
Liu et al. Journal of Nanobiotechnology          (2022) 20:206  
https://doi.org/10.1186/s12951-022-01421-w

RESEARCH
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Abstract 

Background: Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) characterized by diffuse inflammation of 
the colonic mucosa and a relapsing and remitting course. The current therapeutics are only modestly effective and 
carry risks for unacceptable adverse events, and thus more effective approaches to treat UC is clinically needed.

Results: For this purpose, turmeric-derived nanoparticles with a specific population (TDNPs 2) were characterized, 
and their targeting ability and therapeutic effects against colitis were investigated systematically. The hydrodynamic 
size of TDNPs 2 was around 178 nm, and the zeta potential was negative (− 21.7 mV). Mass spectrometry identified 
TDNPs 2 containing high levels of lipids and proteins. Notably, curcumin, the bioactive constituent of turmeric, was 
evidenced in TDNPs 2. In lipopolysaccharide (LPS)-induced acute inflammation, TDNPs 2 showed excellent anti-
inflammatory and antioxidant properties. In mice colitis models, we demonstrated that orally administrated of TDNPs 
2 could ameliorate mice colitis and accelerate colitis resolution via regulating the expression of the pro-inflammatory 
cytokines, including TNF-α, IL-6, and IL-1β, and antioxidant gene, HO-1. Results obtained from transgenic mice with 
NF-κB-RE-Luc indicated that TDNPs 2-mediated inactivation of the NF-κB pathway might partially contribute to the 
protective effect of these particles against colitis.

Conclusion: Our results suggest that TDNPs 2 from edible turmeric represent a novel, natural colon-targeting thera-
peutics that may prevent colitis and promote wound repair in colitis while outperforming artificial nanoparticles in 
terms of low toxicity and ease of large-scale production.
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Background
Inflammatory bowel disease (IBD), mainly including 
ulcerative colitis (UC) and Crohn’s disease (CD), is a 
chronic, nonspecific intestinal inflammatory disease that 
affects a growing number of people worldwide. IBD has 
the characteristics of diarrhea, pain, ROS generation, oxi-
dative stress imbalance, and elevated colon cancer risk 
[1, 2]. UC is characterized by a persistent disease course 
with relapse and remission. Currently, the primary goal 
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for UC treatment is to maintain the long-term remission 
of inflammation [3, 4]. The etiology and pathogenesis of 
UC are still unclear. Modern medicine believes that it is 
under the combined influence of genetics, environment, 
psychology, and other factors, resulting in neuroendo-
crine dysfunction, intestinal mucosal barrier damage, and 
immune imbalance, thereby causing intestinal mucosal 
damage locally [5–7]. The current medicines commonly 
used to treat UC are aminosalicylates, corticosteroids, 
and immunosuppressants. Under some specific condi-
tions, biologics are alternative [8–10]. Nevertheless, 
affected by uncontrollable factors, the current therapeu-
tic approaches cannot control UC thoroughly [11, 12]. 
Many UC patients have gastrointestinal obstruction, 
perforation, bleeding, abscesses, fistulas, and even colon 
tumors. Therefore, we urgently need to develop better 
therapeutics for UC, especially those that can act locally 
in the inflamed colon, without whole-body exposure and 
the associated side effects.

Recently, drug delivery systems based on novel nano-
particles with colon targeting capacity have attracted 
substantial attention for UC treatment [13–16]. These 
delivery systems offer several advantages, including (1) 
increased drug concentration at the inflamed colon, 
which can maximize drug efficacy and prolong pharma-
cological activity; and (2) targeted delivery, which can 
wholly or partially prevent the drug from degrading and 
losing effectiveness before it reaches the active site, and 
potentially reduce the dosing frequency and/or mini-
mize systemic side effects [17, 18]. Nanoparticle carriers 
may also be used to modify some properties of the drug, 
including its solubility, stability, and immunogenicity [19, 
20]. However, those artificial nanoparticles encounter 
several tricky issues for their clinical applications, includ-
ing (1) the potential in  vivo toxicities, (2) the high cost 
for mass production, and (3) potential adverse environ-
mental impacts [21–24]. In contrast, plant-derived edible 
nanoparticles with unique properties have good applica-
tion prospects for colitis-targeted therapy [25–28].

Turmeric, perennial plant (Curcuma longa) of the 
ginger family, is traditional Chinese medicine, which 
has been used for conditions involving hypolipidemic, 
antineoplastic, anti-inflammatory, and effects on the 
cardiovascular system, etc. [29–33]. Curcumin is a nat-
ural hydrophobic polyphenol from turmeric to exert its 
pharmacological effects. It has pharmacological effects 
such as antioxidant, anti-inflammatory, anti-angiogene-
sis, anti-tumor, and has no noticeable adverse reactions 
[34–36]. Additionally, curcumin is edible, inexpensive, 
and available in bulk. Curcumin has been paid great 
attention to these incomparable properties, and numer-
ous therapeutic applications against multiple diseases 
have been developed [37, 38]. Inspired by the medicinal 

values of turmeric and our previous research [39–42], 
we hypothesized that turmeric-derived nanoparticles 
have great potential to be applied for colitis therapy.

In this study, a specific population of turmeric-
derived nanoparticles (TDNPs 2) were isolated and 
purified by ultracentrifugation and sucrose gradient 
centrifugation. We investigated their site-specific tar-
geting to inflamed colon and therapeutic effects against 
colitis following oral administration (Fig.  1). TDNPs 2 
has a hydrodynamic size of 178 nm with negative zeta 
potential (− 21.7  mV), with mass spectrometry and 
HPLC analysis, specific lipids, proteins, and bioactive 
constituent-curcumin were identified in TDNPs 2. In 
LPS-induced acute inflammation, TDNPs 2 showed 
excellent anti-inflammatory and antioxidant poten-
tials. In mice models of colitis, orally administration of 
TDNPs 2 preferentially localized to the inflamed colon 
and were mainly internalized by colonic epithelial 
cells and macrophages. TDNPs 2 alleviated mice coli-
tis induced by DSS and promoted inflammation reso-
lution of the inflamed colon by attenuating damaging 
factors while promoting protective factors. TDNPs 2 
inactivated the NF-κB pathway, potentially explaining 
their protective effect against colitis. Our results collec-
tively show that TDNPs 2 represent a novel therapeutic 
approach for colitis with inflammation prevention and 
resolution functions.

Materials and methods
Cell culture
Colon-26 cells used in the experiment were cultured by 
RPMI 1640 basal medium, Caco-2BBE, and RAW 264.7 
cells in our study were cultured by basal DMEM medium 
with high glucose. Heat-inactivated fetal bovine serum 
(10%) and penicillin/streptomycin (100 U/ml, 100 U/ml, 
respectively) were added in the medium to prepare the 
complete medium. All the cells were cultured in dishes or 
flasks according to the pre-set experiments at 37 °C in a 
humidified atmosphere containing 5%  CO2.

Animals
The FVB/NJ female mice and the NFκB-RE-Luc trans-
genic female mice with 6–8 weeks were provided by Jack-
son Laboratories (Bar Harbor, ME, USA) and Taconic 
Biosciences (New York, NY, USA), respectively. When 
the mice were received, they were housed under specific 
pathogen-free (SPF) conditions to adapt to the environ-
ment. All animal procedures were performed follow-
ing the Institutional Animal Care and Use Committee 
(IACUC) guidelines of Georgia State University and 
Xi’an Jiaotong University.
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Mice colitis and colitis wound‑healing models
To establish the mice colitis model, FVB/NJ mice were 
given 3% (w/v) dextran sulfate sodium (DSS) in their 
drink water for continuous 7  days. Mice were orally 
administrated with TDNPs 1 or TDNPs 2 (3  mg/dose) 
each day for successive 7  days. During the experiment, 
mice feces in each group were collected, and Lcn-2 
in feces was quantified to monitor the development 
and remission of inflammation. On day 7, mice were 
injected with a XenoLight RediJect inflammation probe 
for chemiluminescence imaging by IVIS imaging sys-
tem. Finally, mice were sacrificed, and colon tissues were 
obtained for the following experiments, such as RNA and 
histopathological analyses.

To generate colitis wound-healing model, FVB/NJ mice 
were given 3% (w/v) dextran sulfate sodium (DSS) in their 
drink water for continuous 7  days to induce colitis. On 
day 7, mice were orally treated with TDNPs 2 (3 mg/dose) 
each day or with regular water without any treatment 
(control group) for 1 week. As in the colitis mice model, 
feces were collected to quantify Lcn-2, spleen weight was 
captured and compared, mice inflammation was moni-
tored in vivo by XenoLight RediJect inflammation probe 

via chemiluminescence imaging, colons were captured 
for MPO and RNA analysis.

Statistical analyses
Analyses of variance (ANOVA) and t-tests analysis 
between groups were carried out by GraphPad Prism 7 
software to determine statistical significance (*p < 0.05, 
**p < 0.01, ***p < 0.001).

Results
Characterization of turmeric‑derived nanoparticles 
(TDNPs)
To isolate TNDPs, plant turmeric was homogenized 
by an extractor followed by a sucrose gradient ultra-
centrifugation method established in our previous 
work with slight modification [43, 44]. Band 1 from the 
sucrose gradient interfaces of 8/30% was named TNDPs 
1, and band 2 from the sucrose gradient interfaces of 
30/45% was named TNDPs 2 (Fig.  2A). The dynamic 
light scattering (DLS) technique was used to determine 
the size and zeta potential of TNDPs. Results showed 
that the hydrophobic sizes of TNDPs 1 and TNDPs 2 
were 204.6  nm and 177.9  nm, respectively. The zeta 

Fig. 1 Schematic illustration of turmeric-derived nanoparticles (TDNPs 2) isolation and targeted ulcerative colitis (UC) therapy via oral 
administration. A TDNPs 2 were isolated and purified from edible turmeric by ultracentrifugation and sucrose gradient centrifugation. B By oral 
administration, TDNPs 2 accumulated at inflamed colon and exerted UC therapeutic effect
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potential was about − 21.3  mV and 21.7  mV for them 
(Additional file 1: Fig. S1). To observe the ultrastructure 
and morphology, TEM and AFM were employed. TEM 
results showed that both TDNPs 1 and TDNPs 2 pos-
sessed the structure of saucer-shaped or hemispherical 
with a concave side, which was similar to the structure 
of exosomes from mammalian  cells (Fig.  2B). AFM can 
characterize the sample morphology with high resolu-
tion and obtain the physical properties such as sample 
viscosity, softness, and hardness. The AFM results indi-
cated a non-homogenous surface, which should attrib-
ute to the contents such as proteins and mRNA enclosed 
inside the highly-dense lipid membrane (Fig. 2C). About 
26.45 ± 10.51  mg of GDNPs 1 and 132.87 ± 22.24  mg 

of GDNPs 2 were obtained from a starting material of 
1000 g turmeric with a considerable yield (Fig. 2D). Col-
lectively, two nanoscaled TDNPs from turmeric were 
isolated successfully using the characterization meth-
ods for exosomes. Exosomes from mammalian  cells are 
membrane-covered structures with a density in sucrose 
of 1.13–1.19  g/ml [45, 46]. According to this, TDNPs 2 
from 30/45% sucrose gradient interface were referred to 
as turmeric-derived exosomes-like nanoparticles. Lipi-
domic results indicated that both TDNPs 1 and TDNPs 
2 were enriched with digalactosyl diacylglycerol (DGDG) 
(51.2% and 41.6%, respectively), monogalactosyl diacyl-
glycerol (MGDG) (12.6% and 12.3%, respectively), phos-
phatidylcholine (PC) (10.7% and 15.5%, respectively), 

Fig. 2 Characterization of TDNPs. A TDNPs were isolated and purified by sucrose gradient ultracentrifugation, band 1 from 8%/30% interface 
was named TDNPs 1, and band 2 from 30%/45% interface was named TDNPs 2. B Transmission Electron Microscopy (TEM) to characterize the 
morphology and size. C TDNPs were also identified by Atomic Force Microscopy (AFM). D Yields of TDNPs 1 and TDNPs 2 from turmeric were 
calculated and compared (n = 5). E Putative lipid species between TDNPs 1 and TDNPs 2 were compared
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phosphatidylinositol (PI) (11.1% and 8.5%, respectively) 
and phosphatidic acid (PA) (12.7% and 19.7%, respec-
tively) (Fig.  2E, Additional file  1: Table  S1). Proteomics 
analysis for TDNPs 1 and TDNPs 2 was also performed 
by LC–MS (Additional file 1: Table S2). In TDNPs 1, no 
protein was identified. In contrast, many proteins were 
found in TDNPs 2, such as cytosolic proteins and mem-
brane proteins. Meanwhile, many uncharacterized pro-
teins indicated the undiscovered function and relevance 
with TDNPs 2 or turmeric. It was revealed that turmeric 
possessed the function for chronic pain and  inflamma-
tion because of its active ingredient curcumin, which had 
powerful biological properties such as targeting specific 
inflammatory cells and blocking certain enzymes that 
lead to inflammation. Using HPLC, we found that TDNPs 
2 contained a higher level of curcumin (16.8 ± 3.4  µg/
mg) than that in TDNPs 1 (8.6 ± 0.5  µg/mg), indicating 
TDNPs 2 might have their specific biochemical charac-
teristics (Additional file 1: Fig. S2).

TDNPs should pass through the complex digestive 
tract and keep them stable for oral administration. We 
then evaluated their stability in a stomach-like solution 
(pH ~ 2.0) and a small-intestine-like solution (pH ~ 6.5), 
respectively (Additional file  1: Fig. S3). We found that 
the particle size of TDNPs 1 and TDNPs 2 was increased 
to 331.7  nm and 348.5  nm, respectively, under a stom-
ach-like solution, and the size was further increased 
to 569.5  nm and 507.7  nm, respectively, under a small-
intestine-like solution. Their zeta potential was changed 
from negative to weakly positive under a stomach-like 
solution, and this change was reversed to negative again 
under a small-intestine-like solution. Under different pH 
solutions, both TDNPs 1 and TDNPs 2 are still in nano-
scale size, indicating their stability, and the zeta potential 
changes coincide with the natural properties of TDNPs.

TDNPs 2 prevent LPS‑induced macrophage inflammation
Curcumin is turmeric’s most important chemical com-
ponent to exert pharmacological effects, such as antioxi-
dant anti-inflammatory. TDNPs contained a high level of 
curcumin, and we speculated TDNPs would have similar 
anti-inflammatory and antioxidant functions. Lipopoly-
saccharide (LPS)-induced macrophage inflammation 
was used to investigate the effect of TDNPs in vitro. LPS 
can cause an acute inflammatory response by activating 
TLR4/MyD88 signaling pathway to produce many pro-
inflammatory cytokines [47, 48]. TDNPs 1 and TDNPs 2 
with different concentrations were incubated with acti-
vating RAW 264.7, the expressions of pro-inflammatory 
cytokines and HO-1 were evaluated by real-time PCR. 
Both TDNPs 1 and TDNPs 2 could decrease TNF-α, 
IL-6, and IL-1β expression and increase HO-1 expres-
sion to a certain degree, suggesting the presumptive 

anti-inflammatory and antioxidant potentials for TDNPs. 
Notably, TDNPs 2 displayed a super-duper concen-
tration-dependent manner for regulating these genes 
expression (Fig.  3). These results should attribute to 
the high level of curcumin in TDNPs 2 and their natu-
ral properties. Taken together, TDNPs 2 have remark-
able anti-inflammatory and antioxidant potentials than 
TDNPs 1. Coupled with the high yield from turmeric, 
TDNPs 2 are used in our followed experiments.

TDNPs 2 preferentially localized to the inflamed colon
Oral administration is a convenient and economical 
delivery route, and it is widely used in disease treatment. 
Compared with other therapeutic routes, oral admin-
istration has many advantages, such as fewer adverse 
reactions, does not directly damage the skin or mucous 
membranes, economical and convenient for patients 
[49–51]. We next investigated the targeting ability of 
TDNPs 2 by oral administration. Colitis mice were gav-
aged with DiR-labeled TNDPs for 6 or 24 h. The digestive 
tract, mesenteric lymph nodes (MLN), and vital organs 
(heart, liver, spleen, lung, and kidney) were obtained for 
imaging by the IVIS® Spectrum imaging system (Fig. 4A). 
Results showed that DiR signal was mainly located in the 
digestive tract. It was delighted that there were strong 
DiR signals at the colon for TDNPs 2-treated mice com-
pared with PBS and TDNPs 1-treated mice. In contrast, 
there was no conspicuous fluorescence of DiR in these 
vital organs and MLN. Collectively, TNDPs 2 are prefer-
entially localized to the inflamed colon.

Next, different cells were isolated and sorted by flow 
cytometry to confirm which cell populations selectively 
uptake TDNPs 2. DiO-labeled TDNPs 2 were orally 
administrated to normal and colitis mice for 24  h, then 
cells from the colon were isolated for flow cytometry 
analysis. For colonic epithelial cells  (EpCAM+), the pop-
ulation of DiO-positive cells in normal and colitis mice 
was 6.29% and 7.32%, respectively (Fig. 4B); For dendritic 
cells  (CD11c+), this proportion was 0.103% and 0.096%, 
respectively (Fig.  4C); As for colonic macrophage cells 
 (CD11b+F4/80+), this proportion in normal and coli-
tis mice was 15.2% and 20.4%, respectively (Fig. 4D). All 
these results demonstrated that colonic epithelial cells 
 (EpCAM+) and macrophage cells  (CD11b+F4/80+) were 
the main cell populations to internalize TDNPs 2, and 
only a tiny percentage of dendritic cells  (CD11c+) partici-
pated in the process. We also found that the rate of DiO-
positive cells in colonic epithelial cells  (EpCAM+) and 
macrophage cells  (CD11b+F4/80+) was higher in colitis 
mice than in normal mice, indicating TDNPs 2 had an 
excellent targeting ability to colitis mice.

We incubated TNDPs 2 with RAW 264.7 and Colon-
26 in vitro and investigated the cellular uptake of TNDPs 
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2 by these cells. TNDPs 2 were labeled by fluorescent 
dye-DiL with the emission peak at 565 nm. The confocal 
imaging showed lots of red dots (DiL labeled TNDPs 2) 
located in the cytoplasm for RAW 264.7 and Colon-26 
cells. Flow cytometry analysis was consistent with confo-
cal results, and the endocytosis efficiency for them was 
quantified up to 98% and 91%, respectively (Fig. 5). The 
internalization pathway(s) of TNDPs 2 in RAW 264.7 
cells were also investigated by incubating with endocy-
tosis inhibitors (Additional file  1: Fig. S4). Indometha-
cin could significantly inhibit the internalization of 
DiL-TNDPs 2, indicating caveolae-mediated endocytosis 
involved in TNDPs 2 cellular uptake. Other inhibitors, 
such as amiloride, cytochalasin D, and chlorpromazine, 
had a slight effect on the uptake of DiL-TDNPs 2 [52–
55]. Effects of temperature on cellular uptake efficiency 
were also investigated. DiL-TDNPs 2 were incubated 
with RAW 264.7 cells under different temperatures (37, 
20, and 4  °C), as shown in Additional file 1: Fig. S5, the 
uptake efficiency of DiL-TDNPs 2 by RAW 264.7 cells 
was significantly decreased under 4 and 20 °C when com-
pared with the result under 37  °C condition, indicating 
that the uptake of DiL-TDNPs 2 was energy-dependent. 

TDNPs 2 were preferentially localized to the inflamed 
colon via oral administration and then internalized by 
colonic epithelial and macrophage cells. Energy-depend-
ent caveolae-mediated endocytosis might be involved in 
the cellular uptake for TDNPs 2.

Oral administration of TDNPs 2 alleviate DSS‑induced 
colitis
Inspired by the above findings that TDNPs 2 were prefer-
entially localized to the inflamed colon, we then aimed to 
investigate the effect of TDNPs 2 on DSS-induced colitis, 
a well-established mice model for studying human UC 
[56, 57]. Mice were randomly divided into four groups, 
control (plain water), DSS group (3% DSS water), TDNPs 
1, and TDNPs 2 treated groups. Lcn-2, as an attractive 
biomarker of intestinal inflammation, was used to moni-
tor the progression of intestinal inflammation. From 
D1-D3, the expression levels of Lcn-2 were very low for 
all the groups, indicating inconspicuous inflammation 
for all the mice. From Day 5, Lcn-2 expression was still in 
the basal level in the control group. In contrast, Lcn-2 in 
DDS- and TDNPs 1-treated groups was markedly raised 
with a similar tendency. Surprisingly, Lcn-2 in TDNPs 

Fig. 3 TDNPs prevent LPS-induced macrophage inflammation. A–C mRNAs expression of pro-inflammatory cytokines, TNF-α, IL-6 and IL-1β, 
respectively (n = 5). D mRNA expression of HO-1 (n = 5)
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2-treated group was still at a lower level when compared 
with DSS or TDNPs 1-treated groups. These results indi-
cated that TDNPs 2 could alleviate DSS-induced colitis. 
Colon inflammation in treated groups was also moni-
tored by chemiluminescence imaging using a commer-
cially available inflammation probe [58, 59]. As shown in 
Fig. 6B, the abdomen of the mice in the DDS- and TDNPs 
1-treated group showed obvious bioluminescence sig-
nals, indicating severe intra-digestive inflammation. In 
contrast, although there were still bioluminescence sig-
nals in TDNPs 2-treated mice, the intensity was much 
lower than DDS- and TDNPs 1-treated mice. The inten-
sity of bioluminescence signals in Fig. 6B was quantized 
and compared (Fig.  6C). To confirm this observation, 
myeloperoxidase (MPO) levels in the colon tissues were 
also evaluated, which were consistent with Lcn-2 and 
chemiluminescence imaging results, and MPO levels 
in TDNPs 2-treated mice were much lower than DDS- 
and TDNPs 1-treated mice (Fig. 6D). During UC devel-
opment, the secretion of pro-inflammatory cytokines 
induced reactive oxygen species (ROS) production. ROS 

caused damage to the intestinal mucosa directly and 
induced oxidative stress in colon epithelial cells, resulting 
in a variety of lipid peroxidation. ROS also had a chemot-
actic ability. It recruited immune cells such as neutrophils 
into the site of inflammation to further stimulate the 
secretion of pro-inflammatory cytokines, thereby ampli-
fying the intestinal inflammatory response and leading to 
increased damage [60–63]. Therefore, pro-inflammatory 
cytokines and oxidative stress played an important role 
in colitis. The expressions of pro-inflammatory cytokines 
(TNF-α, IL-6, and IL-1β) and oxidative stress-related 
protein, HO-1, were elevated in the DSS group, as com-
pared, the levels of pro-inflammatory cytokines (TNF-α, 
IL-6, and IL-1β) were dramatically decreased, while oxi-
dative stress-related HO-1 was significantly increased 
in TDNPs 2 treated group (Fig.  6E). Heme oxygenase-1 
(HO-1) possesses many protective effects, which play 
a role in the physiological state and can be induced in 
abnormal conditions, including inflammation. Therefore, 
HO-1 is considered a critical factor in maintaining oxi-
dative and antioxidant homeostasis in cells damaged [64, 

Fig. 4 TDNPs 2 preferentially localized to the inflamed colon. A Digestive tract, mesenteric lymph nodes (MLN), and vital organs (Heart, liver, spleen, 
lung, kidney, and) were imaged by IVIS® Spectrum imaging system. B–D FACS was used to determine the population of cells to uptake DiO labeled 
TNDPs 2 (n = 3)
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65]. Our results demonstrated that TDNPs 2 could allevi-
ate colitis with anti-inflammatory and antioxidant effects.

The histological effects of TNDPs 2 on colitis were first 
evaluated by H&E staining (Fig. 7A). DDS- and TDNPs 
1-treated mice exhibited robust signs of inflammation, 
including increased inflammatory cells infiltration in 
the lamina propria (indicated by arrowheads), epithelial 
erosion, and interstitial edema. In contrast, mice treated 
with TDNPs 2 showed decreased signs of inflammation 
at the histological level, including significantly reduced 
lymphocytic infiltration to lamina propria. Colonic 
goblet cells and their main secretory product, mucus, 
played essential roles in maintaining mucosal immunol-
ogy and biology of the intestinal tract; for example, the 
mucus slows down bacterial penetration to push bacteria 
out toward the lumen. To highlight colonic goblet cells, 

alcian blue staining was used to identify acid mucin, 
neutral mucin, and glycogen. In DDS- and TDNPs 
1-treated mice, colonic goblet cells were significantly 
damaged. When treated with TDNPs 2, the colonic gob-
let cells looked intact (Fig. 7B). E-cadherin is an impor-
tant molecule involved in adhesion junctions between 
cells that maintain cell polarity and tissue structural 
integrity. E-cadherin’s abnormal expression was related 
to cell migration and invasiveness. Therefore, E-cadherin 
played an important role in maintaining epithelial cell 
polarity and regulating the permeability of the intestinal 
barrier [66–68]. In immunofluorescence results, E-cad-
herin on colonic epithelial cells in TDNPs 2 treated mice 
was highly expressed than DSS- and GDNPs 1-treated 
mice (Fig. 7C). These results corroborated the results of 
H&E staining and alcian blue staining.

Fig. 5 Cellular uptake of TNDPs 2 by macrophage 264.7 and colon-26 cells. The cell nucleus was stained by DAPI (Blue), the cytoskeleton was 
stained by FITC-phalloidin (Green), and TDNPs 2 were labeled by lipophilic carbocyanine dye, DiL (Red), scale bar: 20 μm
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Fig. 6 Oral administration of TDNPs 2 alleviated DSS-induced colitis. A Lipocalin-2 quantification (n = 5). B Colon inflammation was monitored by 
XenoLight RediJect inflammation probe via chemiluminescence imaging (n = 3). C Average radiance was captured and compared between groups 
(n = 5). D MPO quantification (n = 5). E Real-time PCR to quantify miRNA expression (n = 5), *p < 0.05, **p < 0.01, ***p < 0.001
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Oral administration of TDNPs 2 accelerate inflammation 
resolution of colitis
We have confirmed that TDNPs 2 could alleviate DSS-
induced colitis. We next evaluated whether TDNPs 2 
could accelerate inflammation resolution of colitis. The 
electric cell-substrate impedance sensing (ECIS) was 
used to perform the wound-healing assay in  vitro [69, 
70]. Caco2 cells were cultured to form a monolayer in 
a tailor-made ECIS dish. When the impedance traces 
reached a plateau, an elevated electric field was applied 
to the wells to induce a wound of the cell, which caused 
a cliff-like drop in the impedance traces. DMEM (con-
trol), curcumin, TDNPs 1, or TDNPs 2 were added to 
the wells to assess their effects on cell wounds at the 
lowest impedance point. Results showed that TDNPs 
2-treated cells had the fastest migration speed to heal-
ing the wound when compared with other groups, indi-
cating TDNPs 2 accelerated wound repair of Caco2 
cells (Fig.  8A). Colitis resolution experiments were 
also performed in  vivo. As shown in Fig.  8B, Lcn-2 
was used as a biomarker to monitor colitis develop-
ment. In the inflammation outset phase, mice were 
drunk with DSS water to induce colitis (D1-D7). In the 

inflammation recovery phase (D7-D15), the DSS water 
was exchanged with plain water. In TDNPs 2-treated 
group, mice were orally administrated with TDNPs 2 to 
investigate its effect on colitis resolution. Lcn-2 levels 
gradually elevated from D1-D7 when DSS was present, 
suggesting that DSS successfully induced colitis. Dur-
ing the inflammation recovery phase, when treated 
with TDNPs 2, the resolution of inflammation was sig-
nificantly accelerated compared with the control group. 
Spleen weight was correlated with the degree of inflam-
mation [71]. The spleen weight between groups was 
compared at the end of the experiment. Spleen weight 
in TDNPs 2-treated group decreased significantly 
compared with the DSS group, indicating ameliora-
tive inflammation by treating with TDNPs 2 (Fig. 8C). 
Colon inflammation was also monitored by chemilu-
minescence imaging using a commercially available 
inflammation probe. The bioluminescence signals in 
TDNPs 2 treated mice were weaker than those in DDS-
treated mice (Fig.  8D and E). Myeloperoxidase (MPO) 
levels were consistent with the above-mentioned 
results. MPO levels in TDNPs 2 group were much 
lower than those in the DSS group (Fig. 8F). For mRNA 

Fig. 7 Histological stain to evaluate the protective effect of TDNPs 2 on colitis. A Representative H&E-stained colon. Inflammatory cell infiltration 
was indicated by arrowheads. B Colonic goblet cells were stained by Alcian blue. As goblet cells produce mucins, Alcian blue was used to highlight 
the goblet cell population. C E-cadherin expression was detected by immunofluorescence. Scale bar: 50 μm
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expressions, pro-inflammatory cytokines (TNF-α, IL-6, 
and IL-1β) were decreased, while oxidative stress-
related protein, HO-1, increased in TDNPs 2-treated 
mice compared with DDS-treated mice (Fig. 8G). Col-
lectively, oral administration of TDNPs 2 appeared to 
accelerate colitis resolution.

Biocompatibility evaluation of TDNPs 2
TDNPs 2 exerted excellent therapeutic outcomes to coli-
tis with anti-inflammatory and pro-resolving bioactions. 
The biocompatibility of TDNPs 2 should be evaluated 
comprehensively to meet the potential clinical appli-
cation [72, 73]. Firstly, an ECIS assay was performed to 
assess the toxicity of TDNPs 2 towards Caco2 cells for 

Fig. 8 Oral administration of TDNPs 2 accelerated inflammation resolution of colitis. A ECIS wound healing assay. B Lcn-2 quantification (n = 5). 
C Spleen weight (n = 5). D Colon inflammation was monitored by XenoLight RediJect inflammation probe via chemiluminescence imaging. 
E Average radiance (n = 5). F MPO quantification (n = 5). G Real-time PCR to quantify miRNA expression (n = 5). *p < 0.05, ***p < 0.001 and ns 
represent no significant difference
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real-time measurement of cell proliferation (Additional 
file  1: Fig. S6A). The results showed that TDNPs 2 (up 
to 100  μg/ml) did not cause resistance change when 
compared with DMEM groups. In contrast, the posi-
tive control (Tween-100) had a steep decrease in resist-
ance, indicating the excellent biocompatibility of TDNPs 
2 in  vitro. Other methods, including MTT assay (Addi-
tional file  1: Fig. S6B), ATPLite assay (Additional file  1: 
Fig. S6C), cell apoptosis assay (Additional file 1: Fig. S6D), 
and activated caspase-3/7 (Additional file 1: Fig. S7), also 
demonstrated the excellent biocompatibility of TDNPs 2.

Next, the biosafety of TDNPs 2 in  vivo was explored. 
The weights of vital organs in the TDNPs 2-treated group 
were comparable with the control (Fig. 9A). Pro-inflam-
matory cytokines (IL-6, IL-1β, and TNF-α) in serum did 
not significantly change between TDNPs 2 and control 
groups (Fig.  9B). ALT and AST, which reflect the func-
tions of the liver, also seemed normal between these 
groups (Fig.  9C). H&E staining for histological analysis 
of vital organs did not find any clear evidence of organ 
damage in TDNPs 2-treated mice compared with control 
mice (Fig.  9D). Since TDNPs 2 are isolated from edible 

Fig. 9 Biocompatibility evaluation of TDNPs 2. A Vital organs weights (n = 5). B Pro-inflammatory cytokines (n = 5). C Indicators reflected the 
physiological function of the liver were evaluated. D H&E staining, scale bar: 50 μm
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turmeric, they should have excellent biocompatibility, 
and our comprehensive evaluation provides experimental 
evidence.

TDNPs 2 exert a protective effect by inactivating NF‑κB 
pathway
Nuclear factor-kappa B (NF-κB) is an important nuclear 
transcription factor that plays an essential role in regulat-
ing the inflammatory response. Curcumin was an NF-κB 
inhibitor and exhibited extensive properties [74, 75]. 
Given this information, we aimed to investigate whether 
TDNPs 2 could affect the NF-kB pathway. To verify our 
hypothesis, RAW 264.7 cells were co-transfected with the 
luciferase reporter, which was introduced in detail in the 
previous work [76]. RAW 264.7 cells were then treated 
with LPS in the presence of TDNPs 2 (20 ~ 200  μg/ml). 
The results showed LPS could induce NF-κB-dependent 
luciferase reporter expression (~ 1.6 fold increase), 
when treated with TDNPs 2, the luciferase activity 
was suppressed in a concentration-dependent manner 
(Fig.  10A). ELISA assay for phospho-NF-κB p65 was 
also revealed that TDNPs 2 suppressed phospho-NF-κB 

p65 expression, and it was consistent with the luciferase 
reporter activity experiments (Fig. 10B). Confocal imag-
ing confirmed that TDNPs 2 could affect the translo-
cation of NF-κB-p65 to the nucleus (Fig.  10C). Thus, 
activation of the NF-κB pathway by LPS was inhibited 
by TDNPs 2, as demonstrated by measuring NF-κB-
p65-dependent luciferase activity, phospho-NF-κB p65 
expression and translocation of p65 to the nucleus. To 
investigate the inhibition of TDNPs 2 to the NF-κB path-
way in  vivo, NF-κB-RE-Luc transgenic mice were used 
to explore NF-κB activity. At the end of the experiment, 
vital organs (heart, liver, spleen, kidney, and lung) and 
colon were captured and imaged. As shown in Fig. 10D, 
the bioluminescence signals of vital organs were simi-
lar, indicating similar NF-κB activities in these organs. 
By contrast, the bioluminescence signal of the colon in 
TDNPs 2 treated groups was obviously decreased com-
pared with DSS. Immunohistochemistry stain of NF-κB 
was also confirmed the decreased NF-κB expression in 
TDNPs 2 treated colon tissue (Fig.  10E). Collectively, 
these results demonstrated that TDNPs 2 exerted a pro-
tective effect by inactivating the NF-κB pathway.

Fig. 10 TDNPs 2 exerted a protective effect by inactivating the NF-κB pathway. A NF-κB activity evaluation (n = 5). B Phospho-NF-κB p65 
expression was evaluated by ELISA assay (n = 5). C The translocation of NF-kB-p65 to the nucleus was assessed by immunofluorescence, scale 
bar = 10 μm. D NF-κB-RE-Luc transgenic mice was used to investigate NF-κB activity in vivo (n = 5). E NF-κB expression in the colon was evaluated 
by IHC
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Discussion
Nanoparticulate systems have attracted attention for 
colitis treatment, as they have unique physicochemical 
properties and disease-site targeting capabilities. Vari-
ous strategies are currently being investigated, including 
ligand/receptor, charge, size, degradation, and micro-
biome-mediated delivery strategies [77, 78]. Nanovesi-
cles extracted from plants are deemed to be a branch of 
nanomedicine. Plant-derived nanovesicles possess the 
function to communicate between the plant and animal 
kingdoms and thus have the therapeutic potential against 
various diseases, including UC [79].

In the current study, two populations of TNDPs 
(TDNPs 1 and TDNPs 2) from edible turmeric were iden-
tified. Both of them are nano-sized with negative zeta 
potential. In UC, inflammation of the colonic mucosa is 
well known to be accompanied by depletion of the mucus 
layer and in situ accumulation of positively charged pro-
teins, including transferrin, anti-microbial peptides, and 
bactericidal/permeability-increasing proteins. Accumu-
lation of these proteins results in a positive charge at the 
damaged epithelial surface, providing an anchor for neg-
atively charged drug carriers [80]. TDNPs 2 with remark-
able targeting ability to the inflamed colon may be at least 
partly attributed to their electrostatic interaction with 
the damaged epithelial surface. Lipid profiling revealed 
that the TDNPs predominantly comprised digalactosyl-
diacylglycerol (DGDG), monogalactosyl diacylglycerol 
(MGDG), phosphatidylinositol (PI), phosphatidylcholine 
(PC), and phosphatidic acid (PA), which were present 
in different amounts in TDNPs 1 and TDNPs 2. PC was 
approved to have a protective function to colonic mucus 
among these components. The lower intrinsic mucus PC 
content in UC patients affects the intestinal mucus with 
a hydrophobic barrier function. This is thought to allow 
colonic bacteria to permeate the intestinal mucus barrier, 
leading to nonspecific but aggressive immune responses 
followed by inflammation and ulceration [81]. Therefore, 
our findings suggest that TDNPs could be a potential nat-
ural turmeric-derived targeted therapeutics.

Compared to TDNPs 1, TDNPs 2 had many more 
proteins and were enriched for cytosolic and mem-
brane proteins. Many of the proteins in TDNPs 2 were 
found to represent uncharacterized proteins, indicating 
the undiscovered functions and relevance with TDNPs 
2 or turmeric and needed to lucubrate. Interestingly, 
TDNPs 2 contained a higher curcumin content, the main 
active ingredient of turmeric, compared to TDNPs 1. The 
density of TNDPs 2 in sucrose (1.13–1.19 g/ml) was simi-
lar to that of exosomes from mammalian cells. Based on 
these findings, we defined TDNPs 2 as turmeric-derived 
exosome-like nanoparticles and used them for further 
experiments.

Conventional therapeutic drugs for UC are limited in 
clinical use. They tend to be administrated via intrave-
nous (i.v.) injection or other systemic routes, leading to 
toxicity and adverse effects with the systemic distribu-
tion of the drug. In contrast, TDNPs 2 were delivered 
orally, which offered incomparable advantages, such as 
fewer adverse reactions, does not directly damage the 
skin or mucous membranes, economical and conveni-
ent for patients. Indeed, our data demonstrated that 
orally administrated TDNPs 2 preferentially localized 
to the inflamed colon. This is consistent with previous 
studies in which grape- and ginger-derived exosome-
like nanoparticles targeted the colon [82]. TDNPs 2 are 
efficiently internalized by colonic epithelial and mac-
rophage cells upon reaching the inflamed colon. This 
dual cellular targeting ability of TDNPs 2 contrasts with 
the abilities of nanoparticles from grape or grapefruit, 
which primarily targeted intestinal macrophages or 
intestinal stem cells (ISCs), respectively [83].

In the DSS-induced colitis model, TDNPs 2 relieved 
acute inflammation and reduced the colitis susceptibility 
of mice. The acute inflammatory response involves a com-
plex but highly coordinated sequence of events, includ-
ing molecular, cellular, and physiological alterations [84]. 
Acute inflammation begins with producing soluble medi-
ators (including complements, chemokines, cytokines, 
free radicals, and vasoactive amines) by endothelial cells, 
macrophages, and other resident cells of the injured or 
infected tissue. After being internalized by endothelial 
cells and macrophages, TDNPs 2 appeared to impact the 
inflammatory state: Our results showed that TDNPs 2 
suppressed the expressions of pro-inflammatory cytokines 
(TNF-α, IL-6, and IL-1β) while increasing the expression 
of an antioxidant gene (heme oxygenase 1, HO-1), sug-
gesting that TDNPs 2 have the potential to attenuate dam-
aging factors and promote protective factors.

Notably, TDNPs 2 also promoted the resolution of 
colitis. Inflammation resolution stage is the period 
between the peak inflammatory cell influx and the 
clearance of inflammatory cells from the tissue site/
restoration of functional homeostasis. This occurs via 
a complex and tightly regulated cascade of processes 
[85]. Interestingly, we found that treatment of wounded 
intestinal mucosal with TDNPs 2 recovered the normal 
levels of anti-inflammatory cytokines and MPO activ-
ity. Our results suggest that TDNPs 2 have both anti-
inflammation and pro-resolution functions and thus 
might offer a therapeutic strategy that is superior to the 
existing approaches.

In conclusion, we present a novel, natural, and non-
toxic exosome-like nanovesicle that can preferen-
tially localize to the inflamed colon and possesses 
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anti-inflammation and pro-resolution functions. This 
system, exemplified by TDNPs 2, can easily be devel-
oped for large-scale production and may represent an 
effective therapeutic strategy against UC.
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