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Abstract

Cancer is a leading public health problem worldwide. Its treatment remains a daunting challenge, although signifi-
cant progress has been made in existing treatments in recent years. A large concern is the poor therapeutic effect due
to lack of specificity and low bioavailability. Gene therapy has recently emerged as a powerful tool for cancer therapy.
However, delivery methods limit its therapeutic effects. Exosomes, a subset of extracellular vesicles secreted by most
cells, have the characteristics of good biocompatibility, low toxicity and immunogenicity, and great designability. In
the past decades, as therapeutic carriers and diagnostic markers, they have caught extensive attention. This review
introduced the characteristics of exosomes, and focused on their applications as delivery carriers in DNA, messenger
RNA (mRNA), microRNA (miRNA), small interfering RNA (siRNA), circular RNA (circRNA) and other nucleic acids. Mean-
while, their application in cancer therapy and exosome-based clinical trials were presented and discussed. Through
systematic summarization and analysis, the recent advances and current challenges of exosome-mediated nucleic
acid delivery for cancer therapy are introduced, which will provide a theoretical basis for the development of nucleic
acid drugs.
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Introduction

Cancer remains one of the leading causes of death glob-
ally, with the prevalence of 410 million mortalities annu-
ally [1]. In 2021, there had been 19.29 million patients
diagnosed with cancer, and nearly 10 million people died
of cancer [2]. To fight cancer, various treatments such as
surgical therapy, chemotherapy, and radiotherapy have
been developed. These strategies have become more
focused and personalized based on the type and stage of
the disease, which has led to a decline in cancer-related
mortality over the past decades [3]. Despite their undis-
puted contribution, these invasive and/or often lacking
cancer cell-selective techniques lead to a wide range of
harmful side-effects, such as high recurrence rates, enor-
mous trauma, poor survival and impaired life quality,
which often hamper therapy success. Consequently, there
is an urgent demand to develop safe and efficacious ther-
apeutic techniques for treating cancer.

Gene therapy is the therapeutic delivery of genetic
material into cells to compensate for abnormal genes by
either turning off genes that produce faulty proteins or
introducing genes to make a beneficial protein to treat
disease [4—6]. It is a safe and effictive method for treating
a wide range of diseases, especially for cancer. The effect
of gene therapy depends on the targeting of nucleic acids
drugs , the delivery efficiency, and accuracy of delivery
tools. The nucleic acids including specific DNA, messen-
ger RNA (mRNA), microRNA (miRNA), small interfer-
ing RNA (siRNA), circular RNA (circRNA), which have

Page 2 of 29

Tumor cell

circRNA: O —)@miRNA spongi
ASO: W=>» mwww ASO/mRNA

miRNA: W = W\ miRNA/mRNA

SiRNA: un = Wwwww SIRNA/mRNA

mRNA: "N\ > @ protein

Plasmid DNA; gDNA

£,

ComRNa

been widely exploited for gene therapy. However, nucleic
acids are negatively charged and hydrophilic, which can-
not directly penetrate cell membranes and are vulnerable
to enzymatic degradation, so they cannot be effectively
transported to cells [4]. In this situation, delivery systems
are necessary, which cannot only prevent the nucleic
acids degrading in the bloodstream and being filtered out
by the kidney, but can deliver them to desired locations.
Extracellular vesicles (EVs) are small membranous
vesicles released from different cells to the extracellular
matrix, which can participate intercellular communica-
tion between cells [7]. According to EVs’ size and ori-
gin, they are divided into three subgroups: (1) apoptotic
bodies (500 nm-5 um) released during programmed cell
death, (2) microvesicles (150-500 nm) from the budding
of the plasma membrane, and (3) exosomes (40—150 nm)
from endosomes [8]. Owing to their nano size, exosomes
are considered as the most promising drug delivery tools.
Compared to conventional delivery systems such as
lipid nanoparticles (LNPs), exosomes have the following
advantages: (1) Exosomes are more stable in body fluid
than LNPs, because LNPs can be easily removed by mac-
rophages or reticuloendothelial cells [9]. (2) Due to their
endogenous source and high biocompatibility, exosomes
have relatively low cytotoxicity and immunogenicity [10].
(3) Exosomes can provide better drug protection dur-
ing delivery, because drugs are within the double-layer
exosomal membrane, while drugs appeared outside the
LNPs, which are easier to degrade [11]. (4) Exosomes
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can deliver both hydrophobic and hydrophilic molecules.
And they have effective homing ability to tumor sites,
which may be attributed to their multivalent display of
cell-derived surface moieties [10]. (5) Exosomes derived
from tumor can escape the phagocytosis of mononuclear
phagocyte system through the binding of CD47 on exo-
somal surface and signal regulatory protein alpha (SIRP«)
on the face of macrophages and sending out “don’t eat
me” signal [12]. (6) Exosome can cross the blood—brain
barrier and reach the brain tissue owing to their small
size and characteristics [13]. (7) Exosomes have high cel-
lular uptake and are easily modified according to the tar-
get cells owing to membrane proteins such as tetraspanin
and fibronectin [10].

Herein, we summarized exosomes’ characteristics
and applications as various nucleic acid (DNA, mRNA,
miRNA, siRNA and circRNA) delivery carriers for can-
cer therapy. Meanwhile, the challenges and the prospec-
tive in using exosome-mediated nucleic acids are also
discussed.

The biogenesis of exosome

Exosomes are native nanovesicles with a diameter of
30-120 nm secreted from various cell types, including
cancer cells, dendritic cells, B cells, T cells, mast cells
and epithelial cells, and exist in different body fluids
such as blood, urine, malignant effusions, bronchoal-
veolar lavage fluid and breast milk, etc. [14—17]. They
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were first found in the supernatant of sheep erythro-
cytes cultured in vitro in 1983 [18, 19]. At that time,
exosomes were considered as the “Garbage Bags” for
cells to eliminate unwanted products out of the cells.
Subsequently, people found that they were formed by
plasma membrane invagination, followed by acidifi-
cation and maturation of mass exchange into the late
endosomes. Late endosomes eventually form multi-
vesicles, the membrane of which is sunken inward
and sprouts to form intraluminal vesicles, which are
exosomes. Finally, they are secreted out of the cell by
fusing the plasma membrane (Fig. 1) [17]. The natural
internal cargo of exosomes includes specific mRNAs,
miRNAs, proteins, etc. (Fig. 1). Several proteins such
as tetraspanins (CD9, CD63, CD81), heat shock pro-
teins, and fusion proteins (flotillin) are identified on the
surface of exosomes (Fig. 1). These tetraspanins could
be used as a specific marker to isolate exosomes. Some
studies revealed that exosomes’ target-homing capabili-
ties depended on the surface proteins binding to recep-
tor molecules on the target cell [20, 21]. In addition,
many tumor cells secreted exosomes tenfold more than
normal cells [21]. Furthermore, the presence of spe-
cific genetic information within exosomes derived from
tumor cells offers opportunities to develop simple liq-
uid biopsy-based approaches for cancer diagnosis or to
monitor the effectiveness of cancer treatment [22].
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The approaches and advances
in exosome-mediated delivery
The effect of exosome-mediated therapy mainly depends
on the source of exosomes, the loading methods of
therapeutic molecules, the efficiency of cell uptake of
exosomes. Exosomes derived from different cell types
have diverse functions. For example, human embry-
onic kidney (HEK293) cells have been widely used in the
field of biopharmaceutical manufacturing owing to the
advantages of easy to growth, non-needing harsh cul-
ture conditions, and high transfection efficiency [23].
Moreover, HEK293 cells can accept various transfection
methods and allow gene manipulation to modify the
exosomal surface or load cargos during exosomal bio-
genesis [24]. And exosomes derived from HEK293 are
immune inert and do not trigger inflammatory reactions
in vivo [23]. In addition, cancer cells can secrete a large
number of exosomes, because the overexpressed Rab27a
and Rab27b proteins in cancer cells are involved in the
process of exosome release [25]. Cancer cell-derived
exosomes have a tropism toward cell origin due to their
abundant biological components similar to their par-
ent tumor cells, which can be used for cancer targeting
[26]. Qiao et al. [26] isolated exosomes from two can-
cer cell lines (HT1080, human fibrosarcoma cells, and
Hela, human cervical cancer cells) and observed that the
uptake of HT1080 exosomes in HT1080 cells was twofold
that of Hela exosomes. Furthermore, in vivo therapeutic
experiments revealed that the inhibition rate of HT1080
exosomes loaded with a common chemotherapy drug
Doxil was threefold higher than that of Hela exosomes
with Doxil. However, there are some limitations, such as
an unsatisfactory pharmacokinetic profile, being involved
in tumor development and metastasis, and potential
safety issues, which are expected to be improved to be
better used in cancer treatment [10]. Besides, exosomes
derived from immune cells have also been widely stud-
ied. For instance, monocytes- and macrophages-derived
exosomes have been shown to evade immune phagocy-
tosis [27]. Dendritic cell (DC)derived exosomes hold a
significant advantage as they have been proven secure
in different types of cancer [28]. And these exosomes
loaded with tumor antigens have been effective against
non-small cell lung cancer (NSCLC) [29]. As is shown in
Table 1, exosomes from different sources have different
advantages and disadvantages. Therefore, the purpose of
good therapy can be achieved by selecting appropriate
exosomes according to therapeutic requirements.
Co-incubation, transfection, and electroporation are
the frequently-used methods of therapeutic molecules
loading into exosomes [38]. The aqueous core and
bilayer lipid membrane of the exosomes make the load-
ing of hydrophilic and hydrophobic drugs easier through
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co-incubation [39]. When hydrophilic molecules fail to
spontaneously pass through the lipid bilayer, loading can
be achieved by liposome transfection and electropora-
tion to form transient pores on the exosomal membrane.
Transfection-based approaches have been proved to have
better loading efficiency and protein stability, but they
are undesirable because of their toxicity and side effects
of transfectants in altering cell gene expression [40].
Electroporation has been widely used as a safer method
in therapeutic molecules loading into exosomes. Shtam
et al. [40] provided sufficient evidence that the nucleic
acids were more effectively introduced into exosomes
from HeLa cells using electroporation than chemical
treatment. However, not all cell-derived exosomes can be
loaded by electroporation. For example, Ohno et al. [41]
found that when using HEK293T cells as the source of
exosomes, liposome transfection could load nucleic acids
successfully while electroporation did not. Therefore, the
method may need to be optimized for each exosome and
cell type. In addition, in recent years, several new loading
methods are emerging gradually. For instance, an active
delivery modality exploits the HIV-1 TAR and RNA-TAT
peptide interaction by swapping the wild type pre-miR
loop with the TAR RNA loop. The modified pre-miR is
designed to recognize the TAT peptide introduced into
the exosomes using a Lamp2a fusion protein. The load-
ing of the miRNA into exosomes was enhanced using
this TAT-TAR interaction [42, 43]. The modified calcium
chloride (CaCl,) method (CaCl,-heat shock) has success-
fully loaded nucleic acids into exosomes through form-
ing CaCl,-nucleic acid complex, which was absorbed by
exosomes under heat shock at 42 °C [44-46]. In addi-
tion, plasmid-mediated therapeutic molecule transfer
has been gradually applied. A constructed plasmid con-
taining therapeutic molecule genes is transfected into
exosome-producing cells. After culture, the exosomes
produced by donor cells contain therapeutic molecules
[47, 48]. Based on the above, the correct selection of ther-
apeutic molecules loading into the exosomes can achieve
unexpected therapeutic effects.

In addtion, exosomes loaded therapeutic molecules
also face several challenges, including competition from
endogenous exosomes, the internalization/clearance by
the mononuclear phagocyte system, and targeting [49—
51]. To solve these problems, it is essential for specific
modification on exosome surfaces. These modification
include chemical and biological modifications (Fig. 2).
The former depends on the biological binding of targeted
ligands to surface proteins, but surface protein inactiva-
tion or exosome aggregation may occur. The latter is an
important strategy to display functional ligands on the
exosome membrane, but it requires plasmid construction
and overexpression of proteins in donor cells. Despite the
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defects, both methods have been successfully applied.
For instance, Zhan et al. [52] constructed the the amphi-
philic phosphatidylcholine (PC) exosome through insert-
ing PC into the membrane lipid layer of the reticulocyte
exosome from the blood. Compared with natural exo-
some, PC exosome increased the efficiency of tumor cell
internalization by nearly twice. After loading therapeutic
drugs, PC exosome significantly promoted the accumula-
tion of drugs in tumor cells and showed enhanced anti-
tumor activity in vitro. In addition, the surface of bovine
serum-derived exosomes is modified with a-pD-mannose
to facilitate interaction with mannose receptors on DCs
and efficient delivery of immune stimulators to the DCs
[53]. Zuo et al.[54]. added a potent adjuvant, high mobil-
ity group nucleosome-binding protein 1 (HMGNI1) to
tumor cell-derived exosomes, which enhanced the abil-
ity of DC to activate T cells and sustained protective
immune response for about 9 weeks.

Above all, to improve the efficiency and accuracy of
drug delivery to achieve good therapeutic effect, the
selection of exosomes, the loading mode of therapeu-
tic molecules and surface engineering modification of
exosomes are the main factors that should be considered
comprehensively. Because exosomes from different cells
have different functions, choosing the right exosomes
as drug delivery tools can greatly improve the target-
ing of drug delivery. The loading capacity of therapeutic
molecules can be significantly improved by appropriate
loading method. Further, the engineering modification
of exosome surface can achieve the loading efficiency
and targeting of therapeutic molecules at the same time.
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Thus, integrating various advantages to deliver drug mol-
ecules through exosome can achieve the ideal therapeutic
effect.

Exosomes-based nucleic acid delivery system

for cancer treatment

Exosomes-based DNA delivery system

ASOs

In addition to the well-known genomic DNA, mitochon-
drial DNA and plasmid DNA, antisense oligonucleo-
tides (ASOs) are another important DNA species which
are single-stranded DNA molecules and usually consist
of 12-25 nucleotides, can complementarity to target
mRNA [55]. Following binding to the targeted RNA, the
ASOs can regulate RNA function through several mecha-
nisms. One is that ASOs can form RNA-DNA hybrid
and serve as the substrate of RNase H-mediated cleav-
age, leading to the hydrolysis of a hybridized RNA strand
[56, 57]. The formation of ASO-RNA heteroduplex also
leads to splicing inhibition or exon skipping events by
spatially blocking standard splicing sites [56]. Another
is that ASO only plays a space-occupying role and does
not directly degrade target RNA. For instance, ASOs can
be designed to bind the miRNAs and block the targeted
RNA, resulting in inhibition of translation of the RNA
and increase the expression of a variety of proteins [57].
In addition, ASOs are designed to bind to a regulatory
sequence in the 5-untranslated region of an mRNA that
represses protein translation, such as an upstream open
reading frame or stem-loop structure [57]. As a power-
ful molecular tool, ASOs are widely used in protein and
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RNA biology and are a highly selective therapeutic strat-
egy for many diseases related to gene expression disor-
ders. So far, over ten ASOs have been approved by Food
and Drug Administration (FDA) [58]. Therefore, the suc-
cessful loading of specific ASOs into cells play a key role
in cancer therapy.

Loading methods for DNA into exosomes

As a common strategy, electroporation also allows DNA to
be loaded into exosomes through creating pores on exoso-
mal lipid bilayers. It has been shown that ASO4, ASO-210
or scramble ASO loaded into exosomes by electropora-
tion could be delivered to recipient cells and knock down
specific gene expression [59-61]. However, a major disad-
vantage of electroporation is the formation of nucleic acid
and exosome aggregates during encapsulation, which will
affect the function of nucleic acids [62]. Lamichhane et al.
[59] reported that exosomes carrying plasmid DNA by
electroporation delivered DNA to recipient cells; however,
these DNAs were not functionally active. To solve these
problems, it may be necessary to optimize electroporation
parameters. In addition, some new loading methods have
been developed. An exosomal liposome hybrid was formed
through fusing the lipid bilayer of the exosomal mem-
brane with liposomes, which could encapsulate and deliver
large DNA molecules, such as CRISPR/Cas9 plasmid, and
reduce the toxicity of liposomes [63]. Exosome-associated
adeno-associated virus (exo-AAV) has also been proved to
be a powerful system for DNA delivery. Gyorgy et al. [64]
cloned a mouse-codon-optimized gene encoding lipoma
HMGIC fusion partner-like 5 (LHFPL5) with a hemagglu-
tinin (HA) tag at the N terminus into an AAV vector, and
then was transfected into HEK293T cells using the calcium
phosphate and obtained exo-AAV1-HA-Lhfpl5, which
could rescue hearing in a mouse model of hereditary deaf-
ness. Therefore, the successful loading will provide a basis
for exosome-mediated DNA delivery for cancer treatment.

Delivery of therapeutic DNA

In recent years, it has been reported that exosome deliver
various functionlized DNA into cells via the process of
exosome-endocytosis to treat cancer [65-69]. However,
due to their small size, the efficiency of packaging large
DNA through exosomes is very low, which limit the appli-
cation of the exosome-based drug delivery system. The
relatively small ASO and plasmid DNA, or engineering
modified exosomes are used to solve the problem. Codiak
Biosciences [70] published the first preclinical data of
engineered exosomes to deliver ASO (exoASO), demon-
strating the potential of exoASO to M2 macrophages to
target the expression of key immunosuppressive tran-
scription factors STAT6 and C/EBP (Fig. 3A). The results
revealed that the expression of TNF and IL-10 related
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to exoASO therapy increased up to 40-fold and 29-fold
respectively, which was consistent with the repolarization
from immunosuppressive M2 macrophages to immu-
nostimulatory M1 macrophages, and exoASO-STAT6
significantly slowed tumor growth, and tumors in 50%
of mice completely subsided. When exoASO-STAT6 was
combined with anti-PD1 antibody, the tumor remission
rate was further improved by 25%. It was exciting that
FDA has recently approved the investigational new drug
application of exoASO-STAT®6. In addition, with the rise
of CRISPR/Cas9-mediated genome editing, the deliv-
ery of Cas9-encoding plasmid through exosome has also
been tried. For example, Kim et al. [71] reported that
ovarian cancer-derived exosomes (SKOV3-Exo) could be
efficiently electroporated with CRISPR/Cas9 plasmids
in vivo to suppress the expression of poly (ADP-ribose)
polymerase-1 (PARP-1). The results suggested that com-
pared with SKOV3-Exo alone, the expression of PARP-1
was completely inhibited after treatment with CRISPR/
Cas9-loaded SKOV3-Exo, and the tumor volume in the
treatment group hardly changed within 20 days of intratu-
moral injection treatment, while that in the control group
kept growing (Fig. 3B). Besides, Lin et al. [63] developed
a kind of hybrid exosomes with liposomes to deliver the
CRISPR/Cas9 expression plasmids into mesenchymal
stem cell (MSC) target cells, and the results revealed
that hybrid nanoparticles carried the large CRISPR/Cas9
expression plasmids could down-regulate the expres-
sion of gene Runx2 by twofold compared with the con-
trol group (only Runx2 guided CRISPR/dCas9 system)
(Fig. 3C). Therefore, exosome mediated ASO or CRISPR/
Cas9 plasmids into cells could correct or destroy onco-
genes through regulating mRNA translation or therapeu-
tic genome editing (gene destruction, gene correction,
gene deletion, gene insert, etc.), respectively [72, 73].

Exosomes-based mRNA delivery system

mRNA

mRNA is an intermediate molecule that transmits the
genetic code from DNA to the ribosome for protein
expression. It has been considered as another promising
tool for the treatment of a variety of diseases, especially
cancer [74, 75]. Compared with DNA-based therapy,
RNA-based therapy is more advantageous: (a) DNA tran-
scription must precede translation and need to enter the
nucleus. The efficiency is limited because less than 0.10%
of cytoplasmic DNA enters the nucleus; In contrast,
mRNA is directly translated when entering the cytosol,
resulting in effective gene expression [76]; (b) mRNA has
no risk of genome integration and will not cause insertion
mutation [77]; (c) unlike DNA, mRNA is also translated
in tumor dormant cells [78]. Based on the above advan-
tages, the use of mRNA technology to develop vaccines
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for related diseases, including cancer, has gradually
attracted extensive attention [79]. In particular, since the
outbreak of COVID-19, a variety of mRNA vaccines have
been rapidly developed using mRNA technology [80—82].
Nevertheless, mRNA is easy to be degraded by nuclease,
easy to activate immune response, and large (10*~10° Da)
[83], which has become the main obstacle to the devel-
opment of mRNA drugs. Exosomes, as a natural delivery
carrier, can realize the effective delivery of mRNA.

Loading methods for mRNA into exosomes

As early as 2007, Valadi et al. [84] firstly found that
exosomes were natural carriers of mRNA in mast cells.
Subsequently, this phenomenon was also observed in
many other cells [85-87]. However, the insertion of foreign
mRNA into exosomes has been a challenge, because these
electroporation- or chemical-based loading methods are
not useful for packaging and delivering macromolecular

mRNA via exosomes. Afterwards, Tsai et al. [88] reported

that the exosome-liposome hybrid could efficiently trans-

fect target cells with Antares2 mRNA. In the study, the

purified mRNA was pre-incubated with polycationic lipid

coating, and then mixed with equal amounts of puri-

fied exosomes. Based on this, the multiplexed mRNA
COVID-19 vaccine was successfully developed. In addi-
tion, Kojima et al. [89] constructed an EXOsomal Transfer
Into Cells (EXOtic) device, which transformed the way of
sorting mRNA from natural but dynamic pathways to an
engineering way. In this device, the archaea-derived L7Ae
peptide (binding to the C/Dbox RNA structure) was fused
with the exosomal marker protein CD63, recruiting those
mRNAs containing C/Dbox into budding exosomes. And
then exosomes carried these functional mRNAs into the
cytoplasm of target cells (Fig. 4A). Recently, this method
have also been adopted to package ZFP or ZPAMt mRNA
with exosomes to inhibit HIV-1 transcription, inducing
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“blocking and locking” phenotypes in virusinfected cells
[90]. In addition, Li et al. [91] fused the exosome membrane
protein CD9 with RNA binding protein HuR to construct
CD9-HuR functionalized exosomes, which has a strong
ability to enrich specific RNAs (Fig. 4B). These functional-
ized exosomes were used to deliver dCas9 mRNA to target
gene C/ebpa related to cell proliferation and differentiation
in liver. And the expression of target gene was decreased by
about 20-fold compared with free dCas9 mRNA. Further-
more, with the technical breakthrough of the exosome-
loading mRNA method, this delivery system is gradually
used to treat cancer.

Delivery of therapeutic mRNA

Wang et al. [92] applied exosomes to deliver HChrR6-
encoding mRNA (generated by transfection of cells with
the XPort/HChrR6 encoding plasmid) to the HER2+ve
human breast cancer cells, which caused nearly complete
growth arrest of the breast cancer cells. This was the first
time that exosome-mediated exogenous mRNA delivery
has gained a therapeutic advantage. Subsequently, For-
terre et al. [93] have successfully utilized similar methods
to treat HER2+ve human breast cancer cells. In the study,
exosomes from HEK293 cells delivered functional HChrR6
mRNA to HER2+breast cancer cells, and when admin-
istered systemically along with prodrug CB1954, they
arrested the growth of HER2+human breast cancer xeno-
grafts in athymic mice by prodrug activation (Fig. 4C). In
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another work, Usman et al. [33] treated leukemia cells with
exosome from human red blood cells (RBCs) loaded with
Cas9 mRNA and gRNA targeting the human miR-125b-2
(an oncogenic miRNA in leukemia) locus. The results indi-
cated the expression of miR-125a and miR-125b decreased
by 90-98% after 2 days of treatment.

In addition to the delivery of exogenous mRNA, endog-
enous functional mRNA has also been caught attention.
Yang et al. [94] reported a cellular nano perforation tech-
nology for producing a large number of exosomes con-
taining therapeutic mRNAs. Firstly, the plasmid DNA was
transfected into various sources cells, and then the cells
were stimulated with focal and transient electrical stimu-
lation to promote the release of exosomes carrying the
transcribed mRNA. Based on this, PTEN and CDX (CD47
cloning targeted peptide) plasmids were transferred into
glioma cells to obtain a large number of targeted func-
tional exosomes, which enhanced cell uptake, restored the
expression of PTEN protein, inhibited tumor growth, and
prolonged survival with a median survival of 45 days, com-
pared with 31 days for non-functional exosomes (Fig. 4D).
Encouragingly, NeoCura (a Chinese company of RNA pre-
cision medicine based on artificial intelligence) and MDi-
mune Inc (a Korean company based on extracellular vesicle
drug delivery platform) recently jointly developed mRNA
therapy for cancer vaccine delivery based on exosomes
[95]. Based on the above, exosome mediated mRNA deliv-
ery has promising potential for cancer treatment (Fig. 4).

Recepient cells
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with HChrR6 mRNA for breast cancer therapy [93]. D a cellular nano perforation technology for producing a large number of exosomes containing
therapeutic mMRNAs [94]
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Exosomes-based miRNA delivery system

miRNA

miRNAs are a class of highly conserved single-stranded
RNA with a length of 19-25 nucleotides, which are gen-
erally located in the non-coding region of the genome
and do not encode proteins, but they play an important
role in regulating gene expression [96, 97]. The spe-
cific sequence of the 3’ untranslated region (3/-UTR) of
miRNA is completely or partially complementary to its
targeted mRNA, leading to target degradation or trans-
lation inhibition, so as to negatively regulate the target
protein expression. This process is also involved in the
occurrence and development of tumors. For instance,
several miRNAs, such as miR-149-5p, miR-29b and miR-
34b, are poorly expressed in prostate cancer tissues [98].
There are some down-regulated miRNAs in bladder can-
cer, such as miR-145, miR-125b and miR-143, which even
show anti-oncogenic properties; while some upregulated
miRNAs, for instance, miR-17-5p, miR-20a, and miR-
183, were oncogenic [99]. In NSCLC cells, miR-26, miR-
21, miR-155 and miR-574-5p affected the progression of
NSCLC through cell cycle regulation, escaping, apopto-
sis, metastasis regulation, etc. [100]. Besides endogenous
miRNA, synthetic anti-miRNA oligonucleotides (AMOs)
or miRNA mimics (miR mimics) have also been delivered
into cells to suppress or enhance specific endogenous
miRNAs’ function. Thus, regulating the expression of
cancer-related genes through miRNA complementation
is becoming a promising means of cancer treatment.

Loading methods for miRNA into exosomes

Recently, exosome based-miRNA therapy has developed
more rapidly owing to its wide participation in gene regu-
lation, small size, and easy to load. Electroporation is also
used to load miRNA into exosomes. Studies have shown
that each exosome was loaded with about 3000 miRNA
molecules [101]. Table 2 also summarizes these studies
of electroporation of miRNA into exosomes for ther-
apy. In addition, miRNA could be loaded into exosomes
by incubation at 37 °C [102]. However, the loading effi-
ciency is not satisfactory, so this method is not often
used. Besides, there are also commercial transfection
reagents on the market, such as Exo-FectTM exosome
transfection reagent, HiPerFect transfection reagent,
Lipofectamine 2000 and 3000, which are used to load
miRNA directly into exosomes (Table 2). Furthermore,
in the case of heat shock, CaCl, can mediate the trans-
fection of miRNAs or their inhibitors into exosomes, and
these RNAs have functional activity after transmission
to recipient cells [44]. Additionally, another transfection
method pre secretion of exosomes has also been proved
to be effective. Trivedi et al. [103] introduced miRNA-
125b into SK-LU-1 lung cancer cells using hyaluronic
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acid-polyethyleneimine (HA-PEI)/hyaluronic acid-pol-
yethylene glycol (HA-PEG) combined nanoparticles as
gene transfection agents, which successfully increased
miRNA-125b expression in exosomes secreted by the
lung cancer cells. Therefore, these available loading meth-
ods can be selected according to different requirments.

Delivery of therapeutic miRNA

miRNA-based therapy is divided into two forms: miRNA
replacement or inhibition (Fig. 5A). The former aims to
introduce exogenous miRNAs (miR mimics) known to
promote tumor inhibition. The latter provides specific
miRNA inhibitor or AMOs to inhibit tumor promoting
miRNA (oncomiR). Based on the different therapeutic
requirements, a large number of successful cases have
been reported. For example, as a tumor suppressor, miR-
375 is negatively associated with epithelial-mesenchy-
mal transition (EMT) in cancer patients. To increase its
expression and reverse EMT process, Rezaei et al. [44]
used tumor-derived exosomes to deliver miR-375 mimic,
resulting in the inhibition of the migration and invasion
abilities of colon cancer cells. In addition, miR-155 over-
expression can enhance the invasive and chemoresist-
ance of oral squamous cell carcinoma (OSCC) cells. To
decrease miR-155 expression, Kirave et al. [104] intro-
duced exosome as a carrier and miR-155 inhibitor as
therapeutic agent to treat cisplatin-resistance OSCC, and
the results revealed that exosomes loaded miR-155 inhib-
itor could reverse chemoresistance in oral cancer through
upregulating the expression of FOXO3a and inducing the
EMT transition (Fig. 5B). Similarly, exosome mediated
miR-501 inhibitor delivery into doxorubicin (dox)-resist-
ant gastric cancer cell, resulting in inhibiting the expres-
sion of miR-501 and makeing the cells sensitive to dox
[105]. Although exosome based-miRNA has some effect
in the tumor treatment, the therapeutic effect needs to be
improved due to its targeting.

Genetically modified exosome can target tumor cells
through binding functional ligands modified on exoso-
mal surface to overexpressed receptors on the tumor
surface, so as to transfer more miRNA to tumor cells
and further enhance the therapeutic effect. For exam-
ple, Liang et al. [21] reported that the Apo-Al-modified
exosomes loaded miR-26a (Apo-Exo/miR-26a) selectively
bound to HepG2 cells via the SR-B1 receptor-mediated
endocytosis. The results revealed that compared with the
HepG2 cells incubated with exosome-loaded miR-26a,
those with Apo-Exo/miR-26a could upregulate miR-26a
expression about threefold, and downregulate key cyc-
lins CCNE2 and CDK®6 expression about onefold, and the
inhibition of cell migration was twofold as high (Fig. 5C).
Ohno et al. [41] revealed that modified exosomes with
the GE11 peptide on their surfaces delivered let-7a
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miRNA specifically to xenograft breast cancer tissue in
RAG27~ mice, significantly inhibiting tumor develop-
ment in vivo through upregulating the let-7a expression
about 1000-fold and downregulating target gene HMGA2
about fivefold. Similarly, exosome surface were modified
with target peptide transcriptional transactivator (TAT)
protein and T7 respectively to deliver different miRNA
to target tumor cells, which obviously inhibiting the
tumor occurrence and development [43]43. Although the
efficacy of this single gene therapy can be improved by
strengthening the targeting of exosomes, due to the limi-
tation of monotherapy, it is necessary to cooperate with
other therapies to further improve the therapeutic effect.

Recently, it has been demonstrated that miRNAs and
chemotherapeutics can be co encapsulated within engi-
neered exosome and achieve more excellent anti-tumor
effect. Liang et al. [107] integrated the fusion protein
Her2-LAMP2 into the surface of exosomes to make
exosome target EGFR receptor. And then engineered
exosome packaged miR-21i and chemotherapeutics
5-Fluorouracil (5-FU) (THLG-EXO/5-FU/miR-21i)
to target 5-FU-resistant HCT-116 colorectal cancer
cell (HCT-116°""®) through EGFR receptor-mediated
endocytosis. The results revealed that the apoptotic
proportion and proliferation inhibition rate of THLG-
EXO/5-FU/miR-21i-treated HCT-1165"" cells
increased by about 3.5-fold and fivefold respectively
compared with that of THLG-EXO/miR-21i-treated
cells (Fig. 5D). In addition, Zhan et al. [108] designed
the exosome: (1) safe and sufficient blood exosomes; (2)
binding the ligand-coupled superparamagnetic nano-
particles to the specific membrane proteins of exosome
to achieve the separation, purification and tumor mag-
netic-targeting; (3) co-loading hydrophobic drugs dox
and cholesterol-modified miR-21i to enhance the thera-
peutic effectiveness; (4) binding L17E peptide to pro-
mote the cytosolic release of encapsulated cargos. The
engineered exosomes (D-Exos/miR21i-L17E) that met
the above four requirements could be highly enriched
in tumor targets. The results revealed that compared
with Exo/miR21i-L17E groups, antitumor effect in vivo
decreased two folds at the 18th day after administration
in the D-Exos/miR21i-L17E group. Based on the above,
the excellent antitumor could achive through combined
therapy. The related research have been summarized in
Table 2 in detail.

Exosomes-based siRNA delivery system

siRNA

siRNA is another class of double stranded DNA (dsRNA)
with a length of about 25 bp, which could completely
complementary to the targeted mRNA, resulting in gene

Page 15 of 29

silencing [128-131]. The mechanism is that endogenous
dsRNA is recognized by ribonuclease protein Dicer,
which cleaves the dsRNA into 21 to 23 bp with 2-nucleo-
tide overhanging at 3’ ends. These cleavage products,
named siRNAs, consist of a passenger and guide strands.
After binding to the RNA-Induced Silencing Complex
(RISC), the guide chain is guided to the target mRNA
and cleaved into small fragments by the cleavage enzyme
argonaute-2, which is located between bases 10 and 11 at
the 5’ ends of the siRNA guide chain [132, 133]. Based
on the above, siRNA has the potential to treat a variety
of diseases by regulated the expression of target mRNA.
Recently, FDA approved the Patisiran (siRNA is delivered
to hepatocytes as a lipid complex) and Givosiran (siRNA
is coupled to a GalNAc ligand that makes salivary glyco-
protein receptors-mediated targeted delivery to hepato-
cytes) siRNA drugs, marking the beginning of the era of
RNA interference (RNAi) therapy [134, 135].However,
the successful therapy requires the safe and efficient
delivery of siRNA into the cytoplasm to play an interfer-
ence function.

Loading method for siRNA into exosomes

The concept of delivering siRNA using exosomes was
first confirmed by Alvarez-Erviti et al. [136], who elec-
troporating exogenous siRNA into exosomes for delivery
both in vitro and in vivo, resulting in the knockdown of
the specific gene BACE]1. Similarly, some studies loaded
siRNA into exosomes by electroporation (Table 3).
Furthermore, Wahlgren et al. [137] delivered thera-
peutic siRNA into exosomes from peripheral blood by
electroporation. And the effects of exosome concentra-
tion, siRNA concentration, and electroporation param-
eters on electroporation efficiency were studied. The
results revealed that the changes of siRNA and capaci-
tance had no effect on the electroporation efficiency, and
when the concentration of exosomes was in the range
of 0.25-1 mg/ml, the electroporation efficiency was the
highest. In addition, like miRNA, there are also some
commercial transfection reagents for transfecting siRNA
into exosomes, such as Lipo2000, Lipo3000, Exo-fect
Exosome Transfection Reagent, etc. (Table 3). Aqil et al.
[138] loaded siRNA into milk exosomes through the
Exo-fect Exosome Transfection Reagent, and the loading
efficiency was about sixfold higher than that of electropo-
ration. Besides, siRNA loaded into exosomes by sonica-
tion could be delivered to breast cancer cells, resulting
in a 50% knockdown of an oncogene [139]. Exosomes
by sonication induced less siRNA aggregation than
electroporation [140]; However, the number of siRNAs
entering recipient cells through exosomes is still limited.
Therefore, sonication parameters need to be optimized
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to improve loading efficiency. As the loading methods
mature, it is gradually applied to cancer therapy.

Delivery of therapeutic siRNA

As we all know, cancer progression is related to the up-
regulation of anti apoptotic protein such as BCL-2, PLK1,
KRAS, survivin protein that initiates cell mitosis, and
cell growth factor. siRNA exosomal therapy targeting
tumor cells has been been committed to downregulating
these oncogenes expression to inhibit cell proliferation
and migration. Kaban et al. [141] loaded BCL-2 siRNA
into natural killer (NK) cell-derived exosomes to treat
ER+breast cancer, leading to enhanced apoptosis in
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breast cancer cells. Similarly, exosomes mediated the
delivery of PLK-1 siRNA into bladder cancer cells, pro-
moting cell apoptosis through silencing PLK-1 expres-
sion [142]. Additionally, Pi et al. [143] designed RNA
nanoparticles-modified exosome to simultaneously tar-
get three cancer cells (breast cancer, prostatic cancer and
colorectal cancer). In the structure of the RNA nanopar-
ticle, the pRNA of phage phi29 (an RNA molecule with
transport function) was extended into an arrow shape
and connected with an RNA ligand (used to target and
bind specific overexpressed receptors in tumor cells)
and added the fluorescent dye alexa647 for imaging. The
three RNA ligands were designed: prostate cancer spe-
cific membrane antigen RNA ligand, epidermal growth
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factor RNA ligand and folic acid ligand. And then this
modified exosomes were used to deliver survivin siRNA.
The results revealed that compared with the control
(injection PBS), during the entire treatment period, the
growth of breast and prostate cancer cells treated with
the above exosome loaded with survivin siRNA was com-
pletely inhibited,the growth inhibition rate of colorectal
cancer cell treated with the functional exosome increased
onefold (Fig. 6A).

As mentioned above, exosome mediated siRNA deliv-
ery can effectively inhibit the proliferation and migra-
tion of cancer cells. However, drug resistance is another
major challenge in cancer treatment. Generally speak-
ing, overexpression of chemotherapy resistance-asso-
ciated proteins caused drug resistance in cancer cells
[144]. Utilizing siRNA to overcome drug resistance has
been widely reported. For example, Li et al. [145] used
exosomes from bone marrow mesenchymal stem cells
(BM-MSC) to deliver siRNA against Grp78 (overexpres-
sion in hepatocellular carcinoma and could promote the
drug resistance to Sorafenib) in Sorafenib-sensitive hepa-
tocellular carcinoma cells, leading to sorafenib-resistant
cancer cells’ sensitivity sorafenib and the reversal of drug
resistance. Similarly, Zhang et al. [146] reported that
si-c-Met delivered by exosome showed a better inhibi-
tory effect on the expression of c-Met (an essential role
in drug resistance of various tumors) and significantly
enhanced drug sensitivity. In addition, fatty acid oxida-
tion (FAO) plays a crucial role in drug resistance of can-
cer cells. Carnitine palmitoyltransferase 1A (CPT1A), a
key enzyme of FAO, is widely considered as an emerging
therapeutic target. Lin et al. [147] utilized iRGD-modi-
fied exosomes to specifically deliver siCPT1A into colon
cancer cells to suppress FAO, which have reversed the
sensitivity of drug-resistant colon cancer cells to oxalipl-
atin. The above methods can effectively alleviate the drug
resistance of cancer cells and provide new ideas for can-
cer treatment.

In addition, cancer immunotherapy utilizes the
patient’s immune system to identify and destroy cancer
cells, which is a specific protective strategy for cancer
treatment [148]. Athough immune cells are common in
the tumor microenvironment (TME), accounting for
about 50% of the stromal cell components, only a few are
anti-tumor effector cells, which may be responsible for
the immune escape of tumor cells [149]. Thus, it is nec-
essary for tumor immunotherapy to target TME and/
or immune checkpoints. For example, Zhou et al. [100]
designed a bio-platform targeting pancreatic ductal ade-
nocarcinoma (PDAC) to enhance immunotherapy and
reprogram TME. In this platform, exosomes derived
from BM-MSC:s as carrier co-delivered oxaliplatin (OXA)
and gal-9 siRNA. Among them, OXA could both kill
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tumors and induce immunogenic cell apoptosis. siRNA
interfered with the galectin-9 synthesis in tumor cells
to reduce the transformation of macrophage M1. Com-
pared with the chemotherapy or gene therapy alone, this
combination treatment produced synergetic effects that
affects cellular crosstalk in vivo, leading to overall change
in TME, so as to further improve the antitumor efficacy,
and the inhibition rate of cell growth was about twice
higher (Fig. 6B). Furthermore, Pei et al. [150] established
a cRGD-modified exosome with fibrinogen-like protein
1 (FGL1, an important immune checkpoint) siRNA and
transforming growth factor-p (TGF-B1, an immunosup-
pressive cytokine in TME) siRNA (cRGD-Exo/siMix) to
co-silence of FGL1 and TGF-P1. The results revealed that
FGL1 expression was inhibited, which activated T cell
recognition. Meanwhile, TGF-B1 expressiom was also
silenced, which disaired the immunosuppressive micro-
environment of tumor and promoted the infiltration of
immune cells (Fig. 6C).

In general, exosome mediate the delivery of siRNA to
silence the expression of key genes related to cell prolif-
eration, drug resistance, immune checkpoints and TME,
which will inhibit the development of tumor. Addition-
ally, the simultaneous use of several siRNAs, and siRNA
combined with chemotherapeutic drugs will achieve
synergistic effects. The application of exosomes carrying
siRNA for cancer treatment are summarized in Table 3 in
detail. These methods will provide a reference for cancer
treatment by using siRNA.

Exosomes-based circRNAs delivery system

circRNAs

circRNAs are covalently closed RNA molecules without
5’ caps and 3’ tails, generated by a process of back-splic-
ing [167]. The length ranges from hundreds to thousands
of nucleotides, and they are highly abundant in eukary-
otes [168]. The circRNAs play important roles in the
occurrence and development of human diseases, espe-
cially cancer, which can regulate multiple cancer-related
biological processes. The main mechanisms are as follows
[169]: (a) acting as miRNA proton sponges: circRNA
competitively binds miRNA to regulate the expression
of miRNA and its target genes; (b) regulating gene tran-
scription: exon—intron circRNAs (EIciRNAs) interact
with Ul small nuclear ribonucleoprotein (snRNP) to
form the EIciRNAs-Ul snRNP complex, which binds to
polymerase II (Pol II) to regulate the promoter region
of host gene transcription; (c) binding with protein: cir-
cRNAs act as protein sponges or baits to regulate gene
expression; (d) encoding small functional peptides: cir-
cRNAs have ribosome binding sites and stable open
reading frame (ORF), which can encode corresponding
peptides. For example, CiRS-7, one of the most famous
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circRNAs, acts as more than 70 conventional miR-
7-binding sites and modulates the expression of multiple
cancer-related genes [170, 171]. circRNA_FoxO3 can be
used as a protein scaffold of MDM?2 and p53 to induce
p53 degradation, which can induce cancer cell apoptosis

[172]. circRNA_SHPRH encodes protein SHPRH-146aa,
which function as a bait to protect SHPRH protein from
ubiquitination through DTL mediated degradation, so
as to inhibit glioma occurrence [173]. Although the cir-
cRNAs have been served as one of the most promising
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biomolecules for cancer therapy, their delivery efficiency
is often limited by the selected delivery system.

Delivery of therapeutic circRNA

circRNA naturally carried by exosomes has been widely
developed for cancer treatment, which greatly improve
its therapeutic effect owing to the high delivery effi-
ciency. For example, Xue et al. [174] reported that exo-
somal circRNA_100284 acted as a sponge of miR-217,
inhibiting cell proliferation by inducing a G2/M phase
arrest in the cell cycle and targeting enhancer of zeste
homolog (EZH) in various cancers. Chen et al. [175]
introduced that exosomal circ-0051443 suppressed the
hepatocellular carcinoma progression through com-
petitive bounding to miR-331-3p. However, exosome-
mediated exogenous circRNA delivery also faces some
challenges. For one thing, the special circular struc-
ture of circRNA leads to the low circular efficiency.
For another, macromolecular circRNAs also face the
same problem as the large-size mRNA discussed above,
which is difficult to load into the exosomes. To solve
these problems, Yu et al. [176] constructed the target
circRNA_DYM coding DNA into the lentivirus expres-
sion vector and then combined RVG-Lamp2b plasmid
to transfected them into the HEK293T cells, and the
engeneered exosome stably overexpressing the target
circRNA_DYM (RVG-circDYM-EX) were secreted.
This not only made the circRNA correctly and effi-
ciently cyclized, but also could be easily loaded into
the exosomes. The RVG-circDYM-EX was delivered
to the brain to attenuate astrocyte disfunction induced
by chronic unpredictable stress through binding to the
transcription factor 1 (TAF1) and downregulating mul-
tiple downstream genes (Trpm6, Cyp39al). Similarly,
Yang et al. [177] obtained the engeneered exosome
modified with RVG-Lamp2b and loaded with circRNA_
SCMH1 and successfully transported them to the brain.
The results revealed that the delivery system promoted
functional recovery of rodent and non-human primate
ischemic stroke models through binding to the methyl-
CpG binding protein 2 and upregulating the expression
of the target genes (Mobp, Igfbp3, Fxydl and Prodh).

In conclusion, the circular structure of circRNA can
not only prevent being degraded and improve the expres-
sion time and amount of circRNA, but also be admin-
istered repeatedly, which makes it one of the emerging
nucleic acid drugs. Some natural exosomal circRNA can
play an important role in cancer therapy. And exogenous
circular RNA can also be cyclized efficiently by con-
structing related lentivirus vectors, and can be loaded
into exsome through transfecting the vectors into the tar-
get cells, which will provide references for the application
of this system in cancer.
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Exosomes-based other nucleic acids delivery system

Other nucleic acids

Other nucleic acid drugs, including long noncoding RNA
(IncRNA), short hairpin RNA (shRNA), aptamer, etc.,
have been also introduced into cancer therapy. LncRNA,
an RNA family with many members, has a length of
over 200 bp and cannot be transformed into protein.
Although it does not have the function of traditional
RNA, it can regulate the activity of transcription factors
[178, 179]. Moreover, some IncRNAs play a curical role
in tumor proliferation, apoptosis, diffusion, and homeo-
stasis maintenance [180-182]. For shRNA, structurally,
it is more similar to miRNA, and both of them are local
double-stranded RNA formed by hairpin structure [183];
Functionally, it is closer to siRNA, which is cleaved by
the Dicer to form siRNA, and then performs interfer-
ence through the siRNA pathway [184]. The shRNA is
also a critical effector molecule in RNAi technology, and
it could induce target mRNA degradation [185]. Another
nucleic acid fragment, aptamer is a single-stranded
DNA or RNA that can bind with different targets, such
as chemical molecules, RNA, DNA or protein with high
affinity and specificity to block protein—protein or recep-
tor-ligands interactions. Pegaptanib (macugen), The first
PEGylated RNA aptamer drug, pegaptanib (macugen),
was approved by FDA in 2004, binding to extracellular
VEGF165 with high specificity and affinity [186]. It can
be seen that these RNAs will also play a key role in the
cancer treatment.

Delivery of therapeutic other nucleic acids

Exosomes can also deliver these nucleic acids for cancer
therapy. For instance, Zheng et al. [187] transfected the
IncRNA PTENP1 lentiviral vector into HEK293A cells,
and then secreted exosomes contained PTENPI1. Even-
tually the exosomal PTENP1 protected PTEN by spong-
ing miR-17 and inhibited the biomalignant behavior of
bladder cancer. Similarly, Zheng et al. [188] obtained
exosomal circLPAR1 by the same methods, which could
suppress colorectal cancer cell growth through suppress-
ing BRD4 expression via METTL3-elF3h interaction. In
addition, aptamers are often used to modify exosomes to
enhance their ability to target tumors. Exosomes derived
from HEK293T cells were modified by A9g (PSMA)
aptamer and loaded with survivin siRNA, which could
be specifically delivered to tumors and effectively block
tumor growth [143]. All in all, these system are emerg-
ing, and its their successful delivery will also contribute
to cancer therapy.
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Exosome-based clinical applications for cancer
treatment

As the discussed above, exosomes are a class of ideal
drug delivery tool, which have also been performed in
cancer clinical trials. The database www.ClinicalTrials.
gov (accessed on April 2022), has been examined to
assess the major exosomes’ clinical applications. 105 tri-
als are registered within the study object “exosome” and
“cancer”.

Table 4 summarizes the studies related to using
“exosomes” for cancer therapy. Among them, immature
DC-derived exosomes have been applied for melanoma
and NSCLC with similar safety results. In addition, two
clinical trials investigating plant-derived exosomes as
cancer therapy are currently under way. At present,
two clinical trials are on-going to study plant-derived
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exosomes for cancer treatment. In the first trial, grape-
derived exosome-like nanoparticles are being tested
for their effects on oral mucositis and related pain after
radiotherapy and chemotherapy for head and neck can-
cer (NCT01668849). In the second study, plant-derived
exosomes loaded with curcumin are being evaluated
for their efficacy for treating colorectal cancer after oral
administration (NCT01294072). The clinical studies
on exosome-loaded nucleic acids for cancer treatment
have been also “completed” or “ongoing” For example,
the phase I trial (NCT03608631) sponsored by the M.D.
Anderson Cancer Center (Texas, USA) have investigated
the use of MSC derived exosomes for the treatment
of stage IV pancreatic cancer patients with KrasG12D
mutation. The patients were injected with KrasG12D
siRNA loaded into exosomes which targeted the

Table 4 Exosome-based clinical applications for cancer treatment from clinical trials.com and references

Cancer Phase Startyear Source of exosome Therapeuticcargo Status Sponsor Clinical trial
number/
Reference

Metastatic pan- | 2018 Mesenchymal stro-  krasG12D siRNA Ongoing M.D. Anderson Can-  NCT03608631
creas cancer with mal cells cer Center, Houston,
KrasG12D mutation Texas, United States
Non-small cell lung I 2010 Dendritic cells Metronomic cyclo- ~ Completed Institute Gustave NCT01159288
cancer phosphamide Roussy, Villejuif,

France
Colon cancer 2011 Plant Curcumin Recruiting University of NCT01294072

Louisville Hospital,

Louisville, Kentucky,

United States
Head and neck 2012 Grape Lortab, fentanyl Active, not recruiting James Graham NCT01668849
cancer patch, mouthwash Brown Cancer

Center, Louisville,

Kentucky, United

States
Malignant glioma of | 2012 Tumor cells IGF-1R antisense oli-  Completed Thomas Jefferson NCT01550523
brain godeoxynucleotide University Hospital;

Jefferson Hospital for

Neurosciences, Phila-

delphia, Pennsylva-

nia, United States
Malignant glioma 2015 Tumor cells IGF-1R antisense oli-  Completed Thomas Jefferson NCT02507583
neoplasms godeoxynucleotide University Hospital,

Philadelphia,

Pennsylvania, United

States
Metastatic mela- | 2000 Autologous den- Pulsed with MAGE 3 Completed Institute Curie, Paris,  [189]
noma dritic cell tumor peptides France
Non-small cell lung | 2000 Autologous den- Pulsed with MAGE- ~ Completed Duke University [190]
cancer dritic cell A3,-A4,-A10, and Medical Center,

MAGE-3DPO4 tumor Durham, NC, USA
peptides

Colorectal cancer 2006 Autologous ascites  The granulocyte— Completed The Fourth Hospital ~ [191]

macrophage colony-
stimulating factor

Affiliated to Guangxi
Medical University,
Liuzhou, China



http://www.ClinicalTrials.gov
http://www.ClinicalTrials.gov

Zhang et al. Journal of Nanobiotechnology ~ (2022) 20:279

oncogenic KRAS gene, reducing its expression in pan-
creatic tumors [154]. In addition, the clinical trials that
tumor cell-derived exosome delivers ASO to treat malig-
nant glioma of brain and neoplasms have been com-
pleted. In total, these exosome-based clinical applications
for cancer treatment demonstrate the reliability of these
delivery systems once again.

Conclusions and future perspectives
Lower immunogenicity, lower toxicity, and better cross-
ing biological barriers are the key advantages of exosomes
over traditional nanocarriers. Based on these advantages,
exosomes have shown great value in nucleic acid delivery,
and can protect therapeutic substances from degradation
and clearance by the host immune system. Additionally,
the inherent targeting ability derived from their parental
cells makes exosomes possess the potential of targeted
delivery, enhancing the ability to penetrate the tumor
vascular barrier and bioaccumulation at tumor sites,
greatly improving their therapeutic efficacy. What’s more,
therapeutic applications of exosomes as drug delivery
vectors have been explored in numerous preclinical stud-
ies and several clinical trials. Thus, exosome-based deliv-
ery systems have unique advantages in cancer treatment.
In this review, recent studies of using exosomes to deliver
different nucleic acids (DNA, mRNA, miRNA, siRNA,
circRNA, etc.) to treat various cancers are summarized.
Although significant progress has been made, some
challenges hinder the exosomal therapeutic applica-
tion. The first challenge is the large-scale production
of exosomes for clinical trials. To increase the produc-
tion of exosomes, bioreactors, 3D scaffolds, and micro-
fluidic devices are adopted. For example, Haraszti et al.
[192] applied 3D culture combined with tangential flow
filtration (TFF) to increase the production of exosomes
by 140-fold compared with 2D or 3D cultures or TFFE.
Another study found that using a hollow fiber biore-
actor could increase the yield of exosomes by 40-fold
[193]. Yang et al. [94] reported a cellular nanoporation
(CNP) method to produce a large number of exosomes.
The results revealed that compared with the traditional
strategies (bulk electroporation and Lipo2000 trans-
fection), CNP produced up to 50-fold more exosomes.
The method of separation and purification of exosomes
based on microfluidic devices also showed promising
results [194-196]. Wang et al. [194] reported that a 3D
nanostructured microfluidic chip could capture 90% of
exosomes. In addition, some studies have shown that
stress environments such as hypoxia, low pH and anti-
cancer drugs could stimulate the production of more
exosomes [197-199]. Also, food-derived exosomes,
including bovine milk- and grape-derived exosomes, have
shown promising results in preclinical studies [200, 201].
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However, quality should be guaranteed while increasing
output, especially considering the contamination or the
size overlap between exosomes and other EVs.

The second challenge is to develop new methods for
loading nucleic acids into exosomes to make up for defects
of traditional methods. The low loading efficiency of cur-
rent exosome-nucleic acid-loading strategies, including
electroporation, incubation, and transfection, limits their
application. For example, although electroporation is con-
sidered to be the best method for loading nucleic acids into
exosomes, this method is easy to lead to the aggregation
and degradation of nucleic acids and the change of exosome
properties [202]. In addition, the simple incubation method
is very limited in the type of the loaded cargo [203]. Trans-
fection methods should further simplify the process and
reduce the cost of mass production. To solve these prob-
lems, some potential new nucleic acid loading methods
have been developed. For instance, Li et al. [91] constructed
the fusion protein CD9-HuR through fusing the exosomal
membrane protein CD9 with the RNA binding protein
HuR, which would selectively enrich the target RNA into
the exosomes. The results revealed that the specific RNA
miRNA155 loaded into CD9-HuR modified exosomes was
sevenfold higher than that of the control group. In addition,
studies have shown that exosome-enriched RNAs shared
three specific sequence motifs, including CAGUGAGC,
UAAUCCCA, and ACCAGCCU, which played a role as
cis-acting elements targeting to exosomes and helped us
modify the exosomes to selectively enrich more candidate
RNAs for therapeutic purposes [204]. Besides, it is neces-
sary to develop new and efficient LNPs transfected with
nucleic acid into exosomes. Wang et al. [205] developed
a physical-chemical hybrid platform involving cationic
LNPs exposed to cyclic stretch, which could effectively
deliver siRNAs and plasmid DNAs. And the gene silencing
efficiency was about 10% higher than that of commercial
transfection reagents Lipo2000. Similarly, Hu et al. [206]
developed thermostable ionizable lipid-like nanoparticles
to deliver siRNA, which had good physical and chemical
properties, thermal stability (not degraded at 40 °C for one
week), and excellent siRNA transport efficiency (the same
as that of Lipo2000). These techniques will provide new
ideas for loading nucleic acid into exosomes.

The third challenge is to achieve personalized preci-
sion treatment of cancer. The heterogeneity of exosomes
and complex in vivo environment limit the precise deliv-
ery and expected efficacy. To solve this problem, the can-
cer patient’s autologous exosomes can be the best choice
of delivery carriers owing to the remarkable targeting
ability against cancer cells. Among them, tumor cells can
be obtained from minimally invasive and surgical sam-
ples and expanded in vitro under specific culture condi-
tions. Gong et al. [207] domesticated tumor cells from
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gastric cancer patients under acidic conditions similar to
the tumor tissue environment and found that the acidic
environment would promote tumor cells to secrete more
exosomes and improve the ability of these exosomes to be
taken up by homologous gastric cancer cells. Futhermore,
Wang et al. [208] obtained immune activated macrophage
tumor hybrid cells by in vitro immune acclimation of
patients’ own tumor cells and macrophages. The mac-
rophage tumor chimeric exosomes secreted by these cells
could inherit the functions of two kinds of source cells: (a)
activating tumor specific immune response; (b) inheriting
the homing ability of tumor cells and actively target tumor
tissues. In addition, fluorescence, luminescence, PET-MRI
and SPECT imaging techniques are used to track the bio-
logical distribution of exosomes and payloads, and obtain
images with anatomical details, which will provide accu-
rate and customized medical care for cancer patients [209].

Fourthly, considering that exosomes contain a group of
discrete proteins and functional immune molecules, the
application of exosomes may trigger a strong response of
the host immune systems to a certain extent, resulting in
the rapiddisappearance of exosome-based drug delivery
systems. Therefore, a comprehensive preclinical exami-
nation, including pharmacokinetics, toxicity character-
istics and pharmacodynamics, should be performed to
prevent potential side effects.
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