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Abstract 

Cancer is a leading public health problem worldwide. Its treatment remains a daunting challenge, although signifi-
cant progress has been made in existing treatments in recent years. A large concern is the poor therapeutic effect due 
to lack of specificity and low bioavailability. Gene therapy has recently emerged as a powerful tool for cancer therapy. 
However, delivery methods limit its therapeutic effects. Exosomes, a subset of extracellular vesicles secreted by most 
cells, have the characteristics of good biocompatibility, low toxicity and immunogenicity, and great designability. In 
the past decades, as therapeutic carriers and diagnostic markers, they have caught extensive attention. This review 
introduced the characteristics of exosomes, and focused on their applications as delivery carriers in DNA, messenger 
RNA (mRNA), microRNA (miRNA), small interfering RNA (siRNA), circular RNA (circRNA) and other nucleic acids. Mean-
while, their application in cancer therapy and exosome-based clinical trials were presented and discussed. Through 
systematic summarization and analysis, the recent advances and current challenges of exosome-mediated nucleic 
acid delivery for cancer therapy are introduced, which will provide a theoretical basis for the development of nucleic 
acid drugs.
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Introduction
Cancer remains one of the leading causes of death glob-
ally, with the prevalence of 410 million mortalities annu-
ally [1]. In 2021, there had been 19.29 million patients 
diagnosed with cancer, and nearly 10 million people died 
of cancer [2]. To fight cancer, various treatments such as 
surgical therapy, chemotherapy, and radiotherapy have 
been developed. These strategies have become more 
focused and personalized based on the type and stage of 
the disease, which has led to a decline in cancer-related 
mortality over the past decades [3]. Despite their undis-
puted contribution, these invasive and/or often lacking 
cancer cell-selective techniques lead to a wide range of 
harmful side-effects, such as high recurrence rates, enor-
mous trauma, poor survival and impaired life quality, 
which often hamper therapy success. Consequently, there 
is an urgent demand to develop safe and efficacious ther-
apeutic techniques for treating cancer.

Gene therapy is the therapeutic delivery of genetic 
material into cells to compensate for abnormal genes by 
either turning off genes that produce faulty proteins or 
introducing genes to make a beneficial protein to treat 
disease [4–6]. It is a safe and effictive method for treating 
a wide range of diseases, especially for cancer. The effect 
of gene therapy depends on the targeting of nucleic acids 
drugs , the delivery efficiency, and accuracy of delivery 
tools. The nucleic acids including specific DNA, messen-
ger RNA (mRNA), microRNA (miRNA), small interfer-
ing RNA (siRNA), circular RNA (circRNA), which have 

been widely exploited for gene therapy. However,  nucleic 
acids are negatively charged and hydrophilic, which can-
not directly penetrate cell membranes and are vulnerable 
to enzymatic degradation, so they cannot be effectively 
transported to cells [4]. In this situation, delivery systems 
are necessary, which cannot only prevent the nucleic 
acids degrading in the bloodstream and being filtered out 
by the kidney, but can deliver them to desired locations.

Extracellular vesicles (EVs) are small membranous 
vesicles released from different cells to the extracellular 
matrix, which can participate intercellular communica-
tion between cells [7]. According to EVs’ size and ori-
gin, they are divided into three subgroups: (1) apoptotic 
bodies (500 nm–5 μm) released during programmed cell 
death, (2) microvesicles (150–500 nm) from the budding 
of the plasma membrane, and (3) exosomes (40–150 nm) 
from endosomes [8]. Owing to their nano size, exosomes 
are considered as the most promising drug delivery tools. 
Compared to conventional delivery systems such as 
lipid nanoparticles (LNPs), exosomes have the following 
advantages: (1) Exosomes are more stable in body fluid 
than LNPs, because LNPs can be easily removed by mac-
rophages or reticuloendothelial cells [9]. (2) Due to their 
endogenous source and high biocompatibility, exosomes 
have relatively low cytotoxicity and immunogenicity [10]. 
(3) Exosomes can provide better drug protection dur-
ing delivery, because drugs are within the double-layer 
exosomal membrane, while drugs appeared outside the 
LNPs, which are easier to degrade [11]. (4) Exosomes 
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can deliver both hydrophobic and hydrophilic molecules. 
And they have effective homing ability to tumor sites, 
which may be attributed to their multivalent display of 
cell-derived surface moieties [10]. (5) Exosomes derived 
from tumor can escape the phagocytosis of mononuclear 
phagocyte system through the binding of CD47 on exo-
somal surface and signal regulatory protein alpha (SIRPα) 
on the face of macrophages and sending out “don’t eat 
me” signal [12]. (6) Exosome can cross the blood–brain 
barrier and reach the brain tissue owing to their small 
size and characteristics [13]. (7) Exosomes have high cel-
lular uptake and are easily modified according to the tar-
get cells owing to membrane proteins such as tetraspanin 
and fibronectin [10].

Herein, we summarized exosomes’ characteristics 
and applications as various nucleic acid (DNA, mRNA, 
miRNA, siRNA and circRNA) delivery carriers for can-
cer therapy. Meanwhile, the challenges and the prospec-
tive in using exosome-mediated nucleic acids are also 
discussed.

The biogenesis of exosome
Exosomes are native nanovesicles with a diameter of 
30–120 nm secreted from various cell types, including 
cancer cells, dendritic cells, B cells, T cells, mast cells 
and epithelial cells, and exist in different body fluids 
such as blood, urine, malignant effusions, bronchoal-
veolar lavage fluid and breast milk, etc. [14–17]. They 

were first found in the supernatant of sheep erythro-
cytes cultured in  vitro in 1983 [18, 19]. At that time, 
exosomes were considered as the “Garbage Bags” for 
cells to eliminate unwanted products out of the cells. 
Subsequently, people found that they were formed by 
plasma membrane invagination, followed by acidifi-
cation and maturation of mass exchange into the late 
endosomes. Late endosomes eventually form multi-
vesicles, the membrane of which is sunken inward 
and sprouts to form intraluminal vesicles, which are 
exosomes. Finally, they are secreted out of the cell by 
fusing the plasma membrane (Fig.  1) [17]. The natural 
internal cargo of exosomes includes specific mRNAs, 
miRNAs, proteins, etc. (Fig.  1). Several proteins such 
as tetraspanins (CD9, CD63, CD81), heat shock pro-
teins, and fusion proteins (flotillin) are identified on the 
surface of exosomes (Fig.  1). These tetraspanins could 
be used as a specific marker to isolate exosomes. Some 
studies revealed that exosomes’ target-homing capabili-
ties depended on the surface proteins binding to recep-
tor molecules on the target cell [20, 21]. In addition, 
many tumor cells secreted exosomes tenfold more than 
normal cells [21]. Furthermore, the presence of spe-
cific genetic information within exosomes derived from 
tumor cells offers opportunities to develop simple liq-
uid biopsy-based approaches for cancer diagnosis or to 
monitor the effectiveness of cancer treatment [22].

Fig. 1  The biogenesis, contents, and internalization of exosomes
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The approaches and advances 
in exosome‑mediated delivery
The effect of exosome-mediated therapy mainly depends 
on the source of exosomes, the loading methods of 
therapeutic molecules, the efficiency of cell uptake of 
exosomes. Exosomes derived from different cell types 
have diverse functions. For example, human embry-
onic kidney (HEK293) cells have been widely used in the 
field of biopharmaceutical manufacturing owing to the 
advantages of easy to growth, non-needing harsh cul-
ture conditions, and high transfection efficiency [23]. 
Moreover, HEK293 cells can accept various transfection 
methods and allow gene manipulation to modify the 
exosomal surface or load cargos during exosomal bio-
genesis [24]. And exosomes derived from HEK293 are 
immune inert and do not trigger inflammatory reactions 
in vivo [23]. In addition, cancer cells can secrete a large 
number of exosomes, because the overexpressed Rab27a 
and Rab27b proteins in cancer cells are involved in the 
process of exosome release [25]. Cancer cell-derived 
exosomes have a tropism toward cell origin due to their 
abundant biological components similar to their par-
ent tumor cells, which can be used for cancer targeting 
[26]. Qiao et  al. [26] isolated exosomes from two can-
cer cell lines (HT1080, human fibrosarcoma cells, and 
Hela, human cervical cancer cells) and observed that the 
uptake of HT1080 exosomes in HT1080 cells was twofold 
that of Hela exosomes. Furthermore, in vivo therapeutic 
experiments revealed that the inhibition rate of HT1080 
exosomes loaded with a common chemotherapy drug 
Doxil was threefold higher than that of Hela exosomes 
with Doxil. However, there are some limitations, such as 
an unsatisfactory pharmacokinetic profile, being involved 
in tumor development and metastasis, and potential 
safety issues, which are expected to be improved to be 
better used in cancer treatment [10]. Besides, exosomes 
derived from immune cells have also been widely stud-
ied. For instance, monocytes- and macrophages-derived 
exosomes have been shown to evade immune phagocy-
tosis [27]. Dendritic cell (DC)derived exosomes hold a 
significant advantage as they have been proven secure 
in different types of cancer [28]. And these exosomes 
loaded with tumor antigens have been effective against 
non-small cell lung cancer (NSCLC) [29]. As is shown in 
Table  1, exosomes from different sources have different 
advantages and disadvantages. Therefore, the purpose of 
good therapy can be achieved by selecting appropriate 
exosomes according to therapeutic requirements.

Co-incubation, transfection, and electroporation are 
the frequently-used methods of therapeutic molecules 
loading into exosomes [38]. The aqueous core and 
bilayer lipid membrane of the exosomes make the load-
ing of hydrophilic and hydrophobic drugs easier through 

co-incubation [39]. When hydrophilic molecules fail to 
spontaneously pass through the lipid bilayer, loading can 
be achieved by liposome transfection and electropora-
tion to form transient pores on the exosomal membrane. 
Transfection-based approaches have been proved to have 
better loading efficiency and protein stability, but they 
are undesirable because of their toxicity and side effects 
of transfectants in altering cell gene expression [40]. 
Electroporation has been widely used as a safer method 
in therapeutic molecules loading into exosomes. Shtam 
et  al. [40] provided sufficient evidence that the nucleic 
acids were more effectively introduced into exosomes 
from HeLa cells using electroporation than chemical 
treatment. However, not all cell-derived exosomes can be 
loaded by electroporation. For example, Ohno et al. [41] 
found that when using HEK293T cells as the source of 
exosomes, liposome transfection could load nucleic acids 
successfully while electroporation did not. Therefore, the 
method may need to be optimized for each exosome and 
cell type. In addition, in recent years, several new loading 
methods are emerging gradually. For instance, an active 
delivery modality exploits the HIV-1 TAR and RNA-TAT 
peptide interaction by swapping the wild type pre-miR 
loop with the TAR RNA loop. The modified pre-miR is 
designed to recognize the TAT peptide introduced into 
the exosomes using a Lamp2a fusion protein. The load-
ing of the miRNA into exosomes was enhanced using 
this TAT-TAR interaction [42, 43]. The modified calcium 
chloride (CaCl2) method (CaCl2-heat shock) has success-
fully loaded nucleic acids into exosomes through form-
ing CaCl2-nucleic acid complex, which was absorbed by 
exosomes under heat shock at 42  °C [44–46]. In addi-
tion, plasmid-mediated therapeutic molecule transfer 
has been gradually applied. A constructed plasmid con-
taining therapeutic molecule genes is transfected into 
exosome-producing cells. After culture, the exosomes 
produced by donor cells contain therapeutic molecules 
[47, 48]. Based on the above, the correct selection of ther-
apeutic molecules loading into the exosomes can achieve 
unexpected therapeutic effects.

In addtion, exosomes loaded therapeutic molecules 
also face several challenges, including competition from 
endogenous exosomes, the internalization/clearance by 
the mononuclear phagocyte system, and targeting [49–
51]. To solve these problems, it is essential for specific 
modification on exosome surfaces. These modification 
include chemical and biological modifications  (Fig.  2). 
The former depends on the biological binding of targeted 
ligands to surface proteins, but surface protein inactiva-
tion or exosome aggregation may occur. The latter is an 
important strategy to display functional ligands on the 
exosome membrane, but it requires plasmid construction 
and overexpression of proteins in donor cells. Despite the 
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defects, both methods have been successfully applied. 
For instance, Zhan et al. [52] constructed the the amphi-
philic phosphatidylcholine (PC) exosome through insert-
ing PC into the membrane lipid layer of the reticulocyte 
exosome from the blood. Compared with natural exo-
some, PC exosome increased the efficiency of tumor cell 
internalization by nearly twice. After loading therapeutic 
drugs, PC exosome significantly promoted the accumula-
tion of drugs in tumor cells and showed enhanced anti-
tumor activity in vitro. In addition, the surface of bovine 
serum‐derived exosomes is modified with α‐d‐mannose 
to facilitate interaction with mannose receptors on DCs 
and efficient delivery of immune stimulators to the DCs 
[53]. Zuo et al.[54]. added a potent adjuvant, high mobil-
ity group nucleosome-binding protein 1 (HMGN1) to 
tumor cell-derived exosomes, which enhanced the abil-
ity of DC to activate T cells and sustained protective 
immune response for about 9 weeks.

Above all, to improve the efficiency and accuracy of 
drug delivery to achieve good therapeutic effect, the 
selection of exosomes, the loading mode of therapeu-
tic molecules and surface engineering modification of 
exosomes are the main factors that should be considered 
comprehensively. Because exosomes from different cells 
have different functions, choosing the right exosomes 
as drug delivery tools can greatly improve the target-
ing of drug delivery. The loading capacity of therapeutic 
molecules can be significantly improved by appropriate 
loading method. Further, the engineering modification 
of exosome surface can achieve the loading efficiency 
and targeting of therapeutic molecules at the same time. 

Thus, integrating various advantages to deliver drug mol-
ecules through exosome can achieve the ideal therapeutic 
effect.

Exosomes‑based nucleic acid delivery system 
for cancer treatment
Exosomes‑based DNA delivery system
ASOs
In addition to the well-known genomic DNA, mitochon-
drial DNA and plasmid DNA, antisense oligonucleo-
tides (ASOs) are another important DNA species which 
are single-stranded DNA molecules and usually consist 
of 12–25 nucleotides, can complementarity to target 
mRNA [55]. Following binding to the targeted RNA, the 
ASOs can regulate RNA function through several mecha-
nisms. One is that ASOs can form RNA–DNA hybrid 
and serve as the substrate of RNase H-mediated cleav-
age, leading to the hydrolysis of a hybridized RNA strand 
[56, 57]. The formation of ASO-RNA heteroduplex also 
leads to splicing inhibition or exon skipping events by 
spatially blocking standard splicing sites [56]. Another 
is that ASO only plays a space-occupying role and does 
not directly degrade target RNA. For instance, ASOs can 
be designed to bind the miRNAs and block the targeted 
RNA, resulting in inhibition of translation of the RNA 
and increase the expression of a variety of proteins [57]. 
In addition, ASOs are designed to bind to a regulatory 
sequence in the 5-untranslated region of an mRNA that 
represses protein translation, such as an upstream open 
reading frame or stem-loop structure [57]. As a power-
ful molecular tool, ASOs are widely used in protein and 

Fig. 2  The chemical and biological modification on exosome surfaces
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RNA biology and are a highly selective therapeutic strat-
egy for many diseases related to gene expression disor-
ders. So far, over ten ASOs have been approved by Food 
and Drug Administration (FDA) [58]. Therefore, the suc-
cessful loading of specific ASOs into cells play a key role 
in cancer therapy.

Loading methods for DNA into exosomes
As a common strategy, electroporation also allows DNA to 
be loaded into exosomes through creating pores on exoso-
mal lipid bilayers. It has been shown that ASO4, ASO-210 
or scramble ASO loaded into exosomes by electropora-
tion could be delivered to recipient cells and knock down 
specific gene expression [59–61]. However, a major disad-
vantage of electroporation is the formation of nucleic acid 
and exosome aggregates during encapsulation, which will 
affect the function of nucleic acids [62]. Lamichhane et al. 
[59] reported that exosomes carrying plasmid DNA by 
electroporation delivered DNA to recipient cells; however, 
these DNAs were not functionally active. To solve these 
problems, it may be necessary to optimize electroporation 
parameters. In addition, some new loading methods have 
been developed. An exosomal liposome hybrid was formed 
through fusing the lipid bilayer of the exosomal mem-
brane with liposomes, which could encapsulate and deliver 
large DNA molecules, such as CRISPR/Cas9 plasmid, and 
reduce the toxicity of liposomes [63]. Exosome-associated 
adeno-associated virus (exo-AAV) has also been proved to 
be a powerful system for DNA delivery. György et al. [64] 
cloned a mouse-codon-optimized gene encoding lipoma 
HMGIC fusion partner-like 5 (LHFPL5) with a hemagglu-
tinin (HA) tag at the N terminus into an AAV vector, and 
then was transfected into HEK293T cells using the calcium 
phosphate and obtained exo-AAV1-HA-Lhfpl5, which 
could rescue hearing in a mouse model of hereditary deaf-
ness. Therefore, the successful loading will provide a basis 
for exosome-mediated DNA delivery for cancer treatment.

Delivery of therapeutic DNA
In recent years, it has been reported that exosome deliver 
various functionlized DNA into cells via the process of 
exosome-endocytosis to treat cancer [65–69]. However, 
due to their small size, the efficiency of packaging large 
DNA through exosomes is very low, which limit the appli-
cation of the exosome-based drug delivery system. The 
relatively small ASO and plasmid DNA, or engineering 
modified exosomes are used to solve the problem. Codiak 
Biosciences [70] published the first preclinical data of 
engineered exosomes to deliver ASO (exoASO), demon-
strating the potential of exoASO to M2 macrophages to 
target the expression of key immunosuppressive tran-
scription factors STAT6 and C/EBP (Fig. 3A). The results 
revealed that the expression of TNF and IL-10 related 

to exoASO therapy increased up to 40-fold and 29-fold 
respectively, which was consistent with the repolarization 
from immunosuppressive M2 macrophages to immu-
nostimulatory M1 macrophages, and exoASO-STAT6 
significantly slowed tumor growth, and tumors in 50% 
of mice completely subsided. When exoASO-STAT6 was 
combined with anti-PD1 antibody, the tumor remission 
rate was further improved by 25%. It was exciting that 
FDA has recently approved the investigational new drug 
application of exoASO-STAT6. In addition, with the rise 
of CRISPR/Cas9-mediated genome editing, the deliv-
ery of Cas9-encoding plasmid through exosome has also 
been tried. For example, Kim et  al. [71] reported that 
ovarian cancer-derived exosomes (SKOV3-Exo) could be 
efficiently electroporated with CRISPR/Cas9 plasmids 
in  vivo to suppress the expression of poly (ADP-ribose) 
polymerase-1 (PARP-1). The results suggested that com-
pared with SKOV3-Exo alone, the expression of PARP-1 
was completely inhibited after treatment with CRISPR/
Cas9-loaded SKOV3-Exo, and the tumor volume in the 
treatment group hardly changed within 20 days of intratu-
moral injection treatment, while that in the control group 
kept growing (Fig. 3B). Besides, Lin et al. [63] developed 
a kind of hybrid exosomes with liposomes to deliver the 
CRISPR/Cas9 expression plasmids into mesenchymal 
stem cell (MSC) target cells, and the results revealed 
that hybrid nanoparticles carried the large CRISPR/Cas9 
expression plasmids could down-regulate the expres-
sion of gene Runx2 by twofold compared with the con-
trol group (only Runx2 guided CRISPR/dCas9 system) 
(Fig. 3C). Therefore, exosome mediated ASO or CRISPR/
Cas9 plasmids into cells could correct or destroy onco-
genes through regulating mRNA translation or therapeu-
tic genome editing (gene destruction, gene correction, 
gene deletion, gene insert, etc.), respectively [72, 73].

Exosomes‑based mRNA delivery system
mRNA
mRNA is an intermediate molecule that transmits the 
genetic code from DNA to the ribosome for protein 
expression. It has been considered as another promising 
tool for the treatment of a variety of diseases, especially 
cancer [74, 75]. Compared with DNA-based therapy, 
RNA-based therapy is more advantageous: (a) DNA tran-
scription must precede translation and need to enter the 
nucleus. The efficiency is limited because less than 0.10% 
of cytoplasmic DNA enters the nucleus; In contrast, 
mRNA is directly translated when entering the cytosol, 
resulting in effective gene expression [76]; (b) mRNA has 
no risk of genome integration and will not cause insertion 
mutation [77]; (c) unlike DNA, mRNA is also translated 
in tumor dormant cells [78]. Based on the above advan-
tages, the use of mRNA technology to develop vaccines 



Page 8 of 29Zhang et al. Journal of Nanobiotechnology          (2022) 20:279 

for related diseases, including cancer, has gradually 
attracted extensive attention [79]. In particular, since the 
outbreak of COVID-19, a variety of mRNA vaccines have 
been rapidly developed using mRNA technology [80–82]. 
Nevertheless, mRNA is easy to be degraded by nuclease, 
easy to activate immune response, and large (104–106 Da) 
[83], which has become the main obstacle to the devel-
opment of mRNA drugs. Exosomes, as a natural delivery 
carrier, can realize the effective delivery of mRNA.

Loading methods for mRNA into exosomes
As early as 2007, Valadi et  al. [84] firstly found that 
exosomes were natural carriers of mRNA in mast cells. 
Subsequently, this phenomenon was also observed in 
many other cells [85–87]. However, the insertion of foreign 
mRNA into exosomes has been a challenge, because these 
electroporation- or chemical-based loading methods are 
not useful for packaging and delivering macromolecular 

mRNA via exosomes. Afterwards, Tsai et al. [88] reported 
that the exosome-liposome hybrid could efficiently trans-
fect target cells with Antares2 mRNA. In the study, the 
purified mRNA was pre-incubated with polycationic lipid 
coating, and then mixed with equal amounts of puri-
fied exosomes. Based on this, the multiplexed mRNA 
COVID-19 vaccine was successfully developed. In addi-
tion, Kojima et al. [89] constructed an EXOsomal Transfer 
Into Cells (EXOtic) device, which transformed the way of 
sorting mRNA from natural but dynamic pathways to an 
engineering way. In this device, the archaea-derived L7Ae 
peptide (binding to the C/Dbox RNA structure) was fused 
with the exosomal marker protein CD63, recruiting those 
mRNAs containing C/Dbox into budding exosomes. And 
then exosomes carried these functional mRNAs into the 
cytoplasm of target cells (Fig.  4A). Recently, this method 
have also been adopted to package ZFP or ZPAMt mRNA 
with exosomes to inhibit HIV-1 transcription, inducing 

Fig. 3  A Engineered exosomes to deliver ASO to produce effective antitumor activity [70]. B Exosomes loaded with CRISPR/Cas9 targeting PARP-1 
for cancer therapy [71]. C The hybrid exosomes successfully deliver CRISPR/dCas9 interference system [63]
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“blocking and locking” phenotypes in virusinfected cells 
[90]. In addition, Li et al. [91] fused the exosome membrane 
protein CD9 with RNA binding protein HuR to construct 
CD9-HuR functionalized exosomes, which has a strong 
ability to enrich specific RNAs (Fig. 4B). These functional-
ized exosomes were used to deliver dCas9 mRNA to target 
gene C/ebpα related to cell proliferation and differentiation 
in liver. And the expression of target gene was decreased by 
about 20-fold compared with free dCas9 mRNA. Further-
more, with the technical breakthrough of the exosome-
loading mRNA method, this delivery system is gradually 
used to treat cancer.

Delivery of therapeutic mRNA
Wang et  al. [92] applied exosomes to deliver HChrR6-
encoding mRNA (generated by transfection of cells with 
the XPort/HChrR6 encoding plasmid) to the HER2+ve 
human breast cancer cells, which caused nearly complete 
growth arrest of the breast cancer cells. This was the first 
time that exosome-mediated exogenous mRNA delivery 
has gained a therapeutic advantage. Subsequently, For-
terre et al. [93] have successfully utilized similar methods 
to treat HER2+ve human breast cancer cells. In the study, 
exosomes from HEK293 cells delivered functional HChrR6 
mRNA to HER2+breast cancer cells, and when admin-
istered systemically along with prodrug CB1954, they 
arrested the growth of HER2+human breast cancer xeno-
grafts in athymic mice by prodrug activation (Fig. 4C). In 

another work, Usman et al. [33] treated leukemia cells with 
exosome from human red blood cells (RBCs) loaded with 
Cas9 mRNA and gRNA targeting the human miR-125b-2 
(an oncogenic miRNA in leukemia) locus. The results indi-
cated the expression of miR-125a and miR-125b decreased 
by 90–98% after 2 days of treatment.

In addition to the delivery of exogenous mRNA, endog-
enous functional mRNA has also been caught attention. 
Yang et al. [94] reported a cellular nano perforation tech-
nology for producing a large number of exosomes con-
taining therapeutic mRNAs. Firstly, the plasmid DNA was 
transfected into various sources cells, and then the cells 
were stimulated with focal and transient electrical stimu-
lation to promote the release of exosomes carrying the 
transcribed mRNA. Based on this, PTEN and CDX (CD47 
cloning targeted peptide) plasmids were transferred into 
glioma cells to obtain a large number of targeted func-
tional exosomes, which enhanced cell uptake, restored the 
expression of PTEN protein, inhibited tumor growth, and 
prolonged survival with a median survival of 45 days, com-
pared with 31 days for non-functional exosomes (Fig. 4D). 
Encouragingly, NeoCura (a Chinese company of RNA pre-
cision medicine based on artificial intelligence) and MDi-
mune lnc (a Korean company based on extracellular vesicle 
drug delivery platform) recently jointly developed mRNA 
therapy for cancer vaccine delivery based on exosomes 
[95]. Based on the above, exosome mediated mRNA deliv-
ery has promising potential for cancer treatment (Fig. 4).

Fig. 4  A An EXOsomal Transfer Into Cells (EXOtic) device recruits those mRNAs containing C/Dbox into budding exosomes [90]. B CD9-HuR 
functionalized exosomes deliver dCas9 mRNA to target gene C/ebpα related to cell proliferation and differentiation in liver [91]. C Exosomes loaded 
with HChrR6 mRNA for breast cancer therapy [93]. D a cellular nano perforation technology for producing a large number of exosomes containing 
therapeutic mRNAs [94]
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Exosomes‑based miRNA delivery system
miRNA
miRNAs are a class of highly conserved single-stranded 
RNA with a length of 19–25 nucleotides, which are gen-
erally located in the non-coding region of the genome 
and do not encode proteins, but they play an important 
role in regulating gene expression [96, 97]. The spe-
cific sequence of the 3′ untranslated region (3′-UTR) of 
miRNA is completely or partially complementary to its 
targeted mRNA, leading to target degradation or trans-
lation inhibition, so as to negatively regulate the target 
protein expression. This process is also involved in the 
occurrence and development of tumors. For instance, 
several miRNAs, such as miR-149-5p, miR-29b and miR-
34b, are poorly expressed in prostate cancer tissues [98]. 
There are some down-regulated miRNAs in bladder can-
cer, such as miR-145, miR-125b and miR-143, which even 
show anti-oncogenic properties; while some upregulated 
miRNAs, for instance, miR-17-5p, miR-20a, and miR-
183, were oncogenic [99]. In NSCLC cells, miR-26, miR-
21, miR-155 and miR-574-5p affected the progression of 
NSCLC through cell cycle regulation, escaping, apopto-
sis, metastasis regulation, etc. [100]. Besides endogenous 
miRNA, synthetic anti-miRNA oligonucleotides (AMOs) 
or miRNA mimics (miR mimics) have also been delivered 
into cells to suppress or enhance specific endogenous 
miRNAs’ function. Thus, regulating the expression of 
cancer-related genes through miRNA complementation 
is becoming a promising means of cancer treatment.

Loading methods for miRNA into exosomes
Recently, exosome based-miRNA therapy has developed 
more rapidly owing to its wide participation in gene regu-
lation, small size, and easy to load. Electroporation is also 
used to load miRNA into exosomes. Studies have shown 
that each exosome was loaded with about 3000 miRNA 
molecules [101]. Table  2 also summarizes these studies 
of electroporation of miRNA into exosomes for ther-
apy. In addition, miRNA could be loaded into exosomes 
by incubation at 37  °C [102]. However, the loading effi-
ciency is not satisfactory, so this method is not often 
used. Besides, there are also commercial transfection 
reagents on the market, such as Exo-FectTM exosome 
transfection reagent, HiPerFect transfection reagent, 
Lipofectamine 2000 and 3000, which are used to load 
miRNA directly into exosomes (Table  2). Furthermore, 
in the case of heat shock, CaCl2 can mediate the trans-
fection of miRNAs or their inhibitors into exosomes, and 
these RNAs have functional activity after transmission 
to recipient cells [44]. Additionally, another transfection 
method pre secretion of exosomes has also been proved 
to be effective. Trivedi et  al. [103] introduced miRNA-
125b into SK-LU-1 lung cancer cells using hyaluronic 

acid-polyethyleneimine (HA-PEI)/hyaluronic acid-pol-
yethylene glycol (HA-PEG) combined nanoparticles as 
gene transfection agents, which successfully increased 
miRNA-125b expression in exosomes secreted by the 
lung cancer cells. Therefore, these available loading meth-
ods can be selected according to different requirments.

Delivery of therapeutic miRNA
miRNA-based therapy is divided into two forms: miRNA 
replacement or inhibition (Fig. 5A). The former aims to 
introduce exogenous miRNAs (miR mimics) known to 
promote tumor inhibition. The latter provides specific 
miRNA inhibitor or AMOs to inhibit tumor promoting 
miRNA (oncomiR). Based on the different therapeutic 
requirements, a large number of successful cases have 
been reported. For example, as a tumor suppressor, miR-
375 is negatively associated with epithelial-mesenchy-
mal transition (EMT) in cancer patients. To increase its 
expression and reverse EMT process, Rezaei et  al. [44] 
used tumor-derived exosomes to deliver miR-375 mimic, 
resulting in the inhibition of the migration and invasion 
abilities of colon cancer cells. In addition, miR-155 over-
expression can enhance the invasive and chemoresist-
ance of oral squamous cell carcinoma (OSCC) cells. To 
decrease miR-155 expression, Kirave et  al. [104] intro-
duced exosome as a carrier and miR-155 inhibitor as 
therapeutic agent to treat cisplatin-resistance OSCC, and 
the results revealed that exosomes loaded miR-155 inhib-
itor could reverse chemoresistance in oral cancer through 
upregulating the expression of FOXO3a and inducing the 
EMT transition (Fig.  5B). Similarly, exosome mediated 
miR-501 inhibitor delivery into doxorubicin (dox)-resist-
ant gastric cancer cell, resulting in inhibiting the expres-
sion of miR-501 and makeing the cells sensitive to dox 
[105]. Although exosome based-miRNA has some effect 
in the tumor treatment, the therapeutic effect needs to be 
improved due to its targeting.

Genetically modified exosome can target tumor cells 
through binding functional ligands modified on exoso-
mal surface to overexpressed receptors on the tumor 
surface, so as to transfer more miRNA to tumor cells 
and further enhance the therapeutic effect. For exam-
ple, Liang et al. [21] reported that the Apo-A1-modified 
exosomes loaded miR-26a (Apo-Exo/miR-26a) selectively 
bound to HepG2 cells via the SR-B1 receptor-mediated 
endocytosis. The results revealed that compared with the 
HepG2 cells incubated with exosome-loaded miR-26a, 
those with Apo-Exo/miR-26a could upregulate miR-26a 
expression about threefold, and downregulate key cyc-
lins CCNE2 and CDK6 expression about onefold, and the 
inhibition of cell migration was twofold as high (Fig. 5C). 
Ohno et  al. [41] revealed that modified exosomes with 
the GE11 peptide on their surfaces delivered let-7a 
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miRNA specifically to xenograft breast cancer tissue in 
RAG2–/– mice, significantly inhibiting tumor develop-
ment in vivo through upregulating the let-7a expression 
about 1000-fold and downregulating target gene HMGA2 
about fivefold. Similarly, exosome surface were modified 
with target peptide transcriptional transactivator (TAT) 
protein and T7 respectively to deliver different miRNA 
to target tumor cells, which obviously inhibiting the 
tumor occurrence and development [43]43. Although the 
efficacy of this single gene therapy can be improved by 
strengthening the targeting of exosomes, due to the limi-
tation of monotherapy, it is necessary to cooperate with 
other therapies to further improve the therapeutic effect. 

Recently, it has been demonstrated that miRNAs and 
chemotherapeutics can be co encapsulated within engi-
neered exosome and achieve more excellent anti-tumor 
effect. Liang et  al. [107] integrated the fusion protein 
Her2-LAMP2 into the surface of exosomes to make 
exosome target EGFR receptor. And then engineered 
exosome packaged miR-21i and chemotherapeutics 
5-Fluorouracil (5-FU) (THLG-EXO/5-FU/miR-21i) 
to target 5-FU-resistant HCT-116 colorectal cancer 
cell (HCT-1165−FR) through EGFR receptor-mediated 
endocytosis. The results revealed that the apoptotic 
proportion and proliferation inhibition rate of THLG-
EXO/5-FU/miR-21i-treated HCT-1165FR cells 
increased by about 3.5-fold and fivefold respectively 
compared with that of THLG-EXO/miR-21i-treated 
cells (Fig.  5D). In addition, Zhan et  al. [108] designed 
the exosome: (1) safe and sufficient blood exosomes; (2) 
binding the ligand-coupled superparamagnetic nano-
particles to the specific membrane proteins of exosome 
to achieve the separation, purification and tumor mag-
netic-targeting; (3) co-loading hydrophobic drugs dox 
and cholesterol-modified miR-21i to enhance the thera-
peutic effectiveness; (4) binding L17E peptide to pro-
mote the cytosolic release of encapsulated cargos. The 
engineered exosomes (D-Exos/miR21i-L17E) that met 
the above four requirements could be highly enriched 
in tumor targets. The results revealed that compared 
with Exo/miR21i-L17E groups, antitumor effect in vivo 
decreased two folds at the 18th day after administration 
in the D-Exos/miR21i-L17E group. Based on the above, 
the excellent antitumor could achive through combined 
therapy. The related research have been summarized in 
Table 2 in detail. 

Exosomes‑based siRNA delivery system
siRNA
siRNA is another class of double stranded DNA (dsRNA) 
with a length of about 25  bp, which could completely 
complementary to the targeted mRNA, resulting in gene 

silencing [128–131]. The mechanism is that endogenous 
dsRNA is recognized by ribonuclease protein Dicer, 
which cleaves the dsRNA into 21 to 23 bp with 2-nucleo-
tide overhanging at 3′ ends. These cleavage products, 
named siRNAs, consist of a passenger and guide strands. 
After binding to the RNA-Induced Silencing Complex 
(RISC), the guide chain is guided to the target mRNA 
and cleaved into small fragments by the cleavage enzyme 
argonaute-2, which is located between bases 10 and 11 at 
the 5′ ends of the siRNA guide chain [132, 133]. Based 
on the above, siRNA has the potential to treat a variety 
of diseases by regulated the expression of target mRNA. 
Recently, FDA approved the Patisiran (siRNA is delivered 
to hepatocytes as a lipid complex) and Givosiran (siRNA 
is coupled to a GalNAc ligand that makes salivary glyco-
protein receptors-mediated targeted delivery to hepato-
cytes) siRNA drugs, marking the beginning of the era of 
RNA interference (RNAi) therapy [134, 135].However, 
the successful therapy requires the safe and efficient 
delivery of siRNA into the cytoplasm to play an interfer-
ence function.

Loading method for siRNA into exosomes
The concept of delivering siRNA using exosomes was 
first confirmed by Alvarez-Erviti et  al. [136], who elec-
troporating exogenous siRNA into exosomes for delivery 
both in vitro and in vivo, resulting in the knockdown of 
the specific gene BACE1. Similarly, some studies loaded 
siRNA into exosomes by electroporation (Table  3). 
Furthermore, Wahlgren et  al. [137] delivered thera-
peutic siRNA into exosomes from peripheral blood by 
electroporation. And the effects of exosome concentra-
tion, siRNA concentration, and electroporation param-
eters on electroporation efficiency were studied. The 
results revealed that the changes of siRNA and capaci-
tance had no effect on the electroporation efficiency, and 
when the concentration of exosomes was in the range 
of 0.25-1  mg/ml, the electroporation efficiency was the 
highest. In addition, like miRNA, there are also some 
commercial transfection reagents for transfecting siRNA 
into exosomes, such as Lipo2000, Lipo3000, Exo-fect 
Exosome Transfection Reagent, etc. (Table 3). Aqil et al. 
[138] loaded siRNA into milk exosomes through the 
Exo-fect Exosome Transfection Reagent, and the loading 
efficiency was about sixfold higher than that of electropo-
ration. Besides, siRNA loaded into exosomes by sonica-
tion could be delivered to breast cancer cells, resulting 
in a 50% knockdown of an oncogene [139]. Exosomes 
by sonication induced less siRNA aggregation than 
electroporation [140]; However, the number of siRNAs 
entering recipient cells through exosomes is still limited. 
Therefore, sonication parameters need to be optimized 
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to improve loading efficiency. As the loading methods 
mature, it is gradually applied to cancer therapy.

Delivery of therapeutic siRNA
As we all know, cancer progression is related to the up-
regulation of anti apoptotic protein such as BCL-2, PLK1, 
KRAS, survivin protein that initiates cell mitosis, and 
cell growth factor. siRNA exosomal therapy targeting 
tumor cells has been been committed to downregulating 
these oncogenes expression to inhibit cell proliferation 
and migration. Kaban et  al. [141] loaded BCL-2 siRNA 
into natural killer (NK) cell-derived exosomes to treat 
ER + breast cancer, leading to enhanced apoptosis in 

breast cancer cells. Similarly, exosomes mediated the 
delivery of PLK-1 siRNA into bladder cancer cells, pro-
moting cell apoptosis through silencing PLK-1 expres-
sion [142]. Additionally, Pi et  al. [143] designed RNA 
nanoparticles-modified exosome to simultaneously tar-
get three cancer cells (breast cancer, prostatic cancer and 
colorectal cancer). In the structure of the RNA nanopar-
ticle, the pRNA of phage phi29 (an RNA molecule with 
transport function) was extended into an arrow shape 
and connected with an RNA ligand (used to target and 
bind specific overexpressed receptors in tumor cells) 
and added the fluorescent dye alexa647 for imaging. The 
three RNA ligands were designed: prostate cancer spe-
cific membrane antigen RNA ligand, epidermal growth 

Fig. 5  A Different therapeutic forms of miRNA. B Exosome mediated miR-155 inhibitor delivery to treat cisplatin-resistance oral squamous cell 
carcinoma [104]. C Apo-A1-modified exosomes loaded miR-26a selectively bound to HepG2 cells via the SR-B1 receptor-mediated endocytosis [21]. 
D Engineered exosome packaged miR-21i and chemotherapeutics 5-Fluorouracil (5-FU) to target 5-FU-resistant colorectal cancer cell [107]
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factor RNA ligand and folic acid ligand. And then this 
modified exosomes were used to deliver survivin siRNA. 
The results revealed that compared with the control 
(injection PBS), during the entire treatment period, the 
growth of breast and prostate cancer cells treated with 
the above exosome loaded with survivin siRNA was com-
pletely inhibited,the growth inhibition rate of colorectal 
cancer cell treated with the functional exosome increased 
onefold (Fig. 6A).

As mentioned above, exosome mediated siRNA deliv-
ery can effectively inhibit the proliferation and migra-
tion of cancer cells. However, drug resistance is another 
major challenge in cancer treatment. Generally speak-
ing, overexpression of chemotherapy resistance-asso-
ciated proteins caused drug resistance in cancer cells 
[144]. Utilizing siRNA to overcome drug resistance has 
been widely reported. For example, Li et  al. [145] used 
exosomes from bone marrow mesenchymal stem cells 
(BM-MSC) to deliver siRNA against Grp78 (overexpres-
sion in hepatocellular carcinoma and could promote the 
drug resistance to Sorafenib) in Sorafenib-sensitive hepa-
tocellular carcinoma cells, leading to sorafenib-resistant 
cancer cells’ sensitivity sorafenib and the reversal of drug 
resistance. Similarly, Zhang et  al. [146] reported that 
si-c-Met delivered by exosome showed a better inhibi-
tory effect on the expression of c-Met (an essential role 
in drug resistance of various tumors) and significantly 
enhanced drug sensitivity. In addition, fatty acid oxida-
tion (FAO) plays a crucial role in drug resistance of can-
cer cells. Carnitine palmitoyltransferase 1A (CPT1A), a 
key enzyme of FAO, is widely considered as an emerging 
therapeutic target. Lin et  al. [147] utilized iRGD-modi-
fied exosomes to specifically deliver siCPT1A into colon 
cancer cells to suppress FAO, which have reversed the 
sensitivity of drug-resistant colon cancer cells to oxalipl-
atin. The above methods can effectively alleviate the drug 
resistance of cancer cells and provide new ideas for can-
cer treatment.

In addition, cancer immunotherapy utilizes the 
patient’s immune system to identify and destroy cancer 
cells, which is a specific protective strategy for cancer 
treatment [148]. Athough immune cells are common in 
the tumor microenvironment (TME), accounting for 
about 50% of the stromal cell components, only a few are 
anti-tumor effector cells, which may be responsible for 
the immune escape of tumor cells [149]. Thus, it is nec-
essary for tumor immunotherapy to target TME and/
or immune checkpoints. For example, Zhou et  al. [100] 
designed a bio-platform targeting pancreatic ductal ade-
nocarcinoma (PDAC) to enhance immunotherapy and 
reprogram TME. In this platform, exosomes derived 
from BM-MSCs as carrier co-delivered oxaliplatin (OXA) 
and gal-9 siRNA. Among them, OXA could both kill 

tumors and induce immunogenic cell apoptosis. siRNA 
interfered with the galectin-9 synthesis in tumor cells 
to reduce the transformation of macrophage M1. Com-
pared with the chemotherapy or gene therapy alone, this 
combination treatment produced synergetic effects that 
affects cellular crosstalk in vivo, leading to overall change 
in TME, so as to further improve the antitumor efficacy, 
and the inhibition rate of cell growth was about twice 
higher (Fig. 6B). Furthermore, Pei et al. [150] established 
a cRGD-modified exosome with fibrinogen-like protein 
1 (FGL1, an important immune checkpoint) siRNA and 
transforming growth factor-β (TGF-β1, an immunosup-
pressive cytokine in TME) siRNA (cRGD-Exo/siMix) to 
co-silence of FGL1 and TGF-β1. The results revealed that 
FGL1 expression was inhibited, which activated T cell 
recognition. Meanwhile, TGF-β1 expressiom was also 
silenced, which disaired the immunosuppressive micro-
environment of tumor and promoted the infiltration of 
immune cells (Fig. 6C).

In general, exosome mediate the delivery of siRNA to 
silence the expression of key genes related to cell prolif-
eration, drug resistance, immune checkpoints and TME, 
which will inhibit the development of tumor. Addition-
ally, the simultaneous use of several siRNAs, and siRNA 
combined with chemotherapeutic drugs will achieve 
synergistic effects. The application of exosomes carrying 
siRNA for cancer treatment are summarized in Table 3 in 
detail. These methods will provide a reference for cancer 
treatment by using siRNA.

Exosomes‑based circRNAs delivery system
circRNAs
circRNAs are covalently closed RNA molecules without 
5′ caps and 3′ tails, generated by a process of back-splic-
ing [167]. The length ranges from hundreds to thousands 
of nucleotides, and they are highly abundant in eukary-
otes [168]. The circRNAs play important roles in the 
occurrence and development of human diseases, espe-
cially cancer, which can regulate multiple cancer-related 
biological processes. The main mechanisms are as follows 
[169]: (a) acting as miRNA proton sponges: circRNA 
competitively binds miRNA to regulate the expression 
of miRNA and its target genes; (b) regulating gene tran-
scription: exon–intron circRNAs (EIciRNAs) interact 
with U1 small nuclear ribonucleoprotein (snRNP) to 
form the EIciRNAs-U1 snRNP complex, which binds to 
polymerase II (Pol II) to regulate the promoter region 
of host gene transcription; (c) binding with protein: cir-
cRNAs act as protein sponges or baits to regulate gene 
expression; (d) encoding small functional peptides: cir-
cRNAs have ribosome binding sites and stable open 
reading frame (ORF), which can encode corresponding 
peptides. For example, CiRS‐7, one of the most famous 
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circRNAs, acts as more than 70 conventional miR-
7-binding sites and modulates the expression of multiple 
cancer-related genes [170, 171]. circRNA_FoxO3 can be 
used as a protein scaffold of MDM2 and p53 to induce 
p53 degradation, which can induce cancer cell apoptosis 

[172]. circRNA_SHPRH encodes protein SHPRH-146aa, 
which function as a bait to protect SHPRH protein from 
ubiquitination through DTL mediated degradation, so 
as to inhibit glioma occurrence [173]. Although the cir-
cRNAs have been served as one of the most promising 

Fig. 6  A RNA nanoparticle and RNA nanoparticles-modified exosome [143]. B Exosomes co-delivery chemotherapy drugs oxaliplatin (OXA) 
and nucleic acid drugs gal-9 siRNA to enhancing immunotherapy and reprogramming tumor microenvironment (TME) [100]. C cRGD-modified 
exosome with high siFGL1 and siTGF-β1 loading efficiency to realize the co-silence of FGL1 and TGF-β1 to to block immune checkpoints and 
simultaneously regulate TME [150]
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biomolecules for cancer therapy, their delivery efficiency 
is often limited by the selected delivery system.

Delivery of therapeutic circRNA
circRNA naturally carried by exosomes has been widely 
developed for cancer treatment, which greatly improve 
its therapeutic effect owing to the high delivery effi-
ciency. For example, Xue et al. [174] reported that exo-
somal circRNA_100284 acted as a sponge of miR-217, 
inhibiting cell proliferation by inducing a G2/M phase 
arrest in the cell cycle and targeting enhancer of zeste 
homolog (EZH) in various cancers. Chen et  al. [175] 
introduced that exosomal circ-0051443 suppressed the 
hepatocellular carcinoma progression through com-
petitive bounding to miR-331-3p. However, exosome-
mediated exogenous circRNA delivery also faces some 
challenges. For one thing, the special circular struc-
ture of circRNA leads to the low circular efficiency. 
For another, macromolecular circRNAs also face the 
same problem as the large-size mRNA discussed above, 
which is difficult to load into the exosomes. To solve 
these problems, Yu et  al. [176] constructed the target 
circRNA_DYM coding DNA into the lentivirus expres-
sion vector and then combined RVG-Lamp2b plasmid 
to transfected them into the HEK293T cells, and the 
engeneered exosome stably overexpressing the target 
circRNA_DYM (RVG-circDYM-EX) were secreted. 
This not only made the circRNA correctly and effi-
ciently cyclized, but also could be easily loaded into 
the exosomes. The RVG-circDYM-EX was delivered 
to the brain to attenuate astrocyte disfunction induced 
by chronic unpredictable stress through binding to the 
transcription factor 1 (TAF1) and downregulating mul-
tiple downstream genes (Trpm6, Cyp39al). Similarly, 
Yang et  al. [177] obtained the engeneered exosome 
modified with RVG-Lamp2b and loaded with circRNA_ 
SCMH1 and successfully transported them to the brain. 
The results revealed that the delivery system promoted 
functional recovery of rodent and non-human primate 
ischemic stroke models through binding to the methyl-
CpG binding protein 2 and upregulating the expression 
of the target genes (Mobp, Igfbp3, Fxyd1 and Prodh).

In conclusion, the circular structure of circRNA can 
not only prevent being degraded and improve the expres-
sion time and amount of circRNA, but also be admin-
istered repeatedly, which makes it one of the emerging 
nucleic acid drugs. Some natural exosomal circRNA can 
play an important role in cancer therapy. And exogenous 
circular RNA can also be cyclized efficiently by con-
structing related lentivirus vectors, and can be loaded 
into exsome through transfecting the vectors into the tar-
get cells, which will provide references for the application 
of this system in cancer.

Exosomes‑based other nucleic acids delivery system
Other nucleic acids
Other nucleic acid drugs, including long noncoding RNA 
(lncRNA), short hairpin RNA (shRNA), aptamer, etc., 
have been also introduced into cancer therapy. LncRNA, 
an RNA family with many members, has a length of 
over 200  bp and cannot be transformed into protein. 
Although it does not have the function of traditional 
RNA, it can regulate the activity of transcription factors 
[178, 179]. Moreover, some lncRNAs play a curical role 
in tumor proliferation, apoptosis, diffusion, and homeo-
stasis maintenance [180–182]. For shRNA, structurally, 
it is more similar to miRNA, and both of them are local 
double-stranded RNA formed by hairpin structure [183]; 
Functionally, it is closer to siRNA, which is cleaved by 
the Dicer to form siRNA, and then performs interfer-
ence through the siRNA pathway [184]. The shRNA is 
also a critical effector molecule in RNAi technology, and 
it could induce target mRNA degradation [185]. Another 
nucleic acid fragment, aptamer is a single-stranded 
DNA or RNA that can bind with different targets, such 
as chemical molecules, RNA, DNA or protein with high 
affinity and specificity to block protein–protein or recep-
tor–ligands interactions. Pegaptanib (macugen), The first 
PEGylated RNA aptamer drug, pegaptanib (macugen), 
was approved by FDA in 2004, binding to extracellular 
VEGF165 with high specificity and affinity [186]. It can 
be seen that these RNAs will also play a key role in the 
cancer treatment.

Delivery of therapeutic other nucleic acids
Exosomes can also deliver these nucleic acids for cancer 
therapy. For instance, Zheng et  al. [187] transfected the 
lncRNA PTENP1 lentiviral vector into HEK293A cells, 
and then secreted exosomes contained PTENP1. Even-
tually the exosomal PTENP1 protected PTEN by spong-
ing miR-17 and inhibited the biomalignant behavior of 
bladder cancer. Similarly, Zheng et  al. [188] obtained 
exosomal circLPAR1 by the same methods, which could 
suppress colorectal cancer cell growth through suppress-
ing BRD4 expression via METTL3-eIF3h interaction. In 
addition, aptamers are often used to modify exosomes to 
enhance their ability to target tumors. Exosomes derived 
from HEK293T cells were modified by A9g (PSMA) 
aptamer and loaded with survivin siRNA, which could 
be  specifically delivered to tumors and effectively block 
tumor growth [143]. All in all, these system are emerg-
ing, and its their successful delivery will also contribute 
to cancer therapy.
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Exosome‑based clinical applications for cancer 
treatment
As the  discussed  above,  exosomes are a class of ideal 
drug delivery tool, which have also been performed in 
cancer clinical trials. The database www.​Clini​calTr​ials.​
gov (accessed on April 2022), has been examined to 
assess the major exosomes’ clinical applications. 105 tri-
als are registered within the study object “exosome” and 
“cancer”.

Table  4 summarizes the studies related to using 
“exosomes” for cancer therapy. Among them, immature 
DC-derived exosomes have been applied for melanoma 
and NSCLC with similar safety results. In addition, two 
clinical trials investigating plant-derived exosomes as 
cancer therapy are currently under way. At present, 
two clinical trials are on-going to study plant-derived 

exosomes for cancer treatment. In the first trial, grape-
derived exosome-like nanoparticles are being tested 
for their effects on oral mucositis and related pain after 
radiotherapy and chemotherapy for head and neck can-
cer (NCT01668849). In the second study, plant-derived 
exosomes loaded with curcumin are being evaluated 
for their efficacy for treating colorectal cancer after oral 
administration (NCT01294072). The clinical studies 
on exosome-loaded nucleic acids for cancer treatment 
have been also “completed” or “ongoing”. For example, 
the phase I trial (NCT03608631) sponsored by the M.D. 
Anderson Cancer Center (Texas, USA) have investigated 
the use of MSC derived exosomes for the treatment 
of stage IV pancreatic cancer patients with KrasG12D 
mutation. The patients were injected with KrasG12D 
siRNA loaded into exosomes which targeted the 

Table 4  Exosome-based clinical applications for cancer treatment from clinical trials.com and references

Cancer Phase Start year Source of exosome Therapeutic cargo Status Sponsor Clinical trial 
number/
Reference

Metastatic pan-
creas cancer with 
KrasG12D mutation

I 2018 Mesenchymal stro-
mal cells

krasG12D siRNA Ongoing M.D. Anderson Can-
cer Center, Houston, 
Texas, United States

NCT03608631

Non-small cell lung 
cancer

II 2010 Dendritic cells Metronomic cyclo-
phosphamide

Completed Institute Gustave 
Roussy, Villejuif, 
France

NCT01159288

Colon cancer I 2011 Plant Curcumin Recruiting University of 
Louisville Hospital, 
Louisville, Kentucky, 
United States

NCT01294072

Head and neck 
cancer

I 2012 Grape Lortab, fentanyl 
patch, mouthwash

Active, not recruiting James Graham 
Brown Cancer 
Center, Louisville, 
Kentucky, United 
States

NCT01668849

Malignant glioma of 
brain

I 2012 Tumor cells IGF-1R antisense oli-
godeoxynucleotide

Completed Thomas Jefferson 
University Hospital; 
Jefferson Hospital for 
Neurosciences, Phila-
delphia, Pennsylva-
nia, United States

NCT01550523

Malignant glioma 
neoplasms

I 2015 Tumor cells IGF-1R antisense oli-
godeoxynucleotide

Completed Thomas Jefferson 
University Hospital, 
Philadelphia, 
Pennsylvania, United 
States

NCT02507583

Metastatic mela-
noma

I 2000 Autologous den-
dritic cell

Pulsed with MAGE 3 
tumor peptides

Completed Institute Curie, Paris, 
France

[189]

Non-small cell lung 
cancer

I 2000 Autologous den-
dritic cell

Pulsed with MAGE-
A3, -A4, -A10, and 
MAGE-3DPO4 tumor 
peptides

Completed Duke University 
Medical Center, 
Durham, NC, USA

[190]

Colorectal cancer I 2006 Autologous ascites The granulocyte–
macrophage colony-
stimulating factor

Completed The Fourth Hospital 
Affiliated to Guangxi 
Medical University, 
Liuzhou, China

[191]

http://www.ClinicalTrials.gov
http://www.ClinicalTrials.gov
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oncogenic KRAS gene, reducing its expression in pan-
creatic tumors [154]. In addition, the clinical trials that 
tumor cell-derived exosome delivers ASO to treat malig-
nant glioma of brain and neoplasms have been com-
pleted. In total, these exosome-based clinical applications 
for cancer treatment demonstrate the reliability of these 
delivery systems once again.

Conclusions and future perspectives
Lower immunogenicity, lower toxicity, and better cross-
ing biological barriers are the key advantages of exosomes 
over traditional nanocarriers. Based on these advantages, 
exosomes have shown great value in nucleic acid delivery, 
and can protect therapeutic substances from degradation 
and clearance by the host immune system. Additionally, 
the inherent targeting ability derived from their parental 
cells makes exosomes possess the potential of targeted 
delivery, enhancing the ability to penetrate the tumor 
vascular barrier and bioaccumulation at tumor sites, 
greatly improving their therapeutic efficacy. What’s more, 
therapeutic applications of exosomes as drug delivery 
vectors have been explored in numerous preclinical stud-
ies and several clinical trials. Thus, exosome-based deliv-
ery systems have unique advantages in cancer treatment. 
In this review, recent studies of using exosomes to deliver 
different nucleic acids (DNA, mRNA, miRNA, siRNA, 
circRNA, etc.) to treat various cancers are summarized.

Although significant progress has been made, some 
challenges hinder the exosomal therapeutic applica-
tion. The first challenge is the large-scale production 
of exosomes for clinical trials. To increase the produc-
tion of exosomes, bioreactors, 3D scaffolds, and micro-
fluidic devices are adopted. For example, Haraszti et  al. 
[192] applied 3D culture combined with tangential flow 
filtration (TFF) to increase the production of exosomes 
by 140-fold compared with 2D or 3D cultures or TFF. 
Another study found that using a hollow fiber biore-
actor could increase the yield of exosomes by 40-fold 
[193]. Yang et  al. [94] reported a cellular nanoporation 
(CNP) method to produce a large number of exosomes. 
The results revealed that compared with the traditional 
strategies (bulk electroporation and Lipo2000 trans-
fection), CNP produced up to 50-fold more exosomes. 
The method of separation and purification of exosomes 
based on microfluidic devices also showed promising 
results [194–196]. Wang et  al. [194] reported that a 3D 
nanostructured microfluidic chip could capture 90% of 
exosomes. In addition, some studies have shown that 
stress environments such as hypoxia, low pH and anti-
cancer drugs could stimulate the production of more 
exosomes [197–199]. Also, food-derived exosomes, 
including bovine milk- and grape-derived exosomes, have 
shown promising results in preclinical studies [200, 201]. 

However, quality should be guaranteed while increasing 
output, especially considering the contamination or the 
size overlap between exosomes and other EVs.

The second challenge is to develop new methods for 
loading nucleic acids into exosomes to make up for defects 
of traditional methods. The low loading efficiency of cur-
rent exosome-nucleic acid-loading strategies, including 
electroporation, incubation, and transfection, limits their 
application. For example, although electroporation is con-
sidered to be the best method for loading nucleic acids into 
exosomes, this method is easy to lead to the aggregation 
and degradation of nucleic acids and the change of exosome 
properties [202]. In addition, the simple incubation method 
is very limited in the type of the loaded cargo [203]. Trans-
fection methods should further simplify the process and 
reduce the cost of mass production. To solve these prob-
lems, some potential new nucleic acid loading methods 
have been developed. For instance, Li et al. [91] constructed 
the fusion protein CD9-HuR through fusing the exosomal 
membrane protein CD9 with the RNA binding protein 
HuR, which would selectively enrich the target RNA into 
the exosomes. The results revealed that the specific RNA 
miRNA155 loaded into CD9-HuR modified exosomes was 
sevenfold higher than that of the control group. In addition, 
studies have shown that exosome-enriched RNAs shared 
three specific sequence motifs, including CAG​UGA​GC, 
UAA​UCC​CA, and ACC​AGC​CU, which played a role as 
cis-acting elements targeting to exosomes and helped us 
modify the exosomes to selectively enrich more candidate 
RNAs for therapeutic purposes [204]. Besides, it is neces-
sary to develop new and efficient LNPs transfected with 
nucleic acid into exosomes. Wang et  al. [205] developed 
a physical–chemical hybrid platform involving cationic 
LNPs exposed to cyclic stretch, which could effectively 
deliver siRNAs and plasmid DNAs. And the gene silencing 
efficiency was about 10% higher than that of commercial 
transfection reagents Lipo2000. Similarly, Hu et  al. [206] 
developed thermostable ionizable lipid-like nanoparticles 
to deliver siRNA, which had good physical and chemical 
properties, thermal stability (not degraded at 40 °C for one 
week), and excellent siRNA transport efficiency (the same 
as that of Lipo2000). These techniques will provide new 
ideas for loading nucleic acid into exosomes.

The third challenge is to achieve personalized preci-
sion treatment of cancer. The heterogeneity of exosomes 
and complex in vivo environment limit the precise deliv-
ery and expected efficacy. To solve this problem, the can-
cer patient’s autologous exosomes can be the best choice 
of delivery carriers owing to the remarkable targeting 
ability against cancer cells. Among them, tumor cells can 
be obtained from minimally invasive and surgical sam-
ples and expanded in  vitro under specific culture condi-
tions. Gong et  al. [207] domesticated tumor cells from 



Page 25 of 29Zhang et al. Journal of Nanobiotechnology          (2022) 20:279 	

gastric cancer patients under acidic conditions similar to 
the tumor tissue environment and found that the acidic 
environment would promote tumor cells to secrete more 
exosomes and improve the ability of these exosomes to be 
taken up by homologous gastric cancer cells. Futhermore, 
Wang et al. [208] obtained immune activated macrophage 
tumor hybrid cells by in  vitro immune acclimation of 
patients’ own tumor cells and macrophages. The mac-
rophage tumor chimeric exosomes secreted by these cells 
could inherit the functions of two kinds of source cells: (a) 
activating tumor specific immune response; (b) inheriting 
the homing ability of tumor cells and actively target tumor 
tissues. In addition, fluorescence, luminescence, PET-MRI 
and SPECT imaging techniques are used to track the bio-
logical distribution of exosomes and payloads, and obtain 
images with anatomical details, which will provide accu-
rate and customized medical care for cancer patients [209].

Fourthly, considering that exosomes contain a group of 
discrete proteins and functional immune molecules, the 
application of exosomes may trigger a strong response of 
the host immune systems to a certain extent, resulting in 
the rapiddisappearance of exosome-based drug delivery 
systems. Therefore, a comprehensive preclinical exami-
nation, including pharmacokinetics, toxicity character-
istics and pharmacodynamics, should be performed to 
prevent potential side effects.
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Double stranded DNA; RISC: RNA-induced silencing complex; RNAi: RNA 
interference; RVG: Rabies virus glycoprotein; NK: Natural killer; BM-MSC: bone 
marrow mesenchymal stem cells (BM-MSC); FAO: Fatty acid oxidation; CPT1A: 
Carnitine palmitoyltransferase 1A; TME: Tumor microenvironment; PDAC: 
Pancreatic ductal adenocarcinoma; OXA: Oxaliplatin ; FGL1: Fibrinogen-like 
protein 1; TGF-β1: Transforming growth factor-β ; EIciRNAs: Exon–intron circR-
NAs; snRNP: Small nuclear ribonucleoprotein; Pol II: Polymerase II; ORF: Open 
reading frame ; EZH: Zeste homolog; lncRNA: Long noncoding RNA; shRNA: 
Short hairpin RNA; TFF: Tangential flow filtration; CNP: Cellular nanoporation.
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