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Abstract 

Sustainable agriculture is an important conception to meet the growing food demand of the global population. The 
increased need for adequate and safe food, as well as the ongoing ecological destruction associated with conven‑
tional agriculture practices are key global challenges. Nanomaterials are being developed in the agriculture sector to 
improve the growth and protection of crops. Among the various engineered nanomaterials, carbon nanotubes (CNTs) 
are one of the most promising carbon-based nanomaterials owing to their attractive physiochemical properties such 
as small size, high surface area, and superior mechanical and thermal strength, offering better opportunities for agri‑
culture sector applications. This review provides basic information about CNTs, including their history; classification; 
and electrical, thermal, and mechanical properties, with a focus on their applications in the agriculture field. Fur‑
thermore, the mechanisms of the uptake and translocation of CNTs in plants and their defense mechanisms against 
environmental stresses are discussed. Finally, the major shortcomings, threats, and challenges of CNTs are assessed 
to provide a broad and clear view of the potential and future directions for CNT-based agriculture applications to 
achieve the goal of sustainability.
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Introduction
Currently, the agriculture sector is facing a wide range 
of challenges such as climate change, plant pathogenic 
organisms, infectious crop diseases, soil nutrient defi-
ciency, crop yield reduction, lack of awareness of geneti-
cally modified crops, and a lack of workforce, which 
threaten to destabilize agriculture sustainability [1–3]. As 
the climate change conditions continue to develop, more 
extreme environmental conditions are becoming more 
frequent, such as salinity, drought, high and low tem-
peratures, which can cause extensive annually reductions 
in overall crop production, yield, and quality worldwide 
[4, 5]. Abiotic stresses, particularly drought and high 

temperatures, have increases in frequency and intensity 
as a result of climate change, resulting in significant losses 
in major cereal crops such as wheat, maize, and barely. 
For instance, drought and soil salinity in high levels, as 
well as their secondary effects such as osmotic, oxidative, 
and ionic stress, are recognized to be major obstacles to 
agricultural output [6–9]. Furthermore, biotic stresses 
such as pests and diseases reduced the agriculture pro-
duction by approximately 20–30% annually, which is con-
sidered as the most discouraging challenge to achieving 
food security globally [10, 11].

In previous decades, several alternative approaches 
have been deployed to promote agricultural sustainabil-
ity, such as chemical inputs (commercial fertilizers and 
pesticides), crop rotation, precision farming, urban farm-
ing and genetic modifications through targeted breeding 
and gene manipulation. Several conventional and molec-
ular approaches also have been used in crop breeding, 
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including functional genomic tools, genetic selection, 
mutagenic breeding, physical maps, soma clonal varia-
tions, and whole-genome sequence-based approaches 
[12]. In fact, genetic engineering varieties are only avail-
able for a small portion of food crops such as maize, soy-
bean, canola, rice, potato, papaya, squash, and apple that 
uses modern biotechnology tools to introduce, elimi-
nate, or rearrange specific genes. By contrast, commer-
cial conventional breeding releases hundreds of new crop 
types each year to improve crop production, food secu-
rity, nutrition, and customer choice. Conventional plant 
breeding involves identifying parent plants with desirable 
characteristics to create favorable combinations in the 
next generation [13]. These methods have been devel-
oped to increase commercially valuable traits in plants, 
including agriculture productivity, by enhancing stress 
tolerance and breeding such crops with various stress-
tolerant traits. However, existing technologies have some 
major drawbacks, including limited availability of specific 
crop genes, low success rates, significant ecological con-
sequences, time-consuming processes, and public con-
cerns about genetically modified crops [14, 15]. Chemical 
priming is another inspiring alternative approach that 
can help crops resist environmental stresses through 
establishing defense pathways without employing genetic 
changes [16]. To overcome these problems, farmers have 
adopted the practice of excessive utilization of agrochem-
icals to manage these losses and enhance crop yields [17]. 
However, the excessive use of conventional fertilizers 
for a long period leads to severe environmental prob-
lems such as air pollution, soil quality degradation, water 
eutrophication, and groundwater pollution [18–20]. In 
addition, chemical fertilizers have low efficiency due to 
volatilization and leaching, which cause environmental 
contamination and raise production costs, posing a con-
straint on achieving adequate agricultural sustainability 
[21]. Therefore, new approaches that can improve the 
efficiency in the utilization of agrochemicals while effec-
tively protecting crops from environmental stresses are 
required to fulfill current and future food demands safely 
and sustainably [22–25].

Nanotechnology is a promising candidate for sustain-
able agriculture, which is expected to transform con-
ventional farming into precision farming. Precision 
farming is a well-balanced strategy for increasing agri-
culture yields by monitoring environmental variables and 
implementing precisely controlled actions in response to 
each environmental condition [26]. Agriculture is a highly 
complex activity and used to be ungrateful with revolu-
tions and drastic approaches such as the use of geneti-
cally modified crops and agrochemicals. Nanotechnology 
has the potential by improving crop yields while main-
taining ecological balance, environmental sustainability, 

and economic stability [2, 3]. Several researchers have 
recently focused on nanotechnology-based agriculture to 
increase agricultural productivity through efficient nutri-
ent delivery, nutrient control, reducing mobile nutrient 
losses, developing slow-release fertilizers, and improving 
the accessibility of poorly available nutrients [23, 27–29].

NMs are considered an ideal platform for leading the 
agri-nanotech revolution owing to their advantages of an 
incredibly small size (< 100  nm), allowing them to pass 
through biological barriers and permeate plant tissues via 
foliar or root application, therefore providing novel and 
efficient routes for nutrients and pesticide delivery [30, 
31]. The most effective applications of NMs in agriculture 
involve the use of nanofertilizers, which improve growth 
and crop productivity; the suppression of plant diseases; 
and nanosensors to monitor soil quality and plant health 
[32–35]. Compared with particulate matter or bulk par-
ticles, the use of NMs shows great efficiency due to their 
diverse functions, large surface area, high stability, the 
presence of active sites on the surface, and high adsorp-
tion capacity [36, 37]. For agriculture applications, NMs 
can deliver herbicides, fertilizers, and pesticides over a 
larger specific surface area and ensure their “on-demand” 
release, whether the goal is to prevent pathogens, pests, 
and diseases, or to meet nutritional requirements. 
Thus, NMs can promote nutrient delivery, resulting in 
improved crop growth, yield, and quality [38–41].

NM engineering has emerged as a promising technol-
ogy for sustainably improving the efficiency of present 
agricultural practices and overall crop productivity [42]. 
Among the various types of carbon-based nanomateri-
als (CBNs), carbon nanotubes (CNTs) have attracted 
more attention in agricultural applications owing to their 
impacts on plant growth regulation, ability to cross plant 
cell walls, agricultural smart delivery, nano transport, and 
as a medium for biosensors [43–46].

CNTs are considered a novel fertilizer given their 
capacity to function as both a slow-release fertilizer and a 
plant growth booster [47, 48]. CNTs can be used in agri-
culture as smart delivery systems for nano-encapsulated 
agrochemicals that are time-controlled, self-regulated, 
and specifically targeted for components such as fertiliz-
ers and pesticides [48–50]. Nano-carbon fertilizer is one 
of the applications of CNT in agriculture. Nano-carbon 
may adsorb nitrogen from ammonia and release hydro-
gen ions, allowing plants to absorb more water and nutri-
ents. As a result, the plant’s uptake of N, P, and K would 
be improved. It was investigated by field experiment that 
applying nitrogen and nano-carbon together could boost 
the output and quality of rice. The results also revealed 
that nano-carbon might be employed as a coating mate-
rial for slow-release fertilizers and incorporation of nano-
carbon into slow-release fertilizer could help to reduce 
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water pollution [51, 52]. Effective delivery of nutrients 
is highly dependent on plant water uptake. Due to their 
high water conductivity, CNTs can be developed from a 
variety of NMs and are ideally suited as a nanoplatform 
for assessing and treating diverse nutritional antago-
nisms [53, 54]. Agrochemicals or other compounds can 
be delivered to hosts using CNT-based delivery systems, 
resulting in fewer chemicals being discharged into the 
environment and less damage to other plant tissues [55, 
56].

Plant–CNT complexes alter the physiological and mor-
phological characteristics of plants depending on the size, 
concentration, solubility, and type of CNTs, as well as 
the particular plant species and plant growth stages. The 
uptake and translocation of CNTs in plants have been 
investigated by several researchers who have proposed a 
strategy based on the ratio of CNT size to cell wall pore 
size [57, 58]. Ultrasonic-assisted chemical oxidative cut-
ting and the addition of carboxylic groups to CNTs 
increase their solubility and uptake into plants [59, 60]. 
CNT uptake into plants has been investigated under vari-
ous plant growth conditions such as with agar medium 
and hydroponic culture, providing contradictory results 
[58, 61, 62]. Another pilot-scale study was conducted to 
elucidate the toxicity effects of functionalized and non-
functionalized single-walled carbon nanotubes (SWC-
NTs) on root elongation of various crops such as carrot, 
cabbage, tomato, onion, and lettuce. Both SWCNTs and 
f-SWCNTs affected root elongation in all selected crops. 
However, phytotoxicity varied between types of SWC-
NTs, with SWCNTs affecting more species. Tomato 
and lettuce were the most sensitive species, with highly 
significant reductions in root length observed at 24 and 
48 h after exposure to CNTs. In onions and cucumbers, 
non-functionalized CNTs increased root elongation. 
In addition, root elongation of cabbage and carrot was 
not affected by the presence of either f-CNTs or CNTs. 
Effects observed following exposure to f-CNTs or CNTs 
were more pronounced at 24 h compared at 48 h [63].

Several studies have recently demonstrated that a 
low concentration of CNTs improves seed germination 
and seedling growth in tomato, soybean, and corn. The 
effects of CNTs on plant growth and reproduction can be 
induced directly by the interactions of CNTs with plant 
proteins, transcription factors, or DNA, or indirectly by 
inducing an increase in nitric oxide and reactive oxygen 
species (ROS) production [64]. Additionally, CNTs were 
shown to increase the chlorophyll content and photosyn-
thesis, resulting in the promotion of the plant’s vegeta-
tive growth. Furthermore, under salt-stressed conditions, 
CNTs also caused alterations in the lipid content, flex-
ibility, and permeability of the root plasma membranes, 
resulting in enhanced aquaporin transduction [65]. This 

property of CNTs could be beneficial in maximizing 
water consumption in plants, especially in areas of water 
scarcity [66].

In this review, we provide a detailed history and a 
broad overview of the applications of CNTs in the agri-
culture field. We particularly aimed to provide up-to-date 
information and a complete mechanistic understanding 
of the new paradigms of the applications and progress of 
CNTs in agriculture by investigating their roles in pro-
moting seed germination and plant growth, antibacte-
rial activity, gene delivery, and as nanosensors, toward 
designing a better and more sustainable agriculture 
system for the future. Moreover, we discuss the mecha-
nism by which CNTs can promote sustainable agricul-
ture through their uptake, translocation, accumulation, 
and defense mechanisms against environmental stresses. 
Finally, CNT-related challenges and future perspectives 
in the agriculture field are highlighted.

Classification of CNTs
In recent decades, CNTs have been considered among 
the most important tools in various fields. A CNT is 
a versatile allotrope form of carbon with a cylindrical, 
long, tubular structure comprising rolled-up graphene 
sheets. CNTs can take on various structures depend-
ing on the length, thickness, and number of layers [67]. 
CNTs typically have a diameter ranging from 1  nm 
up to 50 nm. Normally, they are several microns long, 
although recent advancements have enabled construc-
tion of much longer nanotubes in the centimeter scale. 
A graphene sheet can be used to synthesize different 
types of nanotubes by rolling the tubes down in vari-
ous configurations [68]. CNTs can be classified into 
two main types based on their structures: SWCNTs 
comprise a single layer of a graphene sheet with diam-
eters ranging from 0.4 to 2 nm, whereas multi-walled 
carbon nanotube (MWCNTs) consists of multilayer 
graphene sheets with outer and inner diameters of 
2–100 nm and 1–3 nm, respectively, and with lengths 
ranging from 0.2  nm to several microns. CNTs can 
take on unique structures, such as hollow graphite cyl-
inders with hexagonally organized carbon rings, [68] 
and have high tensile strength (~ 200 Gpa), which is 
similar to that of graphene, but are more stable than 
graphene, even at extremely high temperatures, and 
optimize vibrational entropy [69]. Due to the presence 
of multiple layers of carbon atoms, MWCNTs have 
higher mechanical strength as compared with SWC-
NTs. CNTs also have a stronger young’s modulus and 
greater tensile strength than metals such as steel and 
iron [70–73]. SWCNTs form crystal-like structures 
when hexagonally organized in a bundle, which can be 
classified into numerous types based on the wrapping 
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style, chirality, zigzag, and armchair form. In Fig.  1A, 
scanning electron microscopy (SEM) describe that the 
unusual zigzag shape which is mainly due to SWCNT-
substrate lattice interaction and gas flow [74]. MWNTs 
comprise an array of such nanotubes that are concen-
trically nested like rings of a tree trunk, is one of main 
types of CNTs that can have high structural perfec-
tion (Fig. 1B) [75]. Coiled CNTs produced by catalytic 
chemical vapor deposition (CVD) on an iron-coated 
indium tin oxide substrate. CNTs are found in helical 
forms more than 95% of cases. Each Coil grows with 
its own diameter and pitch as shown in Fig.  1C [76]. 
Transmission electron microscopy (TEM) is used to 
analyze the structure of the coiled CNTs. Similar to 
the straight CNTs, coiled CNTs are built in a series 

of short tubes along the tube axis. The majority of the 
short tubes are bell-shaped, with one end capped and 
the other open, and are referred to as “nanobells” as 
shown in Fig. 1D [77]. SEM image shows that a coiled 
CNT in a length of 20 mm with regular pitch extends 
out from the template in Fig. 1E [77]. The zigzag mor-
phologies consist of very sharp and alternating ∼90° 
bends. They were grown using a plasma enhanced 
CVD process. The bending of the CNTs during growth 
was caused by changing the direction of the electric 
field lines in the growth region of the sample (Fig. 1F) 
[78]. SWCNTs have nearly identical properties to 
MWCNTs, with the exception of their higher tensile 
strength [79, 80].

A Concentrically SWCNTs arrayB

C Helically coiled CNTs

Coiled CNTs > 20 µm 

D

20 µm

50 nm

300 nm

100 nm

E Zigzag CNTs

3 µm 500 nm

Typical coiled CNTs

F

Zigzag SWCNT

5 nm

Fig. 1    Schematic illustration of the structure and morphology of CNTs. A Scanning electron microscope (SEM) image of a zigzag shaped SWCNT 
[74]. B Transmission electron microscope (TEM) image of a MWNT containing a concentrically nested array of nine SWNTs [75]. C SEM image of large 
amount of helically coiled CNTs [76]. D TEM images of typical coiled CNTs with a nanobell structure [77]. E SEM images of the coiled CNTs > 20 mm 
in length [77]. F SEM image of array of CNTs grown with zigzag morphology using a three-stage growth process [78]
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Structural, electrical, thermal, and mechanical 
properties of CNTs
CNTs have exceptional structural, electrical, thermal, 
and mechanical properties and can be used alone or in 
combination to create sensitive sensors or multifunc-
tional materials [81, 82]. Several researchers have demon-
strated that CNTs exhibit unique conductive properties. 
These findings were the first to suggest that geometri-
cal changes such as defects, chirality, diameter, and the 
degree of crystallinity of the tubular structure, have a sig-
nificant impact on the electrical properties of CNTs [83, 
84]. The diameter and helicity of graphene influence the 
semiconductor or metallic potential of CNTs [85, 86]. 
Metal SWCNTs in rope form have a resistance of roughly 
10− 4 Ω cm at 300 K [87]. Because of the presence of sp2 
hybridized covalent bonds, CNTs exhibit greater thermal 
conductivity than sp3 hybridized diamonds [88, 89]. The 
temperature and phonon mean-free path widely influ-
ence the thermal conductivity of CNTs. At room tem-
perature, the thermal conductivity of SWCNTs is in the 
range of 1800–6000 W/m·K, whereas MWCNTs have a 
thermal conductivity of approximately 3000 W/m·K. The 
thermal properties of CNTs are also influenced by their 
functionalization [90, 91]. The mechanical strength of 
CNTs is mainly due to their strong sp2 covalent bonds. 
CNTs with diameters ranging from 1.0 to 1.5 nm have an 
average Young’s modulus value of ~ 1.25 TPa, which is 
higher than the in-plane modulus value of graphite [92, 
93]. The chirality and diameter of CNTs strongly influ-
ence the elastic properties of SWCNTs [94, 95].

The procedures that are commonly available for the 
synthesis of CNTs include chemical vapor deposition 
(CVD), [96–99] arc discharge, [83, 100–102] and laser 
ablation (LA) [103, 104]. Earlier arc discharge and laser 
ablation techniques generally required a high temperature 
of approximately  > 1700  °C during synthesis. However, 
these techniques were eventually supplanted by chemi-
cal vapor deposition, which requires a lower temperature 
(800 °C), resulting in a well-aligned structure and desired 
layer orientation [105]. CVD is a class of methods that 
appear to give the best prospect of obtaining a regulated 
process for the selective synthesis of nanotubes with pre-
defined features. The CVD process entails the catalyst-
assisted breakdown of hydrocarbons, commonly ethylene 
or acetylene, in a tube reactor at 550 − 750 °C, followed 
by the development of CNTs over the catalyst as the sys-
tem cools. The working parameters, such as temperature 
and operation pressure, the type, volume, and concen-
tration of hydrocarbon, the nature, size, and pretreat-
ment of metallic catalyst, the nature of the support, and 
the reaction duration, all influence the features of carbon 
nanotubes produced by CVD [106, 107]. Arc discharge is 
the oldest and most common technique to produce large 

quantities of unpurified nanotubes, much effort is being 
put into developing production processes that give more 
controllable nanotube synthesis routes. This approach 
relies on the electrical breakdown of a gas to generate 
plasma. In compared to other approaches, it uses greater 
temperatures (over 1700  °C) to evaporate carbon atoms 
in plasma, resulting in CNT development with minimal 
structural flaws [68, 108]. laser ablation (LA) is one of the 
best ways for producing SWNTs. LA offers the benefit of 
creating high-quality, high-yield, and high-purity SWNTs 
in a short amount of time: 500 mg of SWCNTs in 5 min 
with up to 90% purity. However, this method is not inter-
esting for the synthesis of MWNTs because of its expen-
sive cost [109, 110].

Non-standard methods such as pyrolysis and hydro-
thermal treatment have also been used for CNT synthe-
sis in addition to these well-established techniques [111]. 
Because of the presence of several undesirable byprod-
ucts such as carbonaceous residues, amorphous carbon, 
fullerenes, and catalyst impurities, the synthesized CNTs 
are impure. This led scientists to focus their efforts on 
purifying manufactured CNTs. Synthesizing high-purity 
CNTs, particularly to achieve specific lengths and diam-
eters, remains a challenge in this current era of extremely 
inventive technology-driven procedures [112–114]. 
Owing to their small size, highly advanced techniques 
are required to assess their characteristics and morphol-
ogy. Moreover, because of their bundled and aggregated 
structure, the usage of CNTs is quite difficult. CNTs must 
be disseminated in water or another solvent for applica-
tion purposes to improve their properties. This can be 
accomplished via a combination of centrifugation, soni-
cation, oxidation, and ultrasonication, as well as with the 
use of dispersing agents. To determine the concentration 
of dissolved CNTs in a solvent, characterization must 
be performed. The techniques that are typically used to 
characterize the morphology, texture, and structure of 
CNTs are divided into four categories: spectroscopic, 
[115–117] thermal, [118, 119] microscopic, and diffrac-
tion procedures [120, 121]. Raman spectroscopy (RS) is 
one of the most powerful characterization technique for 
CNTs. It is routinely employed to evaluate the quality 
and purity of as-prepared CNTs. CNTs have two main 
first order bands such as D and G band in their Raman 
spectrum. The D band is correlated with defects in CNTs, 
which is observed at roughly 1300–1350  cm− 1 whereas, 
G band corresponds to the degree of graphitization of 
carbon nanotubes, which is roughly 1500–1600  cm− 1. 
As a result, the area ratio of the D and G bands (ID /
IG) is commonly used to determine the defect level in a 
CNTs sample [122, 123]. Scanning electron microscopy 
(SEM) and transmission electron microscopy (TEM) 
are the well-known techniques that are commonly used 
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to observe the position of tip and sidewall, as well as the 
morphology of CNTs [124, 125]. Infrared spectroscopy, 
X-ray photoelectron spectroscopy (XPS) and thermo-
gravimetric analysis (TG) are usually used to precisely 
verify the occurrence of functionalization reactions of 
CNTs for final quality evaluation [126, 127].

History and possible applications of CNTs
CNTs are a relatively recent NM, which have only been 
widely recognized and studied in the last decade. CNTs 
were first discovered and characterized in 1952 by Radu-
shkevich and Lukyanovich [128] and single-walled car-
bon nanotubes (SWCNTs) were subsequently discovered 
and described by Oberlin et  al. [129] in 1976. However, 
in most of the recent historical literature, Iijima is cred-
ited with the discovery of CNTs, as the first scientist to 
describe the multi-walled carbon nanotube (MWCNT) 
preparation process in 1991 [83]. The unique properties 
of CNTs, including their large surface area, small size, 
and reactivity, provide excellent opportunities for their 
use in the agriculture sector. In 2008, Cañas et  al. [63]. 
demonstrated the effect of functionalized and non-func-
tionalized SWCNTs on root elongation in several crops 
such as tomato, onion, cucumber, lettuce, cabbage, and 
carrot. Seeds of different plant species were exposed to 
both types of CNTs in petri dishes and placed in a growth 
chamber at 25  °C. Non-functionalized CNTs had a 
greater impact on root length than functionalized CNTs. 
Tomato root elongation was inhibited by non-function-
alized nanotubes, whereas onion and cucumber root 
elongation were improved. Functionalized nanotubes 
reduced root elongation in lettuce, whereas cabbage and 
carrots were unaffected by any type of SWCNT [63]. Lin 
et  al. [43] reported that CNTs penetrated the plant cell 
wall and membrane, which can be used to develop smart 
delivery systems in plants. Confocal fluorescence images 
indicated the cellular absorption of SWCNT–fluorescein 
isothiocyanate (FITC) and SWCNT–DNA conjugates, 
confirming the potential of SWCNTs as nanotransport-
ers to pass through plant cell walls. The authors further 
demonstrated that SWCNTs have the ability to carry var-
ious cargoes to different plant cell organelles [43]. Simi-
larly, CNTs were reported to penetrate the thick seed 
coat and enhance the water uptake process, which could 
contribute to rapid seed germination and stimulate early 
growth in young seedlings [130].

In early studies, CNTs were recognized as promoters 
of seed germination and growth of crops [60, 130–132]. 
Moreover, researchers demonstrated the impact of SWC-
NTs as an antibacterial agent, as they can inhibit the 
growth and development of microbial biofilms [133]. 
CNTs doubled the flower and fruit production compared 
with that of the control by changing the composition of 

soil microbiota [53]. CNTs have also attracted attention 
given their ability to reduce the salinity stress of crops. 
MWCNTs were found to accumulate at higher con-
centrations in plant cells under salinity conditions and 
could enhance the transduction of aquaporin, which 
can improve water uptake and transport to reduce the 
adverse effects of salinity stress [54]. Another study 
demonstrated that CNTs are responsible for the influ-
ence of reproductive growth in fiber-producing crops 
and ornamental species, as highlighted by the significant 
acceleration in total flower production in cotton and 
Catharanthus by 37% and 58%, respectively [134]. Fur-
thermore, CNTs have been applied in gene delivery [135] 
and as nanosensors [32]. The detailed history of CNTs 
in the agriculture field is summarized in Fig. 2A, and the 
possible applications of CNTs in the agriculture field are 
summarized in Fig. 2B.

Effects of CNTs during the life cycle of plants
NMs are informed to improve crop growth and devel-
opment from initial phase of seed germination to death. 
The application of NMs to overall growth and develop-
ment process in crops is mainly dependent on size, con-
centration, physical, and chemical features. CNTs have 
attracted substantial interest in the agricultural sector 
owing to their possible applications in enhancing plant 
growth and seed germination, their ability to penetrate 
plant cell walls, and for cellular delivery. CNTs have 
attracted substantial interest in the agricultural sector 
owing to their possible applications in enhancing plant 
growth and seed germination, their ability to penetrate 
plant cell walls, and for cellular delivery [136–138].

Effects on seed germination
Seed germination is the first step and the most sensitive 
period in the life cycle of plants. Numerous studies have 
demonstrated that the use of nanotechnology has benefi-
cial effects on seed germination. For instance, Khodako-
vskaya et al. [130] demonstrated that CNTs can penetrate 
tomato seed coats, leading to acceleration in the seed 
germination rate and seedling growth on medium con-
taining 10−40  µg/mL of CNTs (Fig.  3A). They further 
observed that tomato seeds in the presence of CNTs 
germinated and grew more quickly than those in the 
absence of CNTs because CNTs accelerated water uptake 
mechanisms by penetrating the seed coats: in 20 days, 
the MWCNTs improved seed germination by up to 90% 
as compared to an increase of 71% in the control group 
and improved plant biomass by up to 50%. Mondal et al. 
[139] also found that MWCNTs improved seed germina-
tion and plant growth in mustard plants. They discovered 
that oxidized MWCNTs were more effective at lower 
concentrations (2.3 × 10− 3  mg/mL) than non-oxidized 
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Fig. 2    Introduction of carbon nanotubes (CNTs). A Timeline of CNT development for applications in the agriculture sector to improve plant 
growth. CNTs were first discovered by Iijima in 1991 and were first introduced in agriculture in 2008. For sustainable agriculture production, CNTs 
improve seed germination and growth, exhibit antimicrobial activity, can be used in gene delivery and as biosensors, and protect plants against 
various environmental stresses. B Diverse applications of CNTs in the agriculture field
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MWCNTs based on the germination index and relative 
root elongation. In addition, Lahiani et  al. [140] deter-
mined the effects of MWCNT (50, 100, and 200  g/mL) 
application in agar media on the germination and growth 
of soybean, corn, and barley after 10–11 days. In com-
parison to the untreated group, the germination rate was 
increased by approximately 50% in barley and soybean 

and by approximately 90% in corn after exposure. Simi-
larly, the shoot (corn) and root (soybean) lengths were 
also enhanced by approximately 40% and 26%, respec-
tively. Moreover, natural MWCNTs obtained after a 
wildfire were found to promote the germination and 
growth of Eysenhardtia polystachya as compared to 
those observed following exposure to amorphous carbon 
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synthetic MWCNTs. Natural MWCNTs increased the 
fresh and dry biomass, particularly at 40 g/mL, and fur-
ther increased the leaf number, root growth, and dry and 
fresh weights of the seedling shoots and roots (Fig. 3D) 

[141]. A similar effect of MWCNTs obtained after natu-
ral forest fires was demonstrated in Lupinus elegans; the 
germination and biomass of L. elegans were considerably 
increased with exposure to 30  g/L MWCNTs, although 
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Fig. 3    Effects of CNTs during the life cycle of plants. A Schematic representation of the effects of CNTs at various stages of plant growth. B The 
effect of single-walled carbon nanotubes (SWCNTs), quantum dots (QDs), and SWCNT-QD conjugates on the phenotype of 2-month-old tomato 
plants grown on a medium supplemented with 0.5 µg/mL QDs, 50 µg/mL SWCNTs, or 50 µg/mL SWCNT-QDs, or without nanoparticles as a control 
[144]. C Morphological observations of red spinach and lettuce exposed to multi-walled carbon nanotubes (MWCNTs) at concentrations of 0, 20, 
200, 1000, and 2000 mg/L in hydroponic culture for 15 days [146]. D Image showing the effects of natural MWCNTs, synthetic MWCNTs, amorphous 
carbon, and a control group on Eysenhardtia polystachya growth [141]. E Effect of synthetic MWCNTs on the growth of Lupinus elegans [142]. F Effect 
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there was a significant decline with exposure to 50  g/L 
MWCNTs (Fig. 3E) [142]. CNTs were also found to influ-
ence the germination of tomato, onion, turnip, and rad-
ish seeds at four concentrations of 0, 10, 20, and 40 mg/L. 
Tomato and onion germination were improved by the 
CNTs at 10–40 mg/L to a larger extent than that for the 
radish and turnip [60].

Effects on physiological and morphological response
NPs can influence the growth and yield of crops by 
changing the morphology and physiology of plants. 
Cañas et  al.[63] examined the effects of functionalized 
and non-functionalized CNTs on the root elongation of 
six selected crops (cabbage, carrot, cucumber, lettuce, 
onion, and tomato) and observed that non-functional-
ized CNTs enhanced the length of roots in the onion and 
cucumber, whereas the CNTs were not able to penetrate 
the roots. Tiwari et al. [143] studied the effects of MWC-
NTs on tomato seedlings and discovered that absorption 
of vital nutrients increased at concentrations of 40 g/mL 
MWCNTs, which consequently improved plant growth 
and biomass. Another study revealed that the addition 
of SWCNTs enhanced tomato seedling growth. How-
ever, the exposure of tomato seedlings to SWCNTs along 
with quantum dots (50  µg/mL) significantly reduced 
the chlorophyll content by 1.5-fold in leaves, and the 
total weight and height of the tomato root/shoot system 
decreased by four times compared with those in the con-
trol group (Fig. 3B) [144]. Likewise, another study dem-
onstrated that pure MWCNTs (20 mg/L) could increase 
the uptake of water and nutrients in maize plants, result-
ing in increased biomass of the plant. The interaction of 
the MWCNT (at 20  mg/L) with the + 2 and + 3 oxida-
tion states of Fe in connection to Fe supply as nutrition to 
seedlings in agarose media was examined using polarized 
energy dispersive X-ray fluorescence analysis (pEDXRF) 
spectrometry. This feature of CNTs was considered 
to have a beneficial effect on plant growth in nutri-
ent-deficient soil [145]. In 2012, Khodakovskaya et  al. 
[131] showed that exposure to 5–500  g/mL MWCNTs 
improved the growth of tobacco plant cells by approxi-
mately 55–60% as compared with that in the control 
group. Through physiological and morphological assays, 
the positive effects of MWCNTs were assessed in vari-
ous crops, including red spinach, lettuce, rice, cucumber, 
chili, soybean, and lady’s finger, in hydroponic culture. As 
illustrated in Fig.  3C, the root and shoot lengths of red 
spinach and lettuce were drastically reduced after 15 days 
of hydroponic cultivation with exposure to 1000  mg/L 
and 2000  mg/L MWCNTs. The most sensitive crops to 
MWCNTs were red spinach and lettuce, followed by rice 
and cucumber; the MWCNTs were shown to have mar-
ginal or no toxicity to chili, lady’s finger, and soybean 

[146]. Another study showed that supplementation of 
CNTs in soil increased the flower number and fruits 
by two-fold, whereas the size and quality of leaves were 
not changed compared with those grown in control soil 
(Fig. 3F) [53].

The effects of four different carbon NMs, including 
activated carbon, SWCNTs, MWCNTs, and graphene 
oxide (GO), on nodulation and nitrogenase activity in 
a rhizobium-legume system illustrated in Fig.  3G. The 
results demonstrated that under non-symbiotic condi-
tions, SWCNTs and GO inhibited bacterial growth and 
the development of plant roots, whereas MWCNTs (50, 
100, 150, 200, 500  µg/mL) enhanced stem and nodule 
development by activation of nitrogenase activity in 
the rhizobium-plants interaction [147]. The research-
ers hypothesized that CNT surface charges may stimu-
late the production of water channel proteins in tomato 
plants, thus improving the plant’s water transport and 
absorption [53, 148, 149]. Zhai et al. [150] investigated 
the effect of three types of MWCNTs (p-MWCNTs, 
positively charged NH2-MWCNTs, and negatively 
charged COOH-MWCNTs), which were directly 
uptaken and translocated to the roots, stems, and leaves 
of maize and soybean at concentrations of 10–50 mg/L 
during 18 days of exposure in hydroponic conditions. 
Transmission electron microscopy (TEM) revealed that 
the MWCNTs aggregated in xylem and phloem cells, 
as well as within intracellular regions (cytoplasm, cell 
wall, cell membrane, chloroplast, and mitochondria). 
Further, MWCNTs enhanced maize growth but inhib-
ited soybean growth. Water transpiration was nearly 
twice as high in maize subjected to 50 mg/L MWCNT-
COOHs as it was in the control maize [150]. Further-
more, pre-germinated wheat seeds were soaked with 
an MWCNT solution at 10–160  µg/L for 4  h, result-
ing in faster root growth and better vegetation [151]. 
Rice seeds were treated with varied concentrations of 
MWCNTs (70, 80, and 90 g/mL) and were primed with 
oxidized MWCNTs having a diameter of 14–30  nm 
and a length of 200–300  nm. The plants treated with 
MWCNTs had denser stomata and longer roots, which 
resulted in better growth and rapid water and mineral 
intake, thus increasing crop output. The content of 
chlorophyll and photosynthetic activity also increased 
as a result of the increase in the number of vascular tis-
sues [152]. Rahmani et al. [153] further discovered that 
MWCNTs (50 mg/L) significantly improved photosyn-
thetic pigments and activated vital enzymes in Salvia 
verticillata.

SWCNTs (10–40  mg/L) were reported to alter the 
seed germination rate in salvia (Salvia macrosiphon), 
pepper (Capsicum annuum), and tall fescue (Festuca 
arundinacea), which was likely caused by seed coat 
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perforation [132]. When compared to the effects of 
SWCNTs or chloroplast alone, SWCNT-chloroplast 
assemblies boosted the rate of electron transport in 
the leaves and promoted higher photosynthetic activ-
ity. The effect of SWCNTs on germination rates in 
various plant species differed with exposure to differ-
ent concentrations of SWCNTs. SWCNTs at 10  mg/L 
and 30  mg/L promoted the germination of pepper 
and fescue, respectively, but had no effect on maize 
(Zea mays) seed germination at a concentration of 
20  mg/L. SWCNTs were also shown to accelerate the 
growth of the seminal roots in maize plants by promot-
ing gene expression, and SWCNT treatment caused 
upregulation of the expression of epigenetic modifi-
cation enzyme genes in a dynamic and selective man-
ner, which is similar to the response of plants to other 
stresses [154]. Similarly, SWCNTs improved the chlo-
rophyll content and photosynthetic rate, resulting in 
enhancement of rice growth at a minimal concentration 
of 20 mg/L [155]. Table 1 summarizes the studies that 
have focused on CNT applications in seed germination 
and the growth of plants.

CNTs as antimicrobial agents against pathogens
Different infectious plant diseases are mainly caused by 
pathogenic organisms such as viruses, bacteria, fungi, 
nematodes, as well as insects and parasitic plants. These 
infectious plant diseases are constantly responsible for 
severe damage to plant growth and yield losses in major 
crops including cereals, vegetables, and industrial crops 
[156, 157]. For instance, Alternaria solani is one of the 
most devasting disease causes stem and fruit rot as well 
as leaf blight, which affect plant growth [158]. In general, 
the antibacterial action of nanoparticles is largely deter-
mined by their composition, surface functionalization, 
inherent properties, and microbe type [159, 160]. Vari-
ous studies have demonstrated that different sizes and 
diameters of CNTs have dramatically variable antibacte-
rial efficiency [161–163]. The antibacterial effectiveness 
of CNTs is further influenced by extrinsic parameters 
such as the CNT dispersion ability, culture medium, bac-
terial type, CNT dosage, reaction time, and the mode 
of action between bacteria and CNTs [164–166]. CNTs 
are being extensively studied as potential antibacterial 
agents owing to their stability and efficient biological 
characteristics [167, 168]. CNTs show significant anti-
bacterial activity by causing physical and chemical harm 
to bacteria. Direct contact causes physical damage to the 
membrane as well as changes in cell shape, resulting in 
cytoplasmic leakage, enzyme and electrolyte release, and 
lipid breakdown, all of which lead to the microorganism’s 
cell death, [169–171] as demonstrated in Fig. 4A.

According to several studies, CNTs possess signifi-
cant antibacterial activity. Kang et  al. [164] present first 
evidence that highly purified, pristine SWCNTs have 
significant antibacterial properties. The results revealed 
that cell membrane damage caused by direct contact with 
SWCNT aggregates is the most likely cause of bacterial 
cell death by employing a pristine SWCNT with a nar-
row diameter distribution. This discovery could be use-
ful in the development of antibacterial materials using 
SWNTs as building blocks. CNTs could be an alterna-
tive for the control of pathogens since they have strong 
antibacterial action and induce the activation of the 
antioxidant defense system in plants. For instance, the 
incidence and severity of A. solani on tomato crop were 
studied using MWCNTs. Results revealed that MWC-
NTs improved the antioxidant defense mechanism as a 
result of increased in content of ascorbic acid, flavonoids, 
and the glutathione peroxidase enzyme. The net photo-
synthetic capacity and water use efficiency also enhanced 
by the utilization of MWCNTs [172]. Wang et  al. [173] 
investigated the antimicrobial activity of CBNs [SWC-
NTs, GO, reduced GO, and fullerene (C60)] against a 
copper-resistant plant pathogenic bacterium (Ralstonia 
solanacearum). The antibacterial activity of the SWCNT 
dispersion was found to be the strongest, followed by 
that of GO, MWCNTs, reduced GO, and C60. Accord-
ing to the antibacterial mechanism of SWCNTs and GO, 
damage to the cell membrane causes the release of cyto-
plasmic materials from the bacterium, which is the main 
reason for the inactivation of R. solanacearum bacterial 
cells.

Using confocal microscopy, flow cytometry, and 
antibiotic tolerance experiments, it was found that 
sub-lethal dosages (2  mg/L) of MWCNTs increased 
the aggregation of Pseudomonas aeruginosa into mul-
ticellular clusters that can cause diseases in plants and 
animals including humans. By contrast, the antibiotic 
tolerance of these “young” bacterial-CNT aggregates 
was comparable to that of CNT-free cultures [174]. 
Another study demonstrated that the size (diameter) 
of CNTs is a major factor determining their antibacte-
rial properties, and cell membrane damage caused by 
direct interaction with CNTs is the most likely CNT 
cytotoxicity mechanism. According to experiments 
with well-characterized SWCNTs and MWCNTs, 
SWCNTs are substantially more hazardous to bacteria 
than MWCNTs. In the presence of both MWCNTs and 
SWCNTs, Escherichia coli expresses huge amounts of 
stress-related proteins, with the quantity and degree 
of expression being much higher in the presence of 
SWCNTs. SWCNTs’ increased bacterial toxicity may 
be due to (1) a smaller nanotube diameter that allows 
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for partial penetration of nanotubes into the cell wall, 
(2) a larger surface area for contact and interaction with 
the cell surface, and/or (3) unique chemical and elec-
tronic properties that convey greater chemical reac-
tivity (Fig.  4B, C) [162]. The antibacterial activity of 
CNTs depends on the bacterial species. The differential 
insensitivity of microorganisms to CNT exposure could 
be due to differences in cell wall thickness and cell 
membrane constituents [160]. Physical and chemical 
changes in MWCNTs by dry oxidation and acid treat-
ment were shown to change their dispersion capacity 
and increase their antibacterial activity [175].

The effect of the length of CNTs on antibacterial activ-
ity has been investigated in several studies. Yang et  al. 
[161] investigated the antimicrobial activity of three dif-
ferent lengths (< 1  μm, 1−5  μm, and ∼  5  μm) of SWC-
NTs. Results showed that a longer SWCNT has greater 
aggregation and antibacterial capabilities at the same 
weight concentration. The fluorescence and SEM images 
revealed that SWCNTs with longer length aggregated 
with bacterial cells more effectively, whereas short-length 
SWCNTs tended to aggregate themselves without involv-
ing many bacterial cells. Furthermore, the antibacterial 
activity of longer SWCNTs was more dependent upon 

Table 1  Studies examining the effects of CNTs on plant growth and development

CNT carbon nanotube; SWCNT single-walled carbon nanotube; MWCNT multi-walled carbon nanotube

CNT type Concentration Plant species Growth conditions Effects References

CNT 10–40 µg/mL Tomato MS media Enhanced seed germination 
and plant growth

[130]

CNT 0–40 µg/mL Tomato, onion, radish, turnip Laboratory and greenhouse Improved seed germination 
and seedling growth

[60]

CNT 0.0–0.1 µg/mL Date palm In vitro Increased shoot length and leaf 
number

[251]

SWCNT Varied concentrations Carrot, cabbage  lettuce, onion, 
tomato, cucumber

In vitro Enhanced the roots/shoot 
length, increased growth

[63]

SWCNT 10–40 µg/mL Salvia, pepper, tall fescue laboratory and greenhouse Increased the seed germina‑
tion rate

[132]

SWCNT 0–50 µg/mL Tomato In vitro Increased, chlorophyll content, 
weight, and height of roots/
shoots

[144]

SWCNT 5 and 20 µg/mL Rice In vitro Seedling development [155]

SWCNT 20, 50 ,100 µg/mL Maize In vitro Enhanced growth of seminal 
roots

[154]

MWCNT 0–1000 µg/mL Red spinach Hydroponic culture No effect on plant growth [235]

MWCNT 0–2000 µg/mL Red spinach, lettuce, rice, 
cucumber, chili, lady finger, 
soybean

Hydroponic culture Enhanced root or shoot length, 
decreased plant growth

[146]

MWCNT 5–500 µg/mL Tobacco MS media Improved growth and plant dry 
biomass

[131]

MWCNT 2.3 × 10− 3 mg/mL
46 × 10− 3 mg/mL

Mustard In vitro Enhanced root size, increased 
plant growth

[139]

MWCNT 0, 500, 1000, or 5000 mg/kg Corn Soil Increased plant growth and 
plant dry biomass

[57]

MWCNT 25, 50,100 µg/mL Barley, corn, rice, soybean, 
switchgrass, tomato

MS media Activation of early seed germi‑
nation

[140]

MWCNT 50, 100, and 200 µg/mL Barley, soybean, corn MS media Activation of early seed germi‑
nation, increased root length 
and biomass

[148]

MWCNT 10–160 µg/mL Wheat In vitro Increased root length of wheat 
seedlings

[151]

MWCNT 40 − 2560 mg/L Alfalfa, wheat MS media Increased root length and plant 
growth

[58]

MWCNT 20 and 50 µg/mL Wheat, maize peanut, and garlic Soil Enhanced root/shoot elonga‑
tion

[252]

MWCNT 70, 80 and 90 µg/mL Rice Laboratory and field Increased root length, chloro‑
phyll content, and photosyn‑
thetic activity

[152]
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concentration and treatment time (Fig.  4D, E). How-
ever, on solid surfaces, shorter CNTs (1–5 μm) exhibited 
stronger antibacterial activity than longer CNTs. CNTs of 
shorter lengths also improved interactions with microbes 
and caused degradation of the cell wall [176].

Oxidative stress is one of the major chemical effects 
caused by CNTs, which is due to ROS generation. Since 
the NM interacts with microbes, oxidative stress is pro-
duced, resulting in cell death [177]. The surface charge 
of CNTs has been shown to promote their antibacterial 
properties, which is based on their ability to disrupt the 
integrity of the cell membrane [178]. Bing et  al. [179] 
found that the surface charge of CNTs affected both bac-
terial mortality and antimicrobial activity. In fact, after 
the contact between charged dots and bacterial cells, the 
production of ROS such as hydroxyl radicals was deter-
mined to be the key factor contributing to the inhibi-
tion of bacterial growth [179]. Moreover, MWCNTs 
were treated with silver (Ag) particles and a mixture of 
acids through the chemical reduction of Ag cations by an 
ethanol solution, and the antibacterial activity of these 
Ag-MWCNTs (30  µg/mL) was examined against bacte-
rial species (Methylobacterium spp. and Sphingomonas 
spp.), showing that a low concentration of Ag-MWCNTs 
could effectively hinder bacterial growth (Fig. 4F) [180]. 
Another study investigated the protective role of carbon-
based NPs (C60 and CNTs) against single-stranded RNA 
Tobacco mosaic virus (TMV) at concentration of 100, 
200, and 500 mg L−1 for a 21-day foliar exposure. Plants 
treated with CNTs and C60 (200 mg L− 1) exhibited nor-
mal phenotype, prevented the reproduction of TMV, and 
limited its spread to apical tissues in Nicotiana bentha-
miana. Fluorescence measurement of CNTs and C60 
(200  mg L− 1) treated plants indicated photosynthesis 
equivalent to healthy controls. CNTs and C60 caused a 
33–52% increase in the defense-related phytohormones 
abscisic acid and salicylic acid, as well as a 94–104% 
increase in the transcription of genes involved in phyto-
hormone production in treated plants [181]. A detailed 
summary of the applications of CNTs as antimicrobial 
agents is provided in Table 2.

CNTs for genetic material or drug delivery
CNTs have substantial potential as a nanocarrier or 
delivery vehicle for genetic material or nutrients into 
plant cell organelles such as the vacuole and plastids due 
to their low toxicity and their capacity to cross the plant 
cell wall, cell membrane, and cell organelles [182, 183]. 
The most commonly used technique for genetic engi-
neering in plants is Agrobacterium-mediated gene deliv-
ery; however, Agrobacterium does not infect numerous 
crops [184]. Another study compared the transformation 
efficiency between Agrobacterium and CNTs, showing 

that CNTs up to 20 nm can pass through plant cell walls 
at least in one dimension, indicating their potential as a 
tool for gene transformation in plants [185]. Nanocar-
rier-based nutrient delivery is a promising technique for 
plant improvement. For instance, Liu et al. [43] first used 
SWCNTs as plant gene delivery vehicles in 2009. Con-
focal fluorescence images revealed that cellular uptake 
of both SWCNT/FITC and SWCNT/single-stranded 
DNA (ssDNA)-FITC conjugates were taken up by Nico-
tiana tabacum cells, implying that SWCNTs can infil-
trate the integral plant cell walls and cell membranes 
without the need for external assistance such as a gene 
gun. Moreover, the results suggested that SWCNTs could 
deliver different cargoes into plant cell organelles [43]. 
With this ability, CNTs are now being suggested for use 
as nutrient delivery in a slow and controlled manner to 
reduce the loss of excess nutrients and enhance plant 
growth under stress conditions [52]. Functionalized high-
aspect-ratio CNT nanoparticles demonstrated efficient 
plasmid DNA delivery into intact plants of several spe-
cies, including arugula, wheat, and cotton, resulting in 
high protein expression levels in a variety of non-model 
plant species and providing a protocol to deliver plasmid 
DNA in a species-dependent manner (Fig. 5A, B) [186]. 
Pristine and chemically functionalized high-aspect-ratio 
NMs were used to demonstrate efficient diffusion-based 
biomolecule transport into whole plants of numer-
ous species. Leaves and protoplasts from Nicotiana 
benthamiana, Eruca sativa (arugula), Triticum aestivum 
(wheat), and Gossypium hirsutum (cotton) showed effi-
cient DNA delivery and high protein expression without 
transgenic integration (Fig.  5C). They also showed that 
NMs not only help biomolecules enter plant cells but also 
protect polynucleotides from being degraded by nucle-
ases [185].

Giraldo et  al. [32] examined the feasibility of ssDNA-
loaded SWCNTs to penetrate Arabidopsis thaliana 
leaves. They injected the complex using a syringe into 
the surface of leaves and discovered that CNTs of a spe-
cific size and charge could penetrate membranes with-
out the use of a gene gun. Insertion of SWCNTs resulted 
in a three-fold increase in the photosynthetic rate of 
Arabidopsis leaves compared with that of control leaves. 
This effect was mainly due to the presence of the SWC-
NTs inside the lipid envelopes of the chloroplast, which 
increased the rate of maximum electron transport and 
enhanced the capabilities of photoabsorption. Likewise, 
it was examined whether immobilized cellulose on CNTs 
could be incubated with plant cells. Nanoholes were 
developed on the plant cell wall, which facilitated the 
delivery of biomolecules across the cell wall [187]. For 
successful DNA transport in plant cells, an optimized 
amount of non-covalently functionalized SWCNTs and 
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MWCNTs is important [188]. Yellow fluorescent pro-
tein signals indicated that the SWCNTs were able to 
successfully permeate plant cell walls and transport the 
reporter gene inside cells from a variety of plant tissues, 
whereas the MWCNTs could only enter protoplast cell 
membranes.

By using a lipid exchange envelope and penetration 
model, NMs were modified for the selective delivery of 
a biological material to certain plant organelles via pas-
sive delivery. The researchers [45] synthesized a vari-
ety of chitosan-complexed SWCNTs (CS-SWCNTs) by 
non-covalently wrapping or functionalizing the SWC-
NTs via covalent binding to chitosan molecules, which 
enhanced the efficiency of loading and transport of 
DNA to the chloroplast (Fig.  5D–F). Through electro-
static interactions, chitosan binds to plasmid DNA and 
protects it from nuclease activity. The moderate pH of 
the cytosol facilitated the binding of plasmid DNA to 
CS-SWCNTs, whereas an acidic pH and weaker elec-
trostatic interactions in the chloroplast caused the cargo 
to be released from the SWCNTs [45]. Another study 
examined the ability of synthetic chimeric peptides and 
arginine-functionalized SWCNTs (Arg-SWCNTs) to 
deliver DNA into functional tobacco root cells. Owing 
to their nano-cylindrical structure, Arg-SWCNTs and 

the plasmid DNA adsorbed onto the cell surface and 
could cross the barriers of the plant cell. Observations of 
green fluorescent protein (GFP) expression and western 
blot analysis demonstrated that Arg-SWCNT–mediated 
DNA can be transported in tobacco root cells [189]. In 
2016, Ochoa-Olmos et  al. [190] attempted to transport 
DNA to Nicotiana tabacum protoplasts and the cell wall 
using SWCNTs and MWCNTs; however, the SWCNTs 
changed the protoplasts as well as the cell walls, and the 
MWCNTs were less effective in gene transfer.

CNTs can interact with a variety of cell types and can 
be taken up through endocytosis. MWCNTs were shown 
to influence the accumulation of contaminants by act-
ing as contaminant carriers in crops [191]. Furthermore, 
the compounds that were adsorbed by the plants via the 
MWCNTs could be released within the plant to effec-
tively provide routes for the delivery of genetic material 
or drugs to specific sites of intact plants [191]. MWCNTs 
were also shown to influence the transcription and trans-
lation of particular genes and consequent phenotypes 
[192]. Demirer et  al. [193] revealed that a CNT-based 
plasmid DNA delivery platform allows for the quick and 
passive delivery of DNA into protoplasts as well as trans-
genic expression, with high efficiency and no detrimental 
impacts on protoplast viability. For this procedure, intact 

Table 2  CNTs as antimicrobial agents, along with their mechanisms and characteristics

CNT carbon nanotube; MWCNT multi-walled carbon nanotube; SWCNT single-walled carbon nanotube; TMV tobacco mosaic virus; TuMV Turnip mosaic virus; E. coli 
Escherichia coli

CNT types Species Concentration Action mechanism Antimicrobial 
efficiency (%)

References

CNT TMV 200 mg/L Damages optical tissues and reduces the reproduction 
of TMV

– [181]

MWCNT Alternaria solani 100 mg/L Enzymatic degradation – [172]

MWCNT TuMV 200 mg/L Inhibits viral proliferation, decreases the TuMV protein 
coat

15–60 [253]

MWCNT Escherichia coli
Pseudomonas aeruginosa
Bacillus subtilis

100 µg/mL Membrane integrity lost due to piercing/trapping – [254]

MWCNT Pseudomonas fluorescens – Inhibits bacterial adhesion under electrochemical 
potential

44 [255]

SWCNT Salmonella typhimurium 100 µg/mL Rupture of outer membrane – [161]

SWCNT Ralstonia solanacearum 1 mg/mL Damages the cell membrane causing the release of 
cytoplasmic contents

– [173]

SWCNT E. coli 0.1–0.2 mg/mL Cell membrane damage due to formation of CNT 
aggregates

– [256]

SWCNT E. coli 5 µg/mL Reduction in cellular integrity 80.1 [162]

SWCNT Bacillus anthracis 200 µg/mL Disruption of cell membrane 81.2 [162]

SWCNT Staphylococcus epidermidis 1/70 CNT/polymer Cells are deactivated due to loss of cell viability 98 [257]

SWCNT Salmonella typhimurium, 
B. subtilis, Staphylococcus 
aureus

200–250 µg/mL Formation of needle-like aggregates around the cell as 
result cell become damage

~ 7 log [165]

SWCNT Salmonella typhimurium 62.5 µg/mL Inhibition of some genes responsible for metabolism 
and outer membrane integrity

– [258]
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and healthy protoplasts were isolated from arugula leaves 
(Fig. 5G), and the extracted protoplasts were then treated 
for 24 h with plasmid DNA-CNTs generated by dialysis. 
Fluorescence microscopy showed that GFP was strongly 
expressed in the nuclei of protoplasts treated with DNA-
CNTs (Fig.  5H), but was not detected in protoplasts 
cultured with free plasmid DNA [193]. A recent study 
demonstrated that CNTs could also be utilized for gene 
transfer in German chamomile cells, where the surface 
of the CNTs was modified in cationic form using poly-
ethyleneimine, and the ssDNA-FITC conjugate bound to 
the CNT surface via electrostatic interactions. The appli-
cation of ultrasound aided the nucleic acid-coated CNTs 
to significantly increase the transfer efficiency of ssDNA-
FITC because the ultrasound waves enhanced the gene 
transfer rate by producing a cavity at the nanoparti-
cle surface. Furthermore, gene transfer efficiency was 
improved by cationic nanoparticles as they could protect 
the DNA against ultrasound waves as compared with the 
effect of using ultrasonic waves alone [194]. A detailed 
summary of the applications of CNTs in gene delivery to 
plants is provided in Table 3.

CNTs as nanosensors
CNT-based biosensors have significant benefits over 
commercially available sensors such as metal oxides, 
silicon, and others, including a large surface area ratio, 
outstanding luminescence qualities, fast reaction time, 
and high stability [195]. Plant phenotype analyses have 
focused on plant morphological, functional, or physi-
ological factors to find features that increase crop toler-
ance to external stress and disease; however, there are 
less techniques available for monitoring plants’ internal 
chemical signals linked with stress [196, 197]. CNT-
based nanosensors have been used in agriculture to 
detect soil humidity, pesticide residues, proteins or haz-
ardous materials, and for pest identification [198–200]. 
The properties of CNTs based on dimension promote 
the ultrasensitive detection of analytes because all atoms 

are surface atoms, and minor changes in chemical com-
position can radically modify the optical and electrical 
characteristics [201]. Nanosensors are more useful for 
smart and sustainable agriculture because they have a 
low detection limit and high sensitivity. SWCNTs have 
previously been shown to be promising instruments for 
biosensing applications based on chirality-dependent 
fluorescence in the near-infrared region (NIR) [201–203]. 
The surface chemistry of SWCNTs could be altered by 
chemical functionalization of peptides, lipids, nucleic 
acids, and proteins [204, 205].

Another study demonstrated that SWCNTs coated in 
polyvinyl alcohol (PVA) and Bombolitin II infiltrated the 
leaf lamina of 3-week-old spinach plants to turn them 
into nitroaromatic detectors (hereafter referred to as 
Bombolitin). PVA–SWCNTs (P-SWCNTs) and Bombo-
litin–SWCNT (B-SWCNTs) infiltrated two sections of 
a single leaf ’s lamina separated by the mid-vein using a 
needleless syringe, where they became embedded into 
the parenchyma tissues of the leaf lamina [32]. The NIR 
fluorescent signal of P-SWCNTs is picric acid-invariant, 
allowing its emission to serve as a plant reference signal. 
In reaction to picric acid, the NIR fluorescence inten-
sity of B-SWCNTs decreases, allowing it to function as 
an active sensor. As contaminant nitroaromatics travel 
up the stem via the roots and into the plant vasculature, 
they finally reach the leaf tissues and come into contact 
with the embedded sensors (Fig. 6A, B, D). The presence 
of picric acid is indicated by a decrease in the intensity of 
B-SWCNT fluorescence, which is detected by a detector. 
Before developing a standoff detection set-up for the far-
field monitoring of nitroaromatics, the plant’s ability to 
operate as a groundwater sampler of picric acid was first 
established using NIR microscopy [206].

H2O2 is a typical ROS molecule that may easily perme-
ate membranes via water channels [207]. An NIR fluo-
rescence sensor based on SWCNTs was constructed to 
detect H2O2 in Arabidopsis thaliana leaves. The sensor’s 
NIR fluorescence response was quenched by H2O2, and 

(See figure on next page.)
Fig. 5    Carbon nanotubes (CNTs) serve as carriers for genetic material or drug delivery. A The image on the left illustrates the stability of DNA 
loading on polyethyleneimine (PEI)-single-walled carbon nanotubes (SWCNTs), whereas the image on the right represents the instability of 
DNA loading on PEI-SWCNTs, with significant SWCNT agglomeration [186]. B Infiltration of leaves with DNA-loaded PEI-SWCNTs. By infiltrating a 
higher volume of DNA-PEI-SWCNT solution, the area of penetration can be enhanced [186]. C Confocal microscopy images of wild-type Nicotiana 
benthamiana (Nb), arugula, wheat, and cotton leaves infiltrated with DNA-PEI-SWCNTs to measure green fluorescent protein (GFP) expression 
levels in the leaf lamina of each plant species. Scale bars = 50 μm [185]. D Stomata pores allow plasmid DNA (pDNA)–SWCNT complexes to enter 
the leaf mesophyll. Electrostatic interactions help to condense negatively charged pDNA on the positively charged surface of chitosan-complexed 
SWCNTs [45]. E Atomic force microscopy (AFM) image of a 1:1 pDNA:CSCOV–SWCNT complex with representative height; 1:6 pDNA:CSCOV–SWNT 
AFM height image standard deviations (n = 3) are represented by the error bars [45]. F Fluorescence confocal micrographs of isolated protoplasts 
demonstrate yellow fluorescent protein (YFP) expression from pDNA coupled to CSCOV–SWCNTs (1:6 pDNA:SWCNT w/w ratio) after 24 h [45]. 
G CNT-mediated DNA delivery into isolated protoplasts and subsequent GFP expression. Enzymatic cell wall degradation extracts of intact and 
healthy protoplasts from arugula leaves [193]. H Protoplasts incubated with DNA-CNTs display robust GFP expression in the nuclei, whereas 
protoplasts cultured with free pDNA without CNT nanocarriers do not show strong GFP expression. Red boxes represent areas of interest that are 
highlighted and expressed with bright-field, GFP, and overlay channels. Scale bars = 25 μm [193]
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no other stress-related signaling chemicals elicited the 
same reaction. This H2O2 sensor enabled the in vivo and 
remote NIR imaging of plant conditions in response to 
different stimuli such as a pathogen-related peptide, high 
light, and ultraviolet-B light, but was not able to detect 
leaf injury (Fig.  6C) [208]. Through real-time measure-
ments of single stomatal opening dynamics, microfluidic 
printed SWCNT ink on the leaf epidermis may detect 
the plant water status and the start of drought stress. 
This wearable sensor is composed of two printed con-
tact pads and a stripe that spans a single stoma, and is 
sensitive to minor changes in stomatal opening and clos-
ing latency during drought [209]. Wearable SWCNT-
graphite sensors can be operated by radiofrequency in 
response to gas molecule concentrations as low as 5 ppm, 
enabling wireless monitoring with electronic devices with 
no power consumption [210]. Chemoresistive sensors 
built on SWCNTs and outfitted with copper complexes 
are reversible, enabling the long-term monitoring of 
sub-parts per million quantities of ethylene, a plant hor-
mone that serves as a major indicator of fruit ripening. 
Plant volatile organic chemical-sensing devices based on 
CNTs, such as ethylene, are now commercially accessi-
ble for agriculture applications. However, they have not 
yet been interfaced directly with crops for monitoring 
plant signaling chemicals (Fig. 6E) [211]. Dong et al. [212] 
proposed an electrochemical sensor based on MWC-
NTs–CeO2–Au for both the enrichment and detection 
of methyl parathion at ultra-trace levels in soil and water. 
The excellent conductivity, increased effective surface 
area, and catalytic activity enabled methyl parathion 
enrichment and very sensitive electrochemical stripping 
detection of approximately 3.02 × 10− 11 M under optimal 

conditions, suggesting the high sensitivity of the synthe-
sized sensor [212].

CNT uptake and defense mechanism 
against environmental stresses
In numerous plant species, applying nanoparticles at pre-
optimized rates promotes seed germination, growth, and 
yield production. The alteration of stress-tolerant genes 
and stress proteins by nanoparticles contributes to toler-
ance to various biotic and abiotic stresses in plants [32, 
213]. In this section, we discuss the mechanisms of CNT 
uptake and translocation, as well as defense mechanisms 
against various environmental stresses in crops.

Uptake and translocation of CNTs in crops
NM absorption and distribution in plants is a growing 
concept of research interest. Foreign compounds can 
be protected by the plant cell wall, which is made up of 
a network of cellulose fibrils. As nanoparticles or nano-
particle aggregates have a smaller diameter than the cell 
wall’s pore diameter, they can pass through the cell via 
the apoplast route [49, 214]. Plant species, age, growth 
conditions, physicochemical quality, functionalization, 
stability, and distribution of nanoparticles all influence 
their uptake, translocation, and accumulation [215, 216]. 
A schematic of the uptake of CNTs and their transloca-
tion through different routes in crops is shown in Fig. 7A, 
B.

A recent study demonstrated that MWCNTs can alter 
the expression of genes that play vital roles in water 
transport and stress signaling [217]. MWCNTs can acti-
vate the gene encoding the water channel protein aqua-
porin, which is considered one of the most important 

Table 3  Summary of various CNT-based gene delivery studies in plants

CNT carbon nanotube; YFP yellow fluorescent protein; GFP green fluorescent protein; ssDNA single-stranded DNA; FITC fluorescein isothiocyanate; ssAT single-
stranded A. thaliana; SWCNT single-walled carbon nanotube; ssRNA single-stranded RNA; N. tabacum Nicotiana tabacum; N. benthamiana Nicotiana benthamiana

CNT type Plant species Cargo Target organ Delivery method References

CNTs N. tabacum DNA Protoplast and cell wall Passive [190]

CNTs Arugula, wheat, cotton Plasmid Leaves Passive [186]

CNTs N. tabacum YFP plasmid Protoplast, leaf Passive [188]

CNTs N. tabacum, Eruca sativa, Triti-
cum aestivum, and Gossypium 
hirsutum

GFP, Cy3 DNA Protoplast, leaf Infiltration with syringe [185]

CNTs E. sativa, Nasturtium officinale, 
N. tabacum, Spinacia oleracea

Plasmid Mesophyll protoplast Passive [45]

CNTs German chamomile ssDNA-FITC Chamomile cells Ultrasound [194]

SWCNT Arabidopsis thaliana ssAT-SWCNT Chloroplast Passive [32]

SWCNT N. tobacum GFP plasmid Root Passive [189]

SWCNT N. tabacum SWCNT/FITC Cell wall and membrane Fluidic-phase endocytosis [43]

SWCNT N. benthamiana ssRNA Leaf Passive [259]



Page 18 of 30Safdar et al. Journal of Nanobiotechnology          (2022) 20:275 

membrane proteins that facilitate the transport of water 
in plants [218]. MWCNTs can stimulate the growth 
of tomato and wheat seedlings by producing more new 
pores in the cell wall and plasma membrane, which are 
responsible for water transport [219, 220]. Another study 
comprehensively investigated the impact of MWCNTs on 
the accumulation and transport of variety of organic con-
taminants from the soil to various parts of the mustard 
plant, such as organochlorine pesticides, organophos-
phorus pesticides, pyrethroid insecticides, medicines, 
and personal care items. Mustard plants were irrigated 
with different concentrations (1 and 10 µg/mL) of MWC-
NTs suspended in aqueous solution to test the accumu-
lation rate and relative kinetic process in living plants 
leaves. The accumulation kinetics and individual con-
centrations of the contaminants in leaves after 16 days 
of exposure showed that bioaccumulations of most con-
taminants in the leaves increased by 10–30% (1 µg/mL) 
and 20–160% (10 µg/mL) after the mustard plants were 
irrigated with the water containing MWCNTs [191].  
According to TEM observations, MWCNTs can infiltrate 
cells in adult plants, with increased accumulation under 
salt stress. The positive impacts of MWCNTs on growth 
in NaCl-treated plants include increased water uptake, 
supported by more favorable energetic forces driving this 
process, and improved net CO2 assimilation. In com-
parison to salt-stressed plants, MWCNTs caused altera-
tions in the lipid content, flexibility, and permeability of 
the root plasma membranes. Additionally, there was an 
increase in aquaporin transduction, which facilitated 
water intake and transport, thereby reducing the detri-
mental consequences of salt stress (Fig. 7C) [54]. Owing 
to its unique spectroscopic characteristics, Raman spec-
troscopy is one of the most sensitive methods for the 
non-destructive analysis of the presence of CNTs in plant 
organs and cells. The presence of clustered CNTs in the 
flower structures was demonstrated by Raman spectros-
copy analysis (Fig. 7D) [53].

In hydroponic conditions, CNTs can enter vari-
ous crops such as the seeds of cabbage, [54] rice, [221] 
tomato, [130, 222] soybean, [148] and maize [223]. CNTs 
may behave differently in natural environments depend-
ing on their size (length and diameter) and functionali-
zation and the environmental conditions [224]. Several 
studies have demonstrated that functionalized CNTs 
seem to infiltrate plants more easily than non-functional-
ized CNTs. The amount of chemicals accumulated varies 
greatly depending on the crop species, as well as the type 
and concentration of the CBN used. CNTs improve mor-
phological development and biomass in the leaves, stems, 
and roots by positively regulating the genes involved in 
leaf and root growth, and by increasing the auxin con-
centration, resulting in positive impacts on plant growth 

[225]. Functionalized CNTs directly enter cells with the 
help of biomacromolecules such as proteins, antibod-
ies, or DNA on the surface of CNTs, which is associ-
ated with a mechanism of energy-dependent endocytic 
uptake [130, 148, 191, 222]. Both functionalized and non-
functionalized CNTs can penetrate the cell when con-
tamination occurs in the root. These CNTs can then be 
transported to the upper parts of plants and are distrib-
uted via transpiration by sharing the vascular system with 
water and nutrients. Low concentrations of CNTs were 
detected in the stems, shoots, leaves, and fruits of plants 
[150, 221, 226–229]. The uptake process of SWCNTs into 
plant cells has been demonstrated in plant cell cultures. 
Water-soluble SWCNTs with a length of < 500 nm were 
found to be responsible for the intracellular penetration 
of tobacco (N. tabacum) cell culture [43]. Although nano-
tube penetration was limited in the presence of endocy-
tosis inhibitors, the SWCNTs could penetrate both the 
hard cell wall and the cell membrane, which was most 
likely mediated by fluidic-phase endocytosis. SWCNT 
uptake into A. thaliana mesophyll cells was unaffected by 
temperature, suggesting that the uptake occurs via a non-
energy–dependent endocytosis mechanism [230]. Treat-
ment of SWCNTs (5–30  μm) caused endocytosis-like 
structures to develop in the membranes of A. thaliana 
leaf cells. Internal penetration of functionalized magnetic 
SWCNTs of carrot cells and canola was demonstrated 
using external magnetic forces, indicating the potential of 
SWCNTs to serve as biomolecule delivery carriers in the 
future [231].

MWCNTs were found in the cells of plant seeds and 
seedlings [61, 131, 148, 232]. At the cellular level, indi-
vidual MWCNTs or aggregates of MWCNTs may pass 
through the plant cell wall, which is considered to serve 
as a protective barrier against external chemicals entering 
plant cells [49, 233]. MWCNTs and other NMs can pierce 
the cell membranes and are then ingested via endocytosis 
[43, 232]. MWCNT uptake and accumulation in Onobry-
chis arenaria seedlings were shown to change the plant’s 
morphology and metabolic properties. The effect of an 
engineered NM containing MWCNTs on the growth 
of O. arenaria seedlings (at concentrations of 100 g/mL 
and 1000 g/mL) enabled the nanotubes to penetrate the 
cell wall in the roots and translocate to the leaves [234]. 
Despite the fact that MWCNTs are usually larger in 
diameter and length than fullerenes and SWCNTs, plant 
uptake and internal translocation have been observed for 
MWCNTs. By perforating and developing new pores, 
MWCNTs can enter plant cells and penetrate the hard 
seed coverings [130]. For example, MWCNTs were found 
in the germinating seeds of various crops such as barley 
(H. vulgare), soybean (G. max), and maize (Z. mays), with 
a diameter of approximately 15–40 nm [148]. MWCNTs 
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with a small diameter of approximately 13 nm were also 
able to penetrate the cell walls of wheat (T. aestivum) 
roots [151] and red spinach (A. tricolor) seedlings [235]. 
According to Wild and Jones [233] MWCNTs with a 
diameter of 110–170 nm were able to penetrate the epi-
dermis of the cell wall and reach the cytoplasm of the 
wheat root hair up to 4  μm. The effects of long-term 
exposure to MWCNTs on the growth of three impor-
tant crops (barley, soybean, and corn) were investigated. 
These crop species were grown in a hydroponic condi-
tion with MWCNTs at a concentration of 50 g/mL. After 
20 weeks of consistent exposure to the MWCNTs, there 
were no significant negative impacts on plant develop-
ment. MWCNT-exposed crops demonstrated several 
beneficial phenotypic changes in addition to a higher 
photosynthetic rate.  According to Raman spectros-
copy with point-by-point mapping, the MWCNTs in 
the hydroponic solution traveled into all evaluated spe-
cies and were disseminated in the studied organs (leaves, 
stems, roots, and seeds), as shown in Fig. 7E, F [229]. In 
addition, MWCNTs were detected in xylem and phloem 
cells in the roots of maize and soybean plants [150]. Larue 
et al. [226] demonstrated that the translocation of MWC-
NTs (less than 0.005%) from the root to the shoot and 
their accumulation in plant cells do not cause any adverse 
effect on the development and physiology of wheat (T. 
aestivum) and rapeseed (B. napus), which is most likely 
triggered by transpiration [191]. MWCNTs have been 
found in the vegetative shoot organs and flowers of 
tomato plants [53]. Servin et al. [34] revealed that CNTs 
can also translocate through capillary action in plants. As 
CNTs reached a narrow point, they blocked the transport 
of nutrients and other materials in the plant. According 
to Zhai et al. [150], p-MWCNT, c-MWCNT, and a posi-
tively charged MWCNT were taken up in maize and soy-
bean plants grown in hydroponic solutions containing 
up to 50 mg/L MWCNTs, and all three MWCNTs were 
translocated from the roots to the leaves. TEM observa-
tions suggested that the MWCNTs moved quickly from 
the stems to the leaves. Therefore, CNTs could penetrate 
into the roots of mature plants and transport them to the 
upper organs. Additionally, CNTs adsorbed compounds 
could be released into plants, which provide a route to 
effectively deliver drugs or nutrients to specific sites of 
intact plants. However, CNTs also aggregate within the 
roots, which might cause adverse effects such as inducing 
potential nanotoxicity, inhibiting nutrient transport and 
affecting plant growth. More research on nano-agricul-
ture is needed for human health and safety, particularly 
in the roots of edible plants, to minimize increased expo-
sure to pollutants and nanoparticles.

Defense mechanism of CNTs against environmental 
stresses
Various biotic (pathogens and herbivores) and abiotic 
(salinity, drought, heat, high light, and heavy metals) 
stresses on crops are exacerbated by shrinking arable 
land, scarcity of water resources, climate change effects, 
and the use of low-quality agrochemicals, all of which 
have negative impacts on crop growth and yield. Annu-
ally, drought and salinity are responsible for billions of 
dollars in agricultural losses [236–238].

Several studies have demonstrated the effects of 
CNTs on plant growth and productivity under vari-
ous abiotic stresses. Hatami et  al. [134] revealed the 
positive effect of SWCNTs (50–800  µg/mL) on the 
seed germination of Hyoscyamus niger under differ-
ent levels of drought stress (0.5–1.5 Mpa) for 14 days, 
demonstrating that SWCNTs at low concentrations 
significantly increased drought tolerance via improving 
water uptake and activating plant defense mechanisms 
such as up-regulation of starch hydrolysis processes, 
and reduction in oxidative damage markers (e.g., H2O2, 
malondialdehyde concentration) and electrolyte leak-
age [239]. CBNs such as CNTs and graphene were also 
found to reduce the adverse effects of NaCl. Long-term 
application of CBNs under salt stress improved the 
desirable phenotypic features of Catharanthus (higher 
flower number and leaf number) and cotton (increased 
fiber biomass). In the presence of CBNs, mature 
Catharanthus plants increased their survival without 
leaf wilting as compared to untreated Catharanthus 
grown under water-deficit conditions (Fig. 8A, B) [134]. 
Wang et  al. [240] examined the antifungal activity of 
six CBNs (SWCNTs, MWCNTs, GO, reduced GO, 
C60, and activated carbon) against two significant plant 
pathogenic fungi. Among them, SWCNTs (500  mg/L) 
exhibited the strongest antifungal activity, followed by 
MWCNTs (500  mg/L), GO (500  mg/L), and reduced 
GO (500  mg/L), whereas the activated carbon had no 
antifungal activity at the tested concentration range 
[240]. Another study demonstrated the effect of early 
foliar exposure of C60 and CNTs (200  mg/L) against 
single-stranded RNA TMV. At the same time, these 
NMs strengthened the plant’s defense mechanism by 
enhancing photosynthetic performance and induc-
ing TMV defense responses, as seen by changes in 
antioxidant enzymes and defense-related phytohor-
mones (Fig.  8E) [181]. C60 and CNTs showed a com-
bined impact on suppressing viral symptoms, lowering 
viral intensity in apical tissues, and improving photo-
synthetic apparatus function [181]. Hao et  al. [241] 
showed that foliar application of 200  mg/L MWCNTs 
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and reduced GO nanoparticles inhibited the growth 
of the plant pathogen Podosphaera pannosa, which 
causes powdery mildew in roses (Rosa rugosa Thunb.) 
(Fig. 8D). Surface functional groups (OH-, COOH-, and 
NH2) added to MWCNTs could expand their antifungal 
activities against an important plant pathogen, Fusar-
ium graminearum. When this pathogen was treated 
with MWCNTs (500  g/mL) along with functional 
groups, the length of spores declined by almost half, 
from 54.5 μm to 28.3, 27.4, and 29.5 μm (Fig. 8C) [242].

MWCNTs could reduce the toxic effects of polyaro-
matic hydrocarbons on the soil microbial community. 
The effects of MWCNTs and fullerenes (C60) on pesti-
cide accumulation in agricultural plants, including zuc-
chini, corn, tomato, and soybean, were investigated, 
demonstrating a 21–80% decrease in the accumulation 
of weathered organochlorine pesticides such as DDx 
(DDT + metabolites) or chlordane in the four crops, 
depending on species and nanotube concentration; how-
ever, C60 exhibited species- and contaminants-specific 
effects on pesticide uptake effects, ranging from com-
plete suppression of DDx uptake (corn/tomato) to 34.9% 
increase in chlordane accumulation (tomato/soybean). 
According to these findings pesticide accumulation var-
ies substantially depending on crop species and carbon 
nanomaterial type and concentration [57]. Adsorption 
studies revealed that the fate and transport of adsorbed 
organic contaminants were affected by CNTs, which may 
potentially alter their bioavailability and toxicity [243]. 
For instance, SWCNTs showed high adsorption capac-
ity toward phenanthrene and reduced the toxicity of the 
residue to algae [244]. MWCNTs can also act as pollut-
ant carriers, controlling contaminant buildup in crops, 
and the enhanced impact of the contaminants is depend-
ent on the concentration of the MWCNTs. The bioac-
cumulation of most contaminants increased by 10–30% 
(1  µg/mL) and 20–160% (10  µg/mL) in mustard plant 
after treatment with MWCNTs [191]. In the chloroplast, 
CNTs enhanced the formation of chlorophyll and carot-
enoids, while also acting as a carbon source to accelerate 
carbon fixation and speed up electron transport, result-
ing in improved photosynthesis [229].

CNTs can also affect plant biochemical and physiologi-
cal features by altering photosynthesis and activating 
plant defense systems via positively regulating genes that 
respond to stress [245]. SWCNT-treated soybean seeds 
showed high resistance to drought stress via increasing 
the activities of catalase, superoxide dismutase, and other 
enzymes [246]. Well-dispersed MWCNTs functional-
ized with stronger functional groups resulted in better 
growth in tomato plants, which was mainly attributed to 
the activation of aquaporin [149, 222]. TEM observations 
revealed that MWCNTs could enter adult broccoli cells, 

with higher accumulation under salt stress. Increased 
water uptake, facilitated by more favorable energetic 
forces driving this process, and increased net CO2 assim-
ilation were the main positive effects of MWCNTs on 
growth in NaCl-treated plants. In comparison to salt-
stressed plants, MWCNTs caused alterations in the lipid 
content, stiffness, and permeability of the root plasma 
membranes. There was also an increase in aquaporin 
transduction, which facilitated water intake and trans-
port, thereby reducing the detrimental consequences of 
salt stress [54].

Challenges and future perspectives
CBNs, notably CNTs, have gained considerable attention 
since their discovery. Because of their unique and distin-
guishing physiochemical properties, including small size, 
large surface area, and capacity to penetrate cell walls, 
CNTs offer great potential for future research. Moreover, 
CNTs demonstrate high potential to promote agriculture 
sustainability by improving plant growth and develop-
ment, controlling the release of nutrients and fertilizers 
that enhance target activity, and causing physiological 
changes in plants that lead to enhanced agriculture pro-
ductivity under environmental stress conditions.

Despite the benefits outlined above, there are still sev-
eral barriers to the application of CNT-based treatments 
on plant systems. Owing to their small size, large surface 
area, and ability to penetrate cell walls and interact with 
intracellular structures, CNTs can induce potential cel-
lular and genetic phytotoxicity in plant cells by promot-
ing oxidative stress and changing the gene expression 
of plants. Some studies also demonstrated that CNTs 
have cytotoxic effects such as reduction in cell viability, 
delayed flowering, reduced root length, wilting and curl-
ing of leaves, loss of pigment, yield reduction, and even 
cell death due to apoptosis [217, 235, 247, 248]. Further-
more, the impacts of CNTs on microbial diversity and 
their threat to the beneficial microbial population have 
also been addressed in several studies [249, 250]. CNTs 
could potentially build up in the soil, inhibiting the diver-
sity and population of soil microbes. Some studies also 
revealed that MWCNTs can act as contaminant carriers, 
influencing the accumulation of contaminants in crops 
with different consequences depending on the concentra-
tion of contaminants adsorbed on the MWCNTs. CNTs 
can also penetrate the roots of mature plants, which are 
then translocated to the upper organs to reach the edible 
parts of crops [191]. The cost of CNTs is another major 
challenge that needs to be considered. When compared 
to conventional fertilizers, the cost of SWCNTs and 
MWCNTs is relatively high. As a result, CNTs as anti-
microbial agents will only be able to compete with con-
ventional antimicrobial products if they can be produced 
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at a lower cost. The scalability of the synthesis of CNTs 
as well as their reusability must be addressed in future 
studies.

Currently, several researchers are focusing on the inter-
action of CNTs with plant systems; however, this field is 
still in the nascent stage, and further research is needed 
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to understand the mechanisms that influence plant 
growth and toxicity. CNTs promote water uptake dur-
ing seed germination in plants. However, the mechanism 
involved in the uptake of water inside the seed remains 
unknown. Hence, further investigation is required to 
confirm the water channel gating mechanism in plant 
cells. CNTs have been shown to play a role in the physi-
ological response under abiotic stress. However, the 
CNT–plant cell interface under stress conditions, as 
well as the management of drought tolerance of valued 
crops in arid and semi-arid zones require further detailed 
investigation. SWCNTs are more likely to penetrate the 
plant systems and translocate to various parts of the 
plants. However, little information is available regarding 
the behavior and mechanism of translocation. The pos-
sibility of alteration in gene expression in plants because 
of CNTs also warrants further investigation. The safety of 
consuming CNT-contaminated plant organs is an impor-
tant issue that needs to be further investigated, because 
CNT-contaminated food products can transfer CNTs to 
the human body through ingestion. Monoculture tests 
must also be conducted to assess the cytotoxic effects of 
CNTs on soil microorganisms. Therefore, toxicity evalu-
ation of CNTs must be considered before they are com-
mercially utilized for agricultural purposes, and reliable 
and effective techniques should be suggested to evaluate 
and mitigate the ecotoxicological consequences of CNTs.

Conclusions
This review comprehensively summarizes the roles of 
CNTs in plant growth and development, along with the 
mechanisms involved in their potential application in 
sustainable agriculture. Because of their remarkable 
physiochemical properties, CNTs have sparked substan-
tial interest in a variety of agriculture applications. The 
diameter and helicity of the graphene sheet as well as 
the number of graphene layers have a significant impact 
on the physicochemical properties of CNTs. As a core 
concept of sustainable agriculture, minimal agrochemi-
cals should be utilized with low production costs but 
higher outputs. As the synthesis and utilization of CNTs 
in different sectors, particularly in agriculture, contin-
ues to grow, their dispersion into the environment will 
increase. Therefore, it is important to evaluate the behav-
ior and impacts of CNTs on the ecosystem. To gain a 
better understanding of the mechanistic pathways of 
the absorption and distribution of CNTs in plants, more 
studies are urgently needed to enable the safer usage of 
CNTs in the development of sustainable agriculture.
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