirable market for the pharmaceutical industry
because when drugs are without intellectual protection,
or their patent has expired, the possibility of obtaining a
patent for the new indication opens up [53]. However, an
ideal condition would be that the new indication requires
non-marketed concentrations or that the drug requires
a pharmaceutical reformulation, for example, in a novel
form of administration that allows optimizing its use. By
modifying the formulation of a reused drug, reformula-
tors could obtain a novel patent since the invention would
be considered a new composition of matter [54]. Histori-
cally, many drugs have been successfully repositioned;
some examples of successful repositioning are Sildenafil,
which was initially studied for use in hypertension and



Hernandez-Parra et al. Journal of Nanobiotechnology (2022) 20:413

Page 5 of 23

One drug

pathologies

Multiple targets

Multiple indications

Fig. 1 Drug repositioning and polypharmacology. A drug can have more than one active site, which allows the molecule to target different organs
and gives rise to multiple therapeutic indications; this is known as polypharmacology and is used in the repositioning of drugs since there are
drugs approved for a therapeutic indication for which its biological target is known, but with the potential to target other tissues and alleviate other

angina pectoris but has been repositioned to treat erec-
tile dysfunction [50]. Rituxan was initially indicated for
non-Hodgkin lymphoma and later approved for chronic
lymphocytic leukemia and rheumatoid arthritis [55].
Currently, there are many candidate drugs for reposi-
tioning in multiple pathologies, which gives us hope in
the face of the difficult task of finding new therapies for
difficult-to-treat diseases, including neurodegenerative
ones such as PD, which despite multiple efforts, has not
yet developed a therapy capable of stopping or reversing
the disease.

Drug repositioning in Parkinson’s disease

Some drugs have been successfully repositioned for
PD treatment, such as amantadine, an antiviral reposi-
tioned to treat LID [14]. Currently, many drugs are in
studies as candidates for repositioning for PD, some
with encouraging results, but that need to be optimized
for better efficacy. In this context, it is necessary to do
bibliographic reviews that gather all this evidence, iden-
tifying areas of opportunity to propose improvements
and solutions to possible limitations. We reviewed for

the last few years (2015-present) to identify those drugs
currently being proposed for repositioning in PD. The
search was carried out in PubMed NCBI, Scopus, and
Web of Science, with the search terms “(Parkinson’s
disease) and (drug repositioning or drug repurposing),’
and it was found that drug repositioning studies for PD
have increased in recent years (Fig. 2). For example, for
the PubMed search in the first two years of this period
(2015-2017), only 41 publications were retrieved, and
in the last four years (2018-2021), up to 98 publica-
tions, indicating an increase of more than 50% in arti-
cles related to at least our search conditions. The above
demonstrates the expansion that the repositioning of
drugs in PD is taking and the growing interest in the
scientific community to communicate its results for the
public benefit and find new treatment alternatives for
PD.

Many are in early studies between the drug candidates
for repositioning in silico or in vitro, and many others are
in more advanced studies such as preclinical or clinical
trials. In this analysis, 28 drugs were selected as proposed
to be reused in PD treatment. The initial therapeutic
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Fig. 2 The number of publications indexed in PubMed, Web of Science, and Scopus that contain the terms “(Parkinson’s disease) and (drug

indication, mechanism of action, the new suggested ther-
apeutic indication, and the proposal for its new mecha-
nism of action are highlighted in Table 1.

The previous studies demonstrated conclusive evi-
dence in in vitro and in vivo models. In addition to these,
a search was carried out on https://clinicaltrials.gov, and
six drugs with evidence from clinical trials were found as
possible treatments for PD.

Exenatide It is one of the most studied drugs and has
promising results for successful repositioning. At least
until the first half of 2021, three trials were found in
the recruitment status, two in an active status, one ter-
minated, and one in an unknown status (a study that
has passed its end date and has not had a status update
in more than 2 years). The study with the identifier
NCT01971242 was concluded in November 2016. Its
main objective was to compare exenatide’s effective-
ness versus placebo in the motor subscale MDS-UPDRS
(Movement Disorder Society-Unified Parkinson’s Disease
Rating Scale) in patients with PD of moderate severity. A
phase II study (research phase to describe clinical trials
that collect preliminary data on drug efficacy and assess
the safety and short-term adverse events) with 60 par-
ticipants, with a double-blind, placebo-controlled trial.
Exenatide had positive effects on motor scores. How-
ever, it is unknown whether exenatide affects PD’s patho-
physiology or induces long-lasting symptomatic effects.

Nevertheless, exenatide represents an encouraging pro-
posal for reuse in PD.

Nilotinib We found three clinical trials registered on
https://clinicaltrials.gov, one in an unknown state and
two in a terminated state for this drug. The most recent
completed study with identifier NCT03205488 published
its first results in July 2020; it was randomized, double-
blind, placebo-controlled, phase II, parallel-group, two
cohorts, to define the safety, tolerability, and biological
activity of chronic administration of nilotinib in partici-
pants with PD. In this study, daily oral administration
of nilotinib was evaluated as a chronic treatment of PD
symptoms. The results demonstrated acceptable safety
and tolerability of nilotinib. However, the low CSF (cer-
ebrospinal fluid) exposure combined with the trend-neg-
ative efficacy data led the authors of this clinical trial to
suggest that nilotinib should not be further tested in PD.
Recently (March 2021), Simuni et al. [66] reported that in
a phase II clinical trial, it failed to change levels of dopa-
mine and associated it with the fact that nilotinib has low
exposure to cerebrospinal fluid, indicating poor brain
penetration; therefore, these assays could be optimized
by reformulation in functionalized nanoparticles (NPs).
Considering the results of other trials where efficacy data
have been reported, we suggest that clinical trials should
continue to optimize drug delivery to the Central nerv-
ous system (CNS).
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Levetiracetam (LEV) This drug currently presents
three clinical trials in the terminated phase, one in the
suspended phase, one in the recruiting phase, and one
in the unknown phase. The three completed trials are
on the anti-LID activity of LEV in PD, and no conclu-
sive results have been published. A phase IV trial, with
identifier NCT00307450, was concluded in July 2009,
conducted as a randomized, double-blind, placebo-
controlled, parallel-group pilot study in PD patients
with moderate to severe LID on stable dopaminer-
gic treatment. This study aimed to evaluate the effi-
cacy, safety, and tolerability of LEV for the treatment
of LID in PD, and it was observed that LEV had mild
antidyskinetic effects without worsening parkinsonian
symptoms or compromising the efficacy of levodopa.

B12 vitamin A clinical trial of vitamin B12 for PD
has been found. This study with the ClinicalTrials.gov
identifier: NCT00208611 was a phase III trial, and its
objective was to evaluate the status of cobalamin and
the response to supplementation in patients with PD.
However, this trial was unsuccessful and terminated
because funding ended, and patient enrollment was
not completed within the specified time frame. This
study could also provide critical pilot data to evalu-
ate treatment efficacy for patients considered to have
below-normal serum vitamin B12 levels.

Ceftriaxone This drug is currently in a clinical trial
under the ClinicalTrials.gov identifier: NCT03413384.
It is in recruitment status and is a phase II trial, with
an estimated study completion date of May 2022. This
study evaluates the efficacy and safety of ceftriaxone in
patients with mild PD dementia. The effects observed
in the animal model of PDD (Parkinson’s disease
dementia) have suggested that ceftriaxone is a poten-
tially promising medical treatment for PDD patients to
improve cognitive and motor function defects.

Semaglutide This drug is one of those recently pro-
posed for reuse in PD that has reached clinical trials; it
is currently in a trial with the ClinicalTrials.gov iden-
tifier: NCT03659682. This study is in a state of “not
yet recruiting,” with an estimated completion date of
December 2024 to test the neuroprotective and anti-
inflammatory properties of semaglutide in PD.

These clinical trials expose us to how promising drug
repositioning could be in PD. There are drugs with sat-
isfactory results to suggest more comprehensive stud-
ies, such as exenatide, levetiracetam, and nilotinib, on
the right path to repositioning. On the other hand,
some trials have remained in an “unknown” state,
which has not been given continuity and for which it
is necessary to carry out a more detailed review of the
possible causes of not reporting the findings.
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Pharmaceutical nanotechnology strategies

for optimizing drug repositioning in Parkinson'’s
disease

Pharmaceutical nanotechnology enables novel approaches
to drug delivery [77]. One promising approach is NPs as
carriers for drug transport. NPs allow overcoming phar-
macological limitations such as low solubility, rapid bio-
degradation, low bioavailability, adverse effects, and low
permeability through biological barriers [78]. The main
challenges in developing a formulation to treat PD include
an efficient crossing of the drug through the BBB and con-
trolled drug release to avoid fluctuations in concentration.
The BBB has the function of protecting the CNS, restrict-
ing the entry of harmful xenobiotics, regulating the pas-
sage of endogenous molecules, and limiting therapeutic
agents’ entry [79, 80]. Because PD therapies are generally
chronic, taking medications by mouth is a comfortable
and safe option for patients; however, studies of NPs with
the ability to overcome both the BBB and the gastroin-
testinal barrier are needed. Currently, the approaches for
administering drugs through the BBB are direct injec-
tion and implantation, the temporary opening of the BBB,
intravenously (IV), and intranasally [81-86]. An effec-
tive nanocarrier of drugs for PD should ideally be capa-
ble of protecting the drug from physiological conditions,
overcoming the BBB and target neurons in the brain, and
guaranteeing a controlled release at the site of action [19,
87]. Several internalization mechanisms have been found
through the BBB that are mainly influenced by the surface
properties of NPs; these are receptor-mediated endocyto-
sis, adsorption-mediated endocytosis, macropinocytosis,
and opening of tight junctions [88—91].

Biodegradable nanoparticles

NPs can be synthesized from different materials offering
variable physicochemical characteristics, which allow dif-
ferent interactions with biological systems. We suggest
using biodegradable NPs (polymeric and lipid, Fig. 3) in
drug reformulation for optimal repositioning in PD since
they offer numerous advantages over other materials (for
example, metallic or ceramic). Currently, there is plenti-
ful research on synthesis procedures and applications of
polymeric NPs, the use of biopolymers has the advantage
that there are well-established methods for their develop-
ment, and there is extensive information on their toxicity.
Also, polymers offer a high capacity to modify their phys-
icochemical properties to synthesize NPs [19]. Some of
the most successful polymeric materials in their use are
gelatin, hyaluronic acid, alginate (ALG), chitosan (CS),
polylactic-co-glycolic acid (PLGA), polylactide (PLA),
polyethylene glycol (PEG), polycaprolactone (PCL), and
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Fig. 3 Biodegradable nanoparticles. Nanosystems are proposed
for the optimization of drug delivery in PD. NPs based on lipids

and polymers are the most interesting since they are synthesized
based on biodegradable and biocompatible materials representing
low toxicity and a high capacity to modify their physicochemical
properties

polyanionic cellulose (PAC) [78]. Lipid nanoparticles
have certain advantages that make them attractive to be
used as nanocarriers in PD [92], mainly their composi-
tion of lipid matrix (based on phospholipids, cholesterol,
triglycerides) that is physiologically tolerable, leads to lit-
tle toxicity, scalability of production without the need for
organic solvents, and their high bioavailability [93].

Physicochemical parameters for the optimization of NPs
There is currently no consensus on the physicochemi-
cal characteristics that NPs must meet to achieve greater
drug delivery efficiency to the CNS since these charac-
teristics depend on the specific materials used in their
synthesis. Relatively large-sized NPs, but with suitable
surface coatings (e.g., non-ionic surfactants, cationic
polymers), have been found to pass through the BBB;
therefore, it is advisable to evaluate each proposed nano-
formulation in vitro and in vivo. However, for the design
of NPs targeting the CNS, certain parameters must be
considered in a general way, such as size, PDI, morphol-
ogy, drug load, and Z potential.
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Concerning size, it has been reported that there is
greater absorption as size decreases; NPs of 100 nm in
diameter are significantly more absorbed than larger par-
ticles [94, 95]. Another study showed that the smallest
NPs, between 50 and 100 nm, do not exhibit a significant
difference in cell absorption [96]. On the other hand, it
has been documented that even NPs of 345 nm [19] and
up to 422 nm can cross the BBB (these larger-sized NPs
were functionalized with non-ionic surfactants) [97]. In
2020, Lombardo et al. conducted an extensive review,
gathering data from more than 50 articles reporting NPs
with sizes between 100 and 345 nm with efficient cross-
ing through the BBB [98]. Gao and Jiang studied the
influence of particle size on the transport of methotrex-
ate through the BBB by polysorbate 80-coated polybutyl-
cyanoacrylate NPs. They studied NPs with sizes from 70
to 345 nm, finding that NPs between 170 and 345 nm did
not present a significant difference in methotrexate deliv-
ery to the brain [99]. Therefore, we suggest that a size of
NPs between 100 and 345 nm could be used as a refer-
ence point to start testing for BBB internalization. The
PDI must be less than 0.1 for a monodisperse size distri-
bution to be considered [100].

Concerning morphology, spherical NPs are preferred
because they guarantee an adequate volume/contact
surface ratio [101]. Regarding drug loading, it is prefer-
able to transport drugs in NPs with high loading capac-
ity to ensure greater delivery of drugs with a low number
of NPs and to avoid the toxic accumulation of materials
used to synthesize NPs [19]. The drug loading capacity in
NPs is a difficult parameter to control; most of them have
the drawback of low drug loading (generally less than
10%); therefore, nanosystems with high drug loading
capacity are necessary, which reach a drug load greater
than 10% [102]. Compared to the physical encapsulation
of drug molecules in inert carriers, polymer-drug conju-
gates are good candidates for NPs with high drug load-
ing due to their limited use of carrier materials. In this
context, Shen et al. developed linear conjugates of poly-
mer-drug by conjugating one or two molecules of strong
hydrophobic camptothecin (CPT) to a very short oligoe-
thylene glycol chain, reaching a drug load content of 40
to 58% [103]. For brain-targeted drugs that need to cross
the blood—brain barrier, carrier materials are essential for
their function, and some materials allow good drug load-
ing. For example, PLGA NPs with a size of ~184. 6 nm
have achieved a drug loading capacity of 10.2140.89%
[104]. Other PLGA NPs with a size of ~ 155 nm reached
their highest drug loading capacity of 20.6% [105]. The
influence of the Z potential, on the one hand, allows
controlling the stability of NPs in solution; on the other
hand, it allows controlling the interaction with the bio-
logical environment. For greater stability of NPs only by
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electrostatic repulsion, an absolute minimum Z poten-
tial value of |30 mV| is required, approximately |20 mV|
provides short-term stability, and values in the range of
|5 mV| indicate low stability (rapid aggregation) [106].
In the case of a stabilization of NPs that combine elec-
trostatic repulsion and steric stabilization (electrosteric
stabilization), generally, it is required to have a minimum
value of |20 mV|. The NPs are stabilized with the help of
non-ionic surfactants; therefore, the resulting steric effect
contributes substantially to the stability of NPs with zeta
potentials below |20 mV| [106, 107]. Although, due to
the negative surface charge of the endothelial cells of the
BBB, NPs with positive Z potential are preferable to pro-
mote bioadhesion (by the principle of electro-attraction)
and, consequently, the permeability of the BBB.

Upon contact with biological matrices, most materials
are immediately coated with proteins, forming a protein
crown [108]. The affinity for proteins is higher towards
hydrophobic nanomaterials or charged surfaces than
hydrophilic or neutral ones [109]. Neutrally charged NPs
have been shown to have a distinctly slower opsonization
rate than charged particles [110]. A study on the influ-
ence of the zeta potential of negatively charged polymeric
NPs showed an increase in plasma protein uptake with
increasing surface charge density [111]. Nanomaterials
with hydrophobic surfaces have an affinity for adsorb-
ing apolipoproteins, albumin, and fibrinogen, whereas
hydrophilic surfaces bind a smaller proportion of these
proteins [112]. Therefore, the formation of the protein
corona cannot be completely avoided. An option is to
adhere to materials with a nearly neutral charge or highly
hydrophilic on the surface of the NPs; if the adhesion of
proteins is completely avoided, NPs could become toxic
[19].

Surface functionalization

NPs surface functionalization allows materials to be
added to the surface layer to target NPs to specific recep-
tors found on particular cell types (e.g., dopaminergic
neurons) and improve cell permeability. For this reason,
various materials such as polymers, proteins, and other
additives have been assessed [113] (Fig. 4a). In Table 2,
we cite examples of potential materials used as NPs
surface linkers for drug delivery in PD. A study has sug-
gested and successfully demonstrated that membrane
factors, such as transferrin receptors (TfRs), can promote
NPs transcytosis by specific interaction with gastrointes-
tinal endothelial cells [114]. At the brain level, lactoferrin
(Lf) is a ligand that favors the absorption of NPs in the
BBB since there is an increase in the expression of lacto-
ferrin receptors (LfRs) in the substantia nigra and striatal
dopaminergic neurons, as well as in the endothelial cells
of the BBB of PD patients [115, 116]. Thus, the efficacy of
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NPs in PD can be improved by functionalizing the sur-
face with Lf and Tf that act as ligands to promote recep-
tor-mediated transcytosis (Fig. 4b).

Current advances in NPs for Parkinson’s disease

Reports detailed the presentation of drugs currently
being used for PD and have been reformulated in NPs.
For instance, Zhao et al. [123] developed polymeric NPs
based on PEG-PCL. The formulation encapsulated Gink-
golide B (GB), which is believed to act in a neuroprotec-
tive way and treat PD. GB has poor oral bioavailability,
limiting its clinical application, and these NPs facilitated
sustained release, thus enhancing its ability to accu-
mulate in the brain and treat PD. The NPs had a size of
91.26 4= 1.34 nm, polydispersity index (PDI) of 0.17+0.01,
the zeta potential of — 12.09£0.97 mV, load capacity of
26.93%, and encapsulation efficiency (EE) of 87.52%. A
biphasic release pattern was observed, and ~30% of the
total GB was released during the first two h, followed
by a more gradual sustained release of 94% until a 48 h
period. This characteristic could be improved by playing
with polymer concentrations or even coating the surface
with other polymers such as CS. Bromocriptine (BRC) is
a widely used PD drug that slows down and minimizes
the motor fluctuations associated with L-DOPA. Shadab
et al. [124] developed BRC-loaded CS NPs with an aver-
age size of 161.3 nm, a zeta potential of 40.3 mV, load
capacity 37.8%, EE of 84.2%, and increased brain activity
uptake of BRC-NPs was observed. Gambaryan et al. [125]
developed PLGA NPs loaded with L-DOPA, with a size
of 250£50 nm and EE of 104+2%. The authors recorded
an L-DOPA-PLGA-NPs increased motor function during
the treatment period of 112 days by the intranasal route,
demonstrating a prolonged effect even one week after the
interruption of treatment with the possible reduction of
the effective drug dose and the frequency of administra-
tion. Fernandes et al. [126] developed PLGA-PEG NPs,
as carriers of coumarin, a potent drug inhibitor of mono-
amine oxidase B (MAO-B), reversible and selective, but
with suboptimal aqueous solubility, which prevents its
use in vivo tests. The NPs had an average size of 105 nm,
a zeta potential of — 10.1 mV, and EE of 50%. The PLGA
NPs inhibited P-glycoprotein (P-gp) and could cross the
intestinal and brain membranes, allowing the successful
transport of coumarin to the brain. In these reports, pol-
ymeric materials (CS, PCL, PEG, and PLGA) are attrib-
uted to the ability to have an affinity for the BBB and to
be able to permeate it effectively.

Reports of functionalized nanocarriers have also been
found, which have presented promising results for PD
use. Lopalco et al. [117] developed liposomes (LP) loaded
with dopamine hydrochloride (DA HCI) functionalized
with Tf, with a size of 181.7+7.8 nm, EE of 35.44+1.8%,
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b)

Polymers

Brain

brain, for this use, is assembled with specific receptors found in the BBB

Fig. 4 aIncreased specificity towards BBB. The surface coating of NPs with suitable materials can increase the specificity towards the BBB; these
materials (as mentioned in Table 2) can be polymers, proteins, antibodies, peptides, and other additives. b Receptor-mediated transcytosis. The
passage through the BBB is exemplified through receptor-mediated transcytosis. A very frequently used pathway for the transport of NPs to the

PDI of 0.2, and potential zeta of+7.5 mV. Stability was
evaluated by measuring their size and PDI for one month;
then, the amount of DA was determined by high-perfor-
mance liquid chromatography (HPLC), and no significant
variations were detected, so it was stated that the vesi-
cles are stable and can be used for future studies. With
these LP, an improvement of the crossing of the BBB was
achieved, increasing the benefits and reducing the com-
plications of patients undergoing chronic treatment with
L-Dopa. On the other hand, Huang et al. [127] developed
polyamidoamine (PAMAM) NPs and PEG functionalized
in the same way with Lf, with an average size of 196 nm, a
zeta potential of 29.35 mV, and loaded with plasmids for
neurotrophic factor derived from the human glial cell line

(hGDNF). GDNF is considered the gold standard neuro-
trophic factor for PD therapy. However, GDNF cannot
cross the BBB; thus, the formulation in NPs becomes
capable of crossing the BBB and exerting a neuroprotec-
tive effect on dopaminergic neurons.

Reformulation strategies of NPs for Parkinson’s disease

In the present review, we have identified the drugs cur-
rently being proposed for drug repositioning and the
areas of opportunity for a possible reformulation in NPs
(Table 3) that allow future repositioning studies to be
optimized. Their ability to cross the BBB was also identi-
fied, and whether they have been previously reformulated
into NPs.
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Table 2 Examples of materials to functionalize the surface of NPs proposed for drug delivery in PD
Composition of NPs Functional material Function Mechanism References

7pep-M-C6 Transferrin

DA-Tf-LP Transferrin Crossing of BBB

B-Lf-PEG-PLGA Lactoferrin

striatum

DA-PEG-LP Polyethylene glycol

Selegiline-CS Chitosan

pDNA-NGF-GNP Nerve growth factor

hGDNF-Angiopep-DGL-PEG  Angiopep Crossing of BBB

RHCI-Polysorbate 80-CS Polysorbate 80 Crossing of BBB

Crossing of gastrointestinal barrier

Effective biological ligand to the

Evasion of the immune system

Crossing of BBB and mucosal barriers

Improves neural uptake

Enter the cells through a specific clathrin-  [114]

mediated mechanism

BBB crossing by Tf receptor-mediated [117]

endogenous transcytosis

The Lf receptor is overexpressed in epithe-  [115]
lial cells, capillaries, and neurons in PD. Cel-
lular uptake occurs via receptor-mediated

transcytosis to Lf

PEG coating is believed to increase its [118]
biological half-life due to reduced interac-
tions with plasma proteins or cell surface

receptors

The mucoadhesive nature of QS improves  [119]
mucosal retention time, improves permea-
bility through the BBB through endocyto-
sis by electrostatic adhesion, and through
an opening of tight junctions

Enhances neuronal uptake through NGF
receptor-mediated endocytosis

Angiopep is a ligand that specifically binds
to low-density lipoprotein receptor-
related protein (LRP that is overexpressed
on the BBB and crosses by transcytosis

Coating with polysorbate 80 helps inthe  [122]
adsorption of plasma proteins from blood

and thus, facilitates the entry of nanopar-

ticles to BBB by the receptor-mediated

endocytosis

B Borneol, CS Chitosan, C6 Coumarin 6, DA Dopamine, DGL Dendrigraft poly-L-lysine, GNP Gold nanoparticles, h\GDNF Human glial-derived neurotrophic factor, Lf
Lactoferrin, LP Liposomes, NGF Nerve growth factor, NPs Nanoparticles, M PEG-b-PCL copolymer, pDNA Plasmid DNA, PEG Polyethylene glycol, PLGA Poly Lactic-co-
Glycolic Acid, RHCI Ropinirole hydrochloride, Tf Transferrin, 7pep Transferrin receptor specific 7peptide

We found that most of the drugs proposed for repo-
sitioning in PD have been reformulated in NPs, at least
for research purposes. However, most have been refor-
mulated to overcome the gastrointestinal barrier. There-
fore, we identified that it is necessary to test these drugs
in NPs to improve the BBB crossing and brain bioavail-
ability. The following is evidence of drugs that have been
reformulated in NPs, focusing on overcoming BBB; how-
ever, not all formulations have had the same effects on the
central nervous system. Kumar et al. [140] encapsulated
Dimethyl fumarate in solid lipid nanoparticles (SLN)
synthesized from tocopherol acetate, with a mean size of
69.70 nm, PDI of 0.317, the zeta potential of — 9.71 mV,
EE of 90.12%, and load capacity of 20.13%. The research
confirmed higher intestinal absorption and neuronal
uptake through cell uptake studies in Caco-2 and SH-
SY5Y monolayers, and oral bioavailability increased 4.09
times. Brain bioavailability substantially improved com-
pared to the drug alone. Recently, Khanna et al. [149],
encapsulated Nalbuphine (NLB) in SLN synthesized from
phosphatidylcholine, with an average size of 170.07 nm,
encapsulation efficiency of 93.6%, and loading capacity
of 26.67%. NLB-SLN brain targeting was confirmed by

noninvasive scintigraphy, reaching its maximum perme-
ability eighth h after intranasal administration. Omarch
et al. [145] conducted a comparative study; the authors
developed polymeric PCL NPs and phosphatidylcholine
LP to evaluate pentamidine in vitro transport through
the BBB. The pentamidine-loaded PCL NPs had a mean
size of 267.58 nm, PDI of 0.25, and zeta potential of
— 28.1 mV, while pentamidine-loaded LP had a mean size
of 119.61 nm, PDI of 0.25, and zeta potential 11.78 mV.
Pentamidine loading was 0.16 pg/mg (w/w) and 0.17 pg/
mg (w/w) in PCL NPs and LP, respectively. LP carried
87% of the dose, PCL NPs 66% of the dose, and free pen-
tamidine penetration was 63% of the dose. Therefore, the
results suggested that LP are more efficient nanocarriers
for transporting pentamidine through the BBB, at least
in vitro. LP were synthesized from L-phosphatidylcholine
and cholesterol and, therefore, are considered biocom-
patible, biodegradable, and less toxic; these reports offer
better brain bioavailability of drugs that can be exploited
in the better management of PD.

Therefore, NPs are an attractive strategy in the repo-
sitioning of drugs for the treatment of PD that can
guarantee an adequate therapeutic treatment as an
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adjuvant or as the main treatment, with a shorter inves-
tigation time.

Conclusion

In PD, drug delivery to affected areas of the brain is
desired; however, most molecules cannot cross the BBB,
leading to the failure of clinical trials of many drugs pro-
posed for reuse in PD. Drug repositioning in PD is a topic
of growing interest to the scientific community and the
pharmaceutical industry, as it reduces the number of
steps required for clinical development and reduces the
amount of time and costs to bring a drug to regulatory
approval. Another advantage of repositioning is that the
clinical profile of approved drugs is already well char-
acterized. Thus, researchers can often move directly to
Phase II evaluations for efficacy trials in the new indi-
cation of interest. In this review, we identified 28 drugs
that have been proposed as candidates for repositioning
in PD in recent years; most of them have an inability or
low ability to cross the BBB. To overcome this limita-
tion and optimize future PD repositioning studies, we
propose using lipid and polymeric nanosystems: lipid-
based NP (SLN, micelles and LP) and polymeric-based
NP (nanocapsules, nanospheres and polymeric micelles).
These nanosystems show promise for overcoming the
pharmacokinetic limitations of conventional therapies.
Among their main advantages, they can protect the drug
from degradation, provide sustained release, facilitate
entry into the CNS, and deliver the drug to specific cells
to target particular intracellular pathways. Surface func-
tionalization with polymers, peptides, antibodies, and
surfactants, among other materials, is also proposed as a
strategy that has been shown to promote efficient cross-
ing through the BBB. Six drugs were found in reposition-
ing clinical trials for PD, of which nilotinib has shown
promising results. The current COVID-19 pandemic has
evidenced drug repositioning as a hopeful strategy for
drug development for difficult-to-treat diseases such as
PD, although it has also been evidenced that better pro-
tocols and regulations are needed to direct this activity.
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