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Abstract 

Presently, nanocarriers (NCs) have gained huge attention for their structural ability, good biocompatibility, and 
biodegradability. The development of effective NCs with stimuli-responsive properties has acquired a huge interest 
among scientists. When developing drug delivery NCs, the fundamental goal is to tackle the delivery-related prob-
lems associated with standard chemotherapy and to carry medicines to the intended sites of action while avoiding 
undesirable side effects. These nanocarriers were able of delivering drugs to tumors through regulating their pH, tem-
perature, enzyme responsiveness. With the use of nanocarriers, chemotherapeutic drugs could be supplied to tumors 
more accurately that can equally encapsulate and deliver them. Material carriers for chemotherapeutic medicines 
are discussed in this review keeping in viewpoint of the structural properties and targeting methods that make these 
carriers more therapeutically effective, in addition to metabolic pathways triggered by drug-loaded NCs. Largely, 
the development of NCs countering to endogenous and exogenous stimuli in tumor regions and understanding of 
mechanisms would encourage the progress for tumor therapy and precision diagnosis in future.
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Where are we today with cancer therapeutics?
Cancers are a group of diseases that are caused by the 
uncontrolled development of malignant cells, which 
can infiltrate tissues and spread to other regions of the 
body. According to the World Health Organization, 
cancer-related fatalities accounted for nearly 10 million 
deaths in 2020, and the incidence of cancer is expected 
to increase rapidly to 28.4  million new cases in 2040 
[1]. The most common cancer-related death includes 
breast, lung, colon and rectum, prostate, skin (non-
melanoma), and stomach cancers. Fortunately, the 
death rate has been reduced drastically by advances in 
our understanding of tumor biology and the develop-
ment of improved diagnostic equipment and therapies.

Current oncological treatments and new therapies: 
an overview
Several core strategies exist for treating cancer, including 
surgical intervention, chemotherapy, and radiation ther-
apy, as well as a combination of these techniques. Con-
ventional chemotherapy works primarily by interfering 
with the genetic material and cell division of cancer cells; 
however, this approach is non-selective and damages 
even the healthy cells, thereby resulting in severe side 
effects and a high mortality rate. In addition, hydropho-
bic drugs have poor accessibility that reduces the final 
drug dosage delivered to the tumor tissues, meaning that 
higher doses must be administered systematically. How-
ever, this can lead to severe toxicity in normal tissues and 
increase the chances of multiple drug resistance (MDR) 
where cancer cells can evade chemotherapies by develop-
ing resistance against cytotoxic drugs immediately after 
therapy. Therefore, novel drug delivery systems that can 
enhance specific targeting and reduce adverse side effects 
in cancer tissues are urgently required. These shortcom-
ings of conventional chemotherapy have prompted the 
development of smart monitored nanocarrier (NCs)-
based drug delivery systems that allow targeted drug 
release at specific sites and reduce toxicity [2–5] with 
enhanced penetration [6].

The correlation between drug delivery and nanopar-
ticles (NPs) was first described by Paul Ehrlich [7] using 
the magic bullet concept, while Speiser et al. [8] were the 
first to report the regulated sustained release of drugs 
using a bead polymerization technique. Also, some 
engineered bioinspired synthetic and cellular systems 
towards design of nanomedicine platforms for the treat-
ment of cancer [9]. In recent years, an increasing number 
of studies have investigated tumor biology and reported 
the construction of NCs using versatile materials, such 
as inorganic carriers, lipids [10], proteins [11], and poly-
meric micelles [12, 13]. This has led to the development 
of NC-based drug delivery systems that can deliver 

chemotherapeutics into the tumor microenvironment on 
demand. Compared to conventional chemotherapeutics, 
NCs like liposomes, micelles, and nanoparticles have a 
variety of advantageous features for use in clinical cancer 
therapy. For instance, NCs can have a high selective accu-
mulation rate in the tumor microenvironment via the 
enhanced permeability and retention (EPR) effect [14], 
which improves treatment efficiency by reducing toxicity 
in normal tissues. Moreover, active targeted delivery can 
be achieved using NCs loaded with chemotherapeutic 
agents and conjugated to molecules that bind to recep-
tors that are overexpressed on cancer cells.

In this review, we highlight various NCs-based drug 
delivery systems and discuss the targeted mechanisms 
via which they improve the therapeutic index of chemo-
therapeutic drugs. In addition, we discuss several endog-
enous and exogenous stimuli-responsive drug release 
studies in the context of present-day NCs development, 
in addition, the metabolic pathways and mechanisms 
induced by drug-loaded NCs.

NCs used for drug delivery in cancer therapy
Several innovative drug delivery strategies are currently 
being used to treat cancer, and novel cancer therapies 
have been developed using an array of nanomateri-
als, including organic and inorganic particles, and syn-
thetically produced lipids, proteins, and polymers. The 
delivery of drugs encapsulated in NCs offers several 
advantages over the direct administration of refined 
chemotherapeutic drugs. These include enhanced drug 
delivery, protection of the encapsulated drugs against 
degradation in the bloodstream, targeted drug deliv-
ery, efficient treatment with reduced systemic toxicity, 
improved drug solubility, and enhanced pharmacody-
namic and pharmacokinetic drug properties [13, 15–18].

NPs have a small diameter of 1–100  nm and a high 
surface area to volume ratio, which significantly affects 
their biological activities and allows them to bind, absorb, 
and transport drugs, DNA, RNA, proteins, and detec-
tion molecules. The therapeutic efficacy of NCs are based 
on the efficiency of nano-drug delivery used in medical 
treatments which are controlled predominantly by their 
size, shape, and surface [19]. To date, a remarkable vari-
ety of drug delivery NCs have been developed with dif-
ferent sizes, molecules, conformations, and surface 
physicochemical characteristics (Fig. 1). It is noteworthy 
that conventional NCs are unspecific, unstable, shows 
reduced biocompatibility, low permeability, retention 
effect, drug resistance, and high toxicity due to several 
barriers encountered during circulation or abnormal 
vascular networks in tumor microenvironment [20]. 
However, the targeted stimuli-responsive NCs are pre-
cise, shows high stability, biocompatibility, enhanced 
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permeability, shows reduced toxicity and retention effect 
i.e., exhibit smart behaviors at biological environments. 
Moreover, in conventional NCs the drug delivery is not 
targeted and the doesn’t show enhanced permeability and 
retention (EPR) effect to the tumor site, in contrast, deliv-
ery of drugs encapsulated in targeted stimuli responsive 
NCs offers several advantages over the direct administra-
tion of refined chemotherapeutic drugs and reduction of 
side effects that improves therapeutic efficacy [13, 15, 16].

Here, firstly we discuss the main types of NCs that have 
been used as drug delivery systems in the treatment of 
cancer (Tables 1 and 2).

Inorganic NCs
Inorganic NCs have proven to be highly useful in can-
cer therapy owing to their high surface area to volume 
ratio and easy conjugation with various cancer drugs. In 
addition, biocompatibility, low toxicity, and the ability to 
control drug release have facilitated the use of inorganic 
NCs, such as mesoporous silica NCs (MSNCs), gold NCs 
(AuNCs) [21], magnetic NCs (MNCs), carbon nanotube 
NCs (CNT-NCs), graphene oxide and quantum dots 
(QDs), as drug carriers (Fig. 2) [22].

Mesoporous silica NCs
MSNCs have a variety of unique characteristics that 
make them appealing NCs, including a highly porous 
structure and adsorption capacity, tunable particle size, 
easy functionalization, excellent biocompatibility, and 
the potential to act as a physiological container to pro-
tect drugs against dysfunction or denaturation [23]. 
In addition, the pore diameter of some MSNCs can be 

controlled to regulate drug encapsulation ratios and the 
release kinetics, allowing anticancer medicines to be 
delivered in a tailored manner and discharged on time 
to promote cellular uptake without being released before 
reaching the intended target site. MSNCs can also adsorb 
various hydrophobic drugs and thus act as ubiquitous 
intracellular drug carriers by transporting them across 
the cell membrane. Moreover, MSNCs can simultane-
ously adsorb both hydrophilic and hydrophobic drugs 
for targeted drug delivery. For instance, Chan et al. syn-
thesized phenyl-exMSN-PEG + TA (NTT2_131), which 
was anchored simultaneously with hydrophilic doxo-
rubicin (DOX) and phobic JM15 anticancer drugs [24]. 
Moreover, MSNCs have the ability to target the tumor 
site through both active and passive mechanisms, such 
as the EPR effect and the evasion of reticuloendothelial 
system (RES) clearance [25]. Furthermore, the surface of 
MSNCs can be functionalized with specific ligands, such 
as hyaluronic acid or transferrin, to target specific tumors 
or be coated with proteins, enzymes, and magnetic nano-
particles, which function as homing devices. Together, 
the intracellular absorption, pharmacokinetics, and tissue 
distribution patterns of MSNCs throughout the targeting 
process can be significantly altered by regulating the par-
ticle size and surface of MSNCs.

Gold nanocarriers
AuNCs have been used as anticancer agents in photo-
thermal therapy (PTT) owing to their excellent ability to 
convert light into heat [26]. The therapeutic potential of 
AuNCs is determined by their size, shape, surface plas-
mon resonance (SPR), and surface biochemistry [27]. 

Fig. 1  Intracellular applications of nanocarriers designed using different materials. The type and functionality of the nanocarrier are controlled by its 
shape, size, and targeting ligands, leading to high maneuverability and target-specific drug delivery
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Basically, size and shape of nanoparticles are important 
parameter that effects cellular uptake and site-specific 
drug delivery from the synthesized system. It was also 
noticed that the smaller particles infused into the deep 
layers of tissues while the 100–200  nm particles stayed 
on the surface [28], that additionally signifies better bio-
availability of small sized gold NPs. The particle size also 
affect the blood concentration along with circulation 
time. Moreover, their benign nature and excellent sur-
face functionalization properties make AuNCs effective 
anticancer drug carriers. The surface functionalization of 
AuNCs with anticancer drugs can improve their antican-
cer efficacy via the combined effect of the nanoparticle–
drug conjugate on tumor cells, while anchoring with a 
specific antibody can improve their target specificity [29]. 
Furthermore, the surface modification of Au NPs with a 
pH-sensitive material can allow them to specifically tar-
get tumor cells, which have a lower pH than normal cells. 
Chaudhari et al. [30] investigated the metabolic pathways 
and mechanisms induced by methotrexate (MTX)-AuNC 
in breast cancer cells. MTX-AuNC targeting the folate 
receptor, demonstrated considerable uptake by the breast 

cancer cells, as well as substantial down-regulation of the 
anti-apoptotic gene and up-regulation of pro-apoptotic 
genes [30].

Magnetic NCs
MNCs have recently received a lot of interest owing to 
their immense potential as heat regulators for treat-
ing hyperthermia as well as their ability to transport 
drugs in a targeted manner, which can reduce systemic 
effects [43]. In addition, MNC-based cancer therapies 
have novel features that are not observed in traditional 
approaches, such as minimal toxicity and controlled drug 
release. The behavior of MNCs is predominantly affected 
by their hydrodynamic diameter, surface chemistry, and 
magnetic properties. Surface chemistry is crucial for 
preventing clearance by the RES and improving half-
life within  the blood circulation. For example, research-
ers have modified the surface of MNCs with neutral and 
hydrophilic ligands, such as PEG or P(S/V-COOH) poly-
mers, and reported an improvement in their circulatory 
half-life from minutes to months [44]. Anchoring the sur-
faces of MNCs with new ligands has facilitated targeted 

Table 1  Inorganic drug delivery NCs in cancer therapy

CNT carbon nanotubes; NPs nanoparticles; QDs quantum dots; LDH layered double hydroxides; PEG polyethylglycol

Material Description of carrier Material advantage Specificity Refs.

CNT Anti-P-glycoprotein antibody func-
tionalized CNT-doxorubicin

Defeats multidrug resistance Leukemia cells [31]

CNT Multi-walled CNT decorated with 
guanidinylated dendritic molecular 
transporters

Efficient DOX delivery Prostate cancer cells [32]

CNT PEG-CNT complex Mitochondrial targeting Lung cancer cells [33]

Layered double hydroxide NPs Co-delivery of 5-fluorouracil and 
siRNAs

Prevents drug resistance and 
enhances cancer treatment

Various cancer cells [34]

Layered double hydroxide NPs Raloxifene intercalated into the 
interlayer gallery of LDH host

Improves therapeutic efficacy, 
reduction of adverse side effects

Solid tumors [35]

Iron oxide NPs Phospholipid-PEG-coated super-
paramagnetic iron oxide NPs

Chemotherapy and hyperthermia 
treatment

Solid cancers [36]

Magnetic NPs Pluronic F127-anchored iron oxide 
NPs

Active and passive delivery of 
hydrophobic drugs

Folate-positive cancer cells [37]

Magnetic NPs Chitosan-coated superparamag-
netic iron oxide NPs

Doxorubicin delivery Ovarian cancer cells [38]

Mesoporous silica NPs Azobenzene-modified mesoporous 
silica for NIR-triggered anticancer 
drug delivery

Drug release rate can be controlled 
by varying the intensity and/or time

Solid tumor [39]

Mesoporous silica NPs Hyaluronic acid-capped 
mesoporous Silica NPs

Site-selective, controlled-release 
delivery

MDA-MB-231 and NIH3T3 cells [40]

QDs Riboflavin-tageting graphene quan-
tum dots-PEG-benzofuran

High potency, improved dispers-
ibility

Laryngeal, lung and colorectal 
cancer cells

[2]

QDs Hyaluronic acid/ferrocene 
(Fc)-anchored nitrogen-doped 
graphene QDs (Fc-GQD-HA)

Selective binding to CD44 recep-
tors, redox-based drug delivery

Diverse range of cancer cells [41]

QDs Hederagenin anchored black 
phosphorus QDs encapsulated with 
platelet membrane

Mono-dispersive capacity, elevated 
drug-loading

In vivo application [42]
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drug delivery, and the anchoring of single or multiple 
drugs on MNCs has recently been studied to improve 
anticancer drug efficacy. The stability and biocompatibil-
ity of MNCs can be optimized by anchoring them with 
organic or inorganic compounds, which can improve the 
efficacy of anti-cancer chemotherapy and gene therapy 
[45]. It is worth to mention that MNCs, offers a suit-
able tool for cancer treatment and diagnosis due to their 
unique features which distinguish them from other NCs. 
These can act through magnetic drug targeting, making 
them therapy magnetically responsive, therefore it can be 
controlled inside the human body by external magnets, 
and eventually absorbed into tumor tissues. Their utili-
zation in magnetic resonance imaging (MRI) delivers a 
high divergence for generating the most detailed imag-
ing. Such as, magnetic iron oxide NPs widely applied for 
lung MRI due to their good magnetization and biocom-
patibility as well as their appropriate drug uptake and 
subsequent release [46]. Similarly, water-dispersible PEI-
conjugated iron oxide NPs have been also exploited for 
MRI-based cancer imaging [47].

Carbon nanotube NCs
Carbon nanotubes (CNTs) are long cylindrical structures 
with flexible NCs characteristics that have sparked inter-
est as drug delivery molecules owing to their unique bio-
logical, physical, and chemical capabilities [48]. Indeed, 
CNTs have been used to deliver anticancer drugs, such 
as DOX, paclitaxel, methotrexate, and  small interfering 
RNAs (siRNAs), to treat a range of malignancies.

The developing siRNA technology merged with 
chemotherapy has presented significant rationale in 
cancer therapies. The main challenges in the fabrica-
tion of siRNA/chemotherapeutic drug co-loaded NPs 
are specific targeted delivery, sufficient cargo protec-
tion, and site-specific release [49]. CNTs are a popular 
multifunctional drug delivery system owing to their 
large surface area, high adsorption capacity, durability, 
ease of functionalization, an exceptionally high length-
to-diameter ratio, and excellent intracellular absorption 
[50]. In addition, the surface characteristics of CNTs 
can be readily altered using covalent/noncovalent 
crosslinking, making them a favorable nanomaterial. 

Table 2  Organic drug delivery NCs in cancer therapy

Material Description of carrier Material advantage Specificity Refs.

Liposomes Liposomal doxorubicin Improved delivery to site of disease; 
decrease in systemic toxicity of free drug

Ovarian cancer; multiple myeloma [99]

Liposomes Liposomal daunorubicin Improved delivery to tumor site; lower 
systemic toxicity arising from side effects

Karposi’s sarcoma [100]

Liposomes Genistein and plumbagin encapsulated 
nanoliposomes

Inhibition of cell metabolism In vitro and in vivo prostate cancer [101]

Liposomes Folate-conjugated bovine serum albu-
min bound paclitaxel NPs

Increased solubility, cellular uptake; 
targeted specificity

Prostate cancer cells [102]

Protein-based Alpha mangostin loaded crosslinked silk 
fibroin-based NPs

Physicochemically stable, increased the 
drug’s solubility

Colorectal and breast cancer [85]

Protein-based Noscapine-loaded human serum albu-
min NPs

High drug-loading efficiency (85–96%) 
and delivery of maximum quantity of 
drug to the tumor site

Breast cancer cells [103]

Protein-based Plasmid cDNA (pGL3) polyethyleneimine 
(PEI)-coated HSA NPs

Enhance endosomal escape In vitro gene delivery application [104]

Micelles Polymeric methoxy-PEG-poly(D,L-lactide) 
micelle formulation of paclitaxel

Improved delivery to site of disease; 
decrease in systemic toxicity of free drug

Breast cancer; ovarian cancer [91]

Micelles Folate-PEG/Hyd-curcumin/C18-g-poly-
succinimide

pH sensitive drug release Colon cancer [105]

Micelles PEGylated prodrug nano-micelles Glucose-sensitive In vitro and in vivo anticancer activity [106]

Polymeric Micelles CD44v6-targeted polymeric micelles 
(PM) loaded with niclosmide

Increase drug safety Efficacy against colorectal stem cells [107]

Self-assembly Aptamer-tethered DNA assembly Stronger targeting ability, higher cellular 
uptake

Cancer cell imaging [108]

Self-assembly DNA-aptamer conjugated RNA-triple 
helix hydrogel

Efficient cellular uptake and enhanced 
nuclease resistance with superior bio-
compatibility

Triple negative breast cancer detec-
tion and treatment

[109]

Self-assembly Folate-modified MPEG-PCL Improved bioavailability, low toxicity, 
sustained drug release

Colorectal cancer mice model [110]

Self-assembly Folate receptor-targeted β-cyclodextrin 
(β-CD)

Biosafety, bioavailability, and improve 
curcumin drug loading capacity

Cervical cancer, fibroblast cells [111]
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The hydrophobicity of CNTs leads to π–π stacking 
interactions with a variety of drugs and medicinal com-
pounds, including those with an aromatic ring such as 
anthracyclines; however, CNTs have a low solubility 
that makes them ineffective drug delivery molecules. 
The solubility of CNTs can be improved by surface 
functionalization with various molecules using cova-
lent/noncovalent bonding and electrostatic forces to 
make them more hydrophilic, thus altering their bio-
compatibility profile [51, 52].

Quantum dots NCs (0‑D)
Quantum dots (QDs) s are uniform spherical (0-D) NCs 
with very small sizes of 1–10 nm [53]. These fluorescent 
particles have exceptional physio-chemical characteris-
tics, including a very large surface area, biocompatibility, 
highly customizable photoluminescence, strong signal 
brightness, and high photostability. These features have 
inspired researchers to use QDs as potential NCs for 
targeted and traceable drug delivery systems, to moni-
tor intracellular processes in real time, and for in  vivo 
molecular imaging. However, the hydrophobicity, easy 
agglomeration, and high adsorption affinity of QDs for 
the surrounding impurities make them poor candidates 
for therapeutic applications. Fortunately, these shortcom-
ings can be avoided by coating QDs with ionic species or 
layering them with ligand shells [54]. For instance, imag-
ing probes,  smaller  hydrophobic or hydrophilic  drugs, 

and targeting agents can be embedded between the inor-
ganic core and the amphiphilic polymer coating layer [55, 
56].

2D‑materials NCs
2D materials have excessive light photodynamic and 
heat conversion proficiency, therefore they retain vari-
ous benefits in biomedical applications. These charac-
teristics provide them high potentials in medicine fields, 
including imaging [57], sensing [58] and therapy [59, 60]. 
In the meantime, 2D materials exhibited a challenging 
capability in drug delivery with various advantages. One 
of the exclusive crucial features of 2D materials is the 
lamella organization, that offers the huge surface space 
for high drug loading efficiency [61]. Yu et al. synthesized 
a reduced GO nanocomposite modified with a poly-
dopamine (PDA). They coated the dopamine-modified 
rGO surface with antiarrhythmic peptide 10 which limit 
tumor development about more than 95% while used 
with radiotherapy [62]. This innovative drugs possesses 
several abilities, such as large surface area, excellent bio-
compatibility, and a high drug loading capacity. Moreo-
ver, these NCs confirmed subsequent pH responsiveness 
and drug release. As stated by Xing et  al. injectable 
hydrogel made of black phosphorous nanosheets and cel-
lulose exhibits noteworthy antitumor activity in contrast 
to PTT. Interestingly, these nanoscale hydrogel platform 
is non-toxic and 100% biocompatible as confirmed by 
both in vitro and in vivo studies [63].

Organic nanocarriers
Organic NCs have been studied for decades and contain 
a diverse range of components. They are biocompatible, 
have low drug loading capacity and the drug molecules 
are encapsulated or conjugated.

Liposomes NCs
Liposomes are made up of an exterior lipid layer and a 
core that contains either hydrophobic or hydrophilic 
medications; they were the first nano-scale drugs to be 
licensed for clinical use [64]. Liposomes can be modi-
fied to perform a variety of tasks by altering the lipid 
layer structure; for instance, the lipid layer can be altered 
to mimic the biophysical properties of living cells [65], 
which can improve the efficiency of targeted drug deliv-
ery [66]. The inner aqueous core of liposomes can be 
loaded with amphiphilic drugs using various techniques, 
such as the ammonium sulfate gradient method [67]. 
However, standard liposomes are rapidly eliminated 
from the bloodstream and can be detected by opsonin 
proteins, leading to phagocytosis and destruction by 
macrophages. To overcome this issue, surface-modified 
liposomes have been developed that can be grafted with 

Fig. 2  Examples of inorganic nanocarriers. Mesoporous nanoparticles 
are silica nanoparticles with overall diameter of < 1 μm and pores 
diameter from 2 to 50 nm. Quantum dots are colloidal fluorescent 
semiconductor nanocrystals (2–10 nm). Silver and gold nanoparticles 
(1–100 nm) have high surface area, tunable optical, and are non-toxic. 
Carbon nanotubes consist of coaxial graphite sheets (< 100 nm) 
rolled up cylindrical. Graphene oxide is single atomic layer of carbon, 
consist of thickness 1 nm. Figure has been created using Biorender
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monoclonal antibodies, glycoproteins, carbohydrates, 
vitamins, antibodies, and peptides to actively target can-
cer cells (Fig. 3).

Similarly, Najlah et  al. developed stealth liposomes 
by modifying the surface coating of a hydrophilic lipid 
polymer derivative of PEG [68]. This modification was 
shown to improve the efficacy of the encapsulated drugs 
by prolonging their circulation in the blood and reducing 
their elimination [69].Unfortunately, the reliability of the 
PEGylated liposomes decreases upon systemic injection, 
which may prolong their circulation in the blood; there-
fore, novel PEG-dendron phospholipids have been devel-
oped to produce super-stealth liposomes. In vitro studies 
have shown that ligand-targeted liposomes can promote 
the internalization of liposome-drug conjugates via 
prostate-specific membrane antigens on the targeted cell 
[10]. Decades of liposome research have facilitated the 
development of liposomes that are a suitable platform for 
the in  vivo administration of various anti-cancer drugs, 
including docetaxel [70], and nucleic acids [71]. Indeed, 
liposomes are now increasingly being used to treat breast 
[72] and prostate [73, 74] cancers. In addition, more 

liposome-based medicines are currently in clinical trials 
for cancer therapy [75, 76].

Protein‑based NCs
Proteins are essential macromolecules that possess 
unique functions and characteristics in biological materi-
als and manufacturing field; therefore, they are utilized as 
a starting material for the synthesis of NCs (Fig. 4) [77, 
78].

Since protein-based NCs display good biodegradability 
and low toxicity, they are used to carry both pharmaceu-
ticals and nutraceuticals [79]. Additionally, protein NCs 
have high stability, are non-antigenic, can be metabo-
lized, and it is easy to synthesize their particles, modify 
their surface, and monitor their size [11]. Owing to their 
promising characteristics, protein NCs have been used 
for a variety of targeted uses, such as cancer therapy 
[80, 81], pulmonary delivery [82], and vaccine delivery 
[83]. Protein NCs can be incorporated into biodegrad-
able polymers in a monolithic particle structure, such 
as a microsphere [84], to allow controlled and sustained 
drug release and can be produced using proteinaceous 

Fig. 3  Schematic representation of the different types of liposomal drug delivery systems. A Conventional liposomes consist of a lipid bilayer 
surrounding aqueous compartments, composed of phospholipids and cholesterol unmodified B PEGylated liposomes have a hydrophilic polymer 
coating (PEG) on the surface of the liposome that modifies in vivo characteristics and behavior via steric stabilization. C Ligand-targeted liposomes 
can affect specific targets via ligands attached to the surface or terminal end of the attached PEG chains. D Theranostic liposomes are a single 
system consisting of a nanoparticle, a targeting element, an imaging component, and a therapeutic component. Figure has been created using 
Biorender
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Fig. 4  Potential cell surface proteins and their complementary receptors for use in targeted-drug delivery applications. t-SNARE/v-SNARE target 
snap receptor/vesicle snap receptor; PS phosphatidylserine; C1q complement component 1q; SCARF-1 scavenger receptor class-F, member-1; Gp1b 
glycoprotein-Ib; TSP-2 thrombospondin-2; SIRPα signal regulatory protein α; CD cluster of differentiation; ICAM intercellular adhesion molecule; LFA-1 
lymphocyte function-associated antigen-1; MAC-1 macrophage adhesion ligand-1; VLA very late antigen; PAMP pathogen associated molecular 
pattern; DAMP damage-associated molecular pattern; PD-1/PD-2 programmed cell death protein-1/programmed cell death protein-2; PD-L1/PD-L2 
programmed death-ligand-1/programmed death-ligand-2; CTLA-4 cytotoxic t-lymphocyte-associated protein-4; TRAIL tumor necrosis factor-related 
apoptosis-inducing ligand; TNF tumor necrosis factor; B7-H6 B7 homolog 6; MIC MHC class I polypeptide-related sequence; H60 histocompatibility 
protein-60; NKp natural cytotoxicity triggering receptor; NKG natural killer cell granule protein; KIR killer-cell immunoglobulin-like receptor; LIR 
leukocyte immunoglobulin-like receptor; HMGβ1 high-mobility group protein β1; RAGE receptor for advanced glycation end products. Figure has 
been created using Biorender

Fig. 5  Schematic representation of polymeric micelles. Self-assembly of di-block copolymers into a polymeric micelle takes place above the critical 
aggregation concentration. The hydrophobic drug is encapsulated into the hydrophobic core. Figure has been created using Biorender
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materials such as silk protein fibroin [85], bovine [86], 
human serum albumin [87], and gliadin [88].

Micelles NCs
Micelles are spherical nanosized structures that are 
formed via the self-assembly of amphiphilic block copol-
ymers that have both hydrophilic and hydrophobic por-
tions in aqueous solution, thus forming a hydrophobic 
core and a hydrophilic shell, known as polymeric micelle 
(Fig.  5) [89, 90]. Micelles can be formed intrinsically at 
specific concentrations (critical micelle concentration 
(CMC) and temperatures. For instance, if the solvent 
portion is hydrophilic and its concentration exceeds 
the CMC, the polar region of the co-polymer is drawn 
toward the solvent, whereas the hydrophobic region is 
repelled from the solvent [12]. In polymeric micelles, the 
hydrophobic core serves as a reservoir site for the incor-
poration of hydrophobic drugs, while the hydrophilic 
shell stabilizes the core and keeps the polymer and drug 
intact, making micelles a suitable candidate for intra-
venous administration. Genexol-PM [PEG-poly(D,L-
lactide)-paclitaxel] was the first cremophor-free 
polymeric micelle to contain paclitaxel and was shown to 
have no adverse reactions and a good toxicity profile in 
advanced refractory cancers [91].

Self‑assembled drug NCs 
The spontaneous organization of molecules into ordered 
geometric structures is known as molecular self-assembly 
and provides both inorganic and organic structures with 
unique qualities via non-covalent interactions. The spon-
taneity, versatility, inexpensiveness, and simplicity of self-
assembly mean that it is extensively used for designing 
nanoscale biomaterials [92] and has various biomedical 
applications, including drug delivery, tissue engineering, 
and regenerative medicine. Self-assembled NCs such as 
micelles, polymeric NPs, liposomes, and CNTs have been 
shown to improve drug delivery, prolong blood circula-
tion, control drug release kinetics, impart molecular 
targeting, improve tumor accumulation [93] and bio-
availability, allow proper encapsulation, and protect the 
drug from the external milieu [94]. Ultimately, these self-
assembled NCs help to overcome physiological barriers 
in vivo during drug delivery.

Supramolecules
Supramolecules are molecular assemblies that are held 
together by electrostatic interactions, metal coordina-
tion, hydrophobic attractions, host–guest interactions, 
and van der Waals forces [95]. Also, supramolecular 
compounds are easy to realize the “Lego-like” construc-
tion of NCs, which have excellent editability. These inter-
actions provide the NCs with stability in body fluids 

and improve their characteristics, including durability, 
sustained release, and transport efficiency. Accordingly, 
supramolecules are used as drug carriers for targeted 
anticancer delivery systems [96]. Indeed, the side effects 
of anticancer drugs, such as DOX, on normal cells can 
be controlled by using amphiphiles to generate supramo-
lecular aggregates for cancer therapy [97].DOX-anchored 
supramolecular polymersomes circulate in the blood-
stream for a longer time, and in  vivo experiments have 
demonstrated their  superior antitumor efficacy against 
malignant HeLa cells with decreased cytotoxicity [98].

Stimuli‑responsive NCs drug release
In recent decades, the development of novel polymers 
has prompted the study of smart stimuli-responsive drug 
delivery systems [112, 113]. Wei et  al. proposed that 
stimuli-responsive nanomedicines determine notewor-
thy benefits via their adaptive transition application dur-
ing drug delivery cascade [114]. A number of literature 
suggests that stimuli-responsive materials improve their 
pre-designed functions in response to the tumor micro-
environment (TME) or intracellular signals, for instance 
conversion of the surface charge, PEG deshielding, expo-
sure of tumor-targeting ligand, and controlled drug 
release [115–117]. It is broadly known that the TME has 
distinctive physiological characteristics such as acidic pH 
[118], hypoxia [119], and induction of certain enzymes 
[120]. Overall, the NCs might response to exogenous 
stimuli, including temperature, magnetic field, light 
etc., and endogenous stimuli, including pH, ATP, H2O2, 
enzyme, redox-potential, and hypoxia etc., although the 
stimuli might be emerged in TME or inside cancer cells 
(Fig. 6) [121].

Endogenous stimuli
Also known as an intrinsic stimuli, endogenous stimuli 
include changes in the internal pH levels, enzyme activ-
ity, redox activity, hypoxic conditions of the body.

pH‑responsive NCs
Tumor cells primarily generate energy by enhancing 
glycolysis and then fermenting lactic acid in the cyto-
sol, which is known as the Warburg effect [122]. The 
increased acid production results in an acidic pH in and 
around the cancer cells compared to that in normal cells, 
which is why pH has been established as an effective 
physiological property for targeted and controllable drug 
delivery by pH-responsive NCs [123, 124]. To achieve 
targeted and site-specific drug delivery, pH-responsive 
NCs exploit pH gradients in the physiological milieu 
[125]. The normal physiological pH is neutral (7.0–7.4), 
whereas the pH of the tumor microenvironment is highly 
acidic due to high metabolic activity and inadequate 
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perfusion [126]. The main feature of pH-triggered NCs 
is their transition from hydrophobic to hydrophilic in 
response to acidic pH levels, which can alter their size or 
behavior. For instance, Tang et al. reported pH-sensitive 
NC systems based on reversibly ionizable carboxylic 
groups that undergo protonation and deprotonation due 
to changes in pH, leading to NC swelling, rupture, and 
drug release [127].

Several pH-responsive materials have been used for con-
trolled drug delivery, including curcumin-loaded pH-sensi-
tive N-naphthyl-N,O-succinyl chitosan polymeric micelles 
that were developed for colon-targeted drug delivery and 
exhibited pH-dependent release kinetics in colorectal can-
cer cells [128]. In addition, Ishida et al. [69] synthesized vari-
ous pH-sensitive sterically-stabilized liposomes composed 
of DOPE/HSPC/CHEMS/CHOL/mPEG2000-DSPE. These 
liposomes enhanced drug retention and pH-sensitivity, 
increased the blood retention time of encapsulated DOX, 
and targeted antigens on cancer cells to allow controlled drug 
release in the acidic tumor microenvironment [69]. Unfortu-
nately, tumor cells can still become resistant to anticancer 
drugs delivered by NCs, thus compromising their therapeu-
tic efficacy. To address this issue, Guo et al. [129] developed 
a novel dual pH-sensitive micelle NC, PEO-b-P(DMAEMA-
co-MAEBA) combined with a specific inhibitor (A01) of 
the TMEM16A ion channel, which is overexpressed in lung 
adenocarcinoma tissue. These micelles released A01 into the 
surrounding weakly acidic microenvironment of lung adeno-
carcinoma cells but were also internalized by the cells and 
entered their endosome-lysosome compartments, where 

they inhibited TMEM16A and MAPK signaling. pH-sensi-
tive self-assembled drug carriers have also been extensively 
used. For instance, Song et  al. synthesized biodegradable 
pH-responsive PEGylated DOX micelles that self-assemble 
in aqueous solutions via esterification and Schiff base reac-
tions [130]. These NCs had a high drug payload and an excel-
lent pH-responsive controlled drug release profile, as well as 
rapid prodrug internalization and enhanced antitumor activ-
ity against MCF-7 cancer cells. Interestingly, Chen et al. pre-
pared a nature-inspired pH-responsive organic–inorganic 
hybrid capped mesoporous silica NPs based on biominer-
alization mechanism having low toxicity, enhanced cellular 
uptake and efficient drug release [131]. In another study, 
a group of researchers established a cRGD-decorated pH-
responsive polyion complex micelle for DOX intracellular 
targeted delivery to enhance tumor inhibition and decrease 
cytotoxicity [132].

Redox‑responsive NCs
Glutathione sulfhydryl (GSH) is a tripeptide compound 
in which glutamic acid is conjugated through its side 
chain to the N-terminus of cysteinylglycine. Since GSH 
levels are fourfold higher in cancer cells than in normal 
cells [133], it is used to produce redox-responsive NCs. 
In particular, GSH cleaves the disulfide bond of NCs in 
cancer cells, leading to controlled redox-driven drug 
release [134].

Various redox-responsive drug delivery systems 
have been reported in recent years, including lipo-
some, micelle, nanogel, and prodrug-based systems. 

Fig. 6  Schematic illustration of drug release. In response to either internal (pH, redox, enzyme) or external (thermo, magnetic field, light) stimuli. 
Figure has been created using Biorender
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Redox-responsive liposomes initiate drug release in the 
presence of GSH (reducing agents) via disulfide linker 
reduction or liposome membrane destabilization. For 
instance, Chi et  al. [135] synthesized a novel Chol-SS-
mPEG/HA liposome (conjugated with PEG via disulfide 
linkages) that displayed cytoplasmic drug release trig-
gered by GSH due to PEG de-protection and liposome 
agglomeration. In another study, Yin et al. [136] prepared 
chitooligosaccharides (COS) conjugated with choles-
terol through a disulfide linker, wherein linker reduction 
caused COS removal, liposome instability, and rapid drug 
release. Micelle-based drug delivery systems are often 
used because of their ease of administration, enhanced 
circulation time when PEGylated, high structural stabil-
ity, good hydrophobic drug encapsulation, and ability 
to respond to the external environment [137]. Micelles 
assembled using disulfide linkages are redox-respon-
sive, as they can be cleaved in the presence of GSH (or 
a reductive environment). Sun et  al. prepared redox-
responsive amphiphilic glycan conjugates by linking hep-
arosan with deoxycholic acid via disulfide bonds [138]. 
When the micelles reached cancer cell cytosol, they rap-
idly disassembled and released the drug. Similarly, Kang 
et al. [139] developed a redox-responsive system by link-
ing gambogic acid with poly(amido amine)s via amide 
bonds, which self-assembled into micelles. The presence 
of disulfide bonds in a reductive environment led to rapid 
disassembly and release of the encapsulated drugs.

Although disulfide bonds are the main component 
when designing redox-responsive NCs, diselenide 
bonds can be used to prepare mesoporous silica-based 
NPs [140]. For instance, controlled drug release can 
be achieved using albumin or myoglobin by conjugat-
ing them to mesoporous silica-based NPs via diselenide 
bonds, which yields an NC that is highly responsive to 
GSH and H2O2 [141]. In addition, Lei et al. developed a 
novel intrinsic redox-responsive metal–organic frame-
work carrier using iron, aluminum, or zirconium as metal 
nodes and 4,4-dithiobisbenzoic acid (4,4-DTBA) as the 
organic ligand [142].

Enzyme‑responsive NCs
Upregulation of several enzymes are linked to the 
pathophysiology of many diseases, including infection, 
inflammation, and cancer. Since most of the enzymes 
are present in similar concentrations in both can-
cerous and normal cells [143], these NCs cannot be 
used for intracellular drug release; however, enzyme-
cleavable peptides can be used to generate enzyme-
triggered NC deshielding, which can ultimately allow 
the drug to be released. Enzyme-triggered NCs can 
be prepared by modifying the NC surface, which can 
respond to the biocatalytic reaction of enzymes that are 

overexpressed in the extracellular microenvironment 
of cancer cells. Such as, matrix metalloproteinases 
(MMPs) and hyaluronidases (HAs) are the extracellular 
enzymes that are mostly upregulated in tumors [144, 
145]. The upregulation of these extracellular enzymes 
can be used to trigger NCs for reduction of their size 
and surface ligand exposure for tumor infiltration. It is 
well-stated that cathepsin and legumain showed over-
expression in several cancer cells [157–161]. Legu-
main is the endopeptidase which specifically cleaves 
linkers containing asparagine or aspartic acid residues 
which are upregulated in the various cancer cells lys-
osomal compartments. For instance, Liu et  al. [162] 
developed a legumain cleavable liposome consisting 
of alanine-alanine-asparagine substrate linked to cell 
penetrating peptides (trans-activating factor) carrying 
doxorubicin. In another study, Cai et  al. [146] devel-
oped an enzyme-responsive colon-specific delivery 
system based on hollow mesoporous silica spheres con-
jugated with biodegradable chitosan via cleavable azo 
bonds and encapsulating DOX. This NCs system dis-
played enzyme-responsive drug release in the presence 
of colonic enzymes.

Hypoxia‑responsive NCs
In solid tumors, the poor vascularization system is pos-
sibly to form low oxygen level (hypoxia), that plays a 
critical role in cancer progression, including distant 
metastasis [147]. Consequently, many approaches have 
been employed for treatment of hypoxic tumors, pri-
marily including rising the oxygen level and by means of 
hypoxia activatable drugs, etc. [119]. Till date, different 
types of nanocarriers have been designed for the drug 
delivery system to hypoxic tumors [148], such as silica 
nanoparticles [149], liposomes [150], layer-by-layer nan-
oparticles [151], polymeric micelles [152], nanovesicles 
[153], polymersomes [154], and albumin nanoparticles 
[155] (Table 3).

Tumor‑metabolite responsive NCs
In tumor cells, metabolic reprogramming changes the 
metabolic pathways to encounter their unquenchable 
craving for nutrient and energy. In this regard, tumor-
associated metabolites are generally valued in estimating 
tumor incidence and advancement timely. Insufficient 
nutrient supply fluctuates cancer energy metabolism, in 
this case lactic acid (extracellular metabolite) declines the 
pH of the tumor microenvironment. Fruehauf et al. men-
tioned that the oxamate-functionalized NPs proficiently 
sequestered lactate dehydrogenase (LDH) to make an 
OxNP–protein complex. This effort validates a great 
concept for tuning NPs sensitivity via conjugation with 
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a fundamental protein to aim a particular metabolite of 
cancer disease [156].

Exogenous stimuli
When trigger stimuli are caused by external factors, such 
as a change in temperature, ultrasound, or light respon-
siveness, they are known as exogenous stimuli. In this 
system, contrast agents are employed to visualize NCs 
retention in cancer cells.

Temperature responsive NCs
Thermo responsive NCs use temperature changes as 
the trigger to release their cargo, as they can change 
their hydrophilic and hydrophobic balance, solubility, or 
structural features in response to a particular tempera-
ture. These NCs show a low critical solution tempera-
ture (LCST), below which the constituents of a mixture 
are misciblee [157]. Thermoresponsive polymers with an 
LCST are promising candidates for drug delivery, as are 
stimuli-responsive hydrogels that can prevent drug deg-
radation and display rapid on/off switching [158, 159]. 
Hydrogels can be injected as viscous liquids and become 
jellified under physiological conditions. For instance, 
Tipa et al. [160] synthesized a biocompatible and inject-
able thermo-responsive hydrogel that was jellified in situ 
at 28 °C and injected with a 5 N force. The hydrogel con-
tained clay NPs whose interlaminar spaces were inter-
calated with methylene blue (MB) for controlled release 
with enhanced encapsulation efficiency. Notably, the Plu-
ronic hydrogel demonstrated controlled long-term MB 
release. Similarly, Ahsan et al. [161] formulated a thermo-
sensitive chitosan-based, cross-linked injectable hydrogel 
for the sustained delivery of disulfiram to cancer cells as 
a long-term cancer therapy, and found that the drug-
loaded hydrogels allowed greater cellular uptake than the 
free drugs.

Graphene oxide (GO) has a high ratio of surficial func-
tional groups that permits the modification of bioactive 
molecules, as well has high dispersibility in aqueous condi-
tions; however, its applications are limited by non-targeted 
and uncontrolled drug release. To overcome these limita-
tions, Kazempour et  al. modified GO with biodegradable 
and hydrophilic polymeric components, such as poly(N-
vinylcaprolactam) (PNVCL) and poly(glycolic acid), which 
conferred pH and temperature sensitivity to allow the effec-
tive loading and release of oxaliplatin in MCF-7 cells [162]. 
Similarly, Farjadian et  al. synthesized smart temperature-
and pH-responsive NCs based on a random copolymer 
of poly(N-isopropylacrylamide-co-acrylamide) [163]. The 
presence of a hydrophilic group in acrylamide increased the 
LCST to 37  °C (close to body temperature) and ultimately 
made the structure suitable for drug delivery. This struc-
ture was further modified with hydrazine and conjugated to 

DOX via a Schiff base linkage (acid-cleavable bond) to make 
NCs responsive to heat and pH.

Given that hyperthermia increases the temperature of 
body tissues to as high as 113 °C and increases the sen-
sitivity of cancer cells to chemotherapeutics, combin-
ing these two effects as thermo-chemotherapy could 
enhance the efficacy of cancer therapy. Mirrahimi et  al. 
[164] developed a novel multifunctional nanocomplex, 
consisting of an alginate nanogel loaded with cisplatin 
and AuNPs, for combined therapy. In vivo thermometry 
studies showed that under 532 nm laser irradiation, the 
temperature increased and exerted a higher thermal dose 
due to the optical absorption characteristics of AuNPs; 
this finding indicated that these NCs suppressed tumor 
growth due to their thermo-responsive behavior.

Light‑responsive NCs
Various NCs can respond to light and have the potential 
to adjust the irradiation wavelength, power, and affecting 
area [165]; therefore, light-responsive NCs have recently 
been developed for targeted controlled drug deliv-
ery. NCs can be sensitive to any form of light, includ-
ing ultraviolet, visible, or near-infrared, which can also 
affect biological systems such as cancer cells or tumors. 
By controlling the range of irradiation, light-responsive 
tumor therapies can be precisely conducted to mini-
mize or avoid negative effects on normal cells. Polyplexes 
[166], polymeric micelles [167], liposomes [168], nano-
gels [169], and nanorods [170] have all been exploited as 
light-responsive NCs using materials such as gold nano-
composites, CNTs, graphene, and organic molecules.

NCs can undergo conformational changes in response 
to light via the structural conversion of light-sensitive 
molecules. For instance, UV–Vis-responsive photoswitch-
ing NCs have exhibited potential for loading with drugs, 
including DOX, docetaxel, and paclitaxel, for cancer ther-
apy [171]. However, UV–Vis has a short wavelength, which 
limits the application of these NCs. Therefore, NIR light-
responsive NCs may be more appropriate for controlled 
drug delivery [172]. Fan et  al. [173] synthesized photo-
responsive degradable hollow mesoporous organo silica 
NCs for anti-cancer drug delivery. The NCs were based 
on singlet oxygen (1O2)-responsive bridged organoalkox-
ysilanes [from a 9, 10-dialkoxy-anthracene (DN)-based 
precursor] and wrapped with graphene oxide QDs. Upon 
irradiation, the these QDs generated 1O2, leading to the 
cleavage of 1O2-responsive bridges, NCs degradation, and 
the release of the anticancer drug.

Ultrasound‑responsive NCs
High-frequency waves, named as ultrasound might affect 
NCs for the controlled drug release at tumor sites. Cur-
rently, it has been considerably applied in the various 



Page 15 of 23Kaushik et al. Journal of Nanobiotechnology          (2022) 20:152 	

biomedical applications, for instance gene delivery and 
imaging-guided drugs. It can initiate the release of the 
drugs via the heat produced from cavitation phenomena 
[174]. The ultrasound-responsive nanocarriers might be 
used for tumor ultrasound imaging, which is consider-
ably safe, cost-effective and commonly applied in clinics. 
The gas and perfluoropentane incorporated NCs [175], 
which could generate gas (e.g., CO2) in biological atmos-
phere [176], have exhibited tumor-site specific imaging at 
great intensity. Besides, the ultrasound-responsive prop-
erty might be used for boosting the intracellular deliv-
ery of siRNA or DNA in tumors [177]. Nevertheless, the 
huge size of ultrasound-responsive NCs can limit their 
penetration within tumor tissues, due to the weak pen-
etration [178]. In general, the drug-loaded ultrasound-
sensitive NCs might be used for tumor therapy [179] as 
well as theranostics [180].

Mechanisms of targeting stimuli responsive NCs 
to tumor site
Cancer cell specificity is an important feature of NCs for 
drug delivery because it improves their therapeutic effi-
cacy while sparing normal cells from damage. However, 
NCs can only reach cancer cells if they deceive the body’s 
own defense system. There are two mechanisms of tar-
geted drug delivery: passive and active targeting (Fig. 7) 
[181]. Both of these methods aim to prevent contact 
between normal cells and  harmful chemicals, reduce 
negative dose-limiting consequences, and prevent the 
development of drug-resistant malignant cells.

Passive targeting
Compared to normal cells, rapidly developing malig-
nant cells put higher stress on the endothelium of blood 
vessels, resulting in the formation of new vessels or the 
depletion of existing vessels. During this process, pores 
are formed on cancer cells, allowing the adsorbed mac-
romolecules or NCs to enter the newly formed vessels 
[182]. Inadequate lymphatic drainage within tumors 
prevents the NCs from leaving, thereby enabling them 
to discharge the loaded drugs into the cancer cells. This 
phenomenon is known as the EPR effect and is an impor-
tant factor for passive targeting [125]. This effect is influ-
enced by the diameter of NPs; studies have shown that 
smaller NPs have a higher permeation but do not spill 
into regular channels [183], whereas micro molecules 
are preferentially removed by immune defense systems 
[184]. Interstitial fluid pressure (IFP) is another obsta-
cle to the effective deposition of drug-loaded nanocar-
riers in solid tumors [185]; however, successful NCs 
alterations can bypass biological obstacles. At first, pas-
sively targeted NCs moved the clinic several years back 

with the agreement of PEGylated liposomal doxorubicin 
(DOXIL™) [186]. There are numerous studies regarding 
passive targeting by lipid NPs also. For instance, sclareol-
SLNs with an typical particle size of 88 nm, has disclosed 
considerably growth inhibition effect on lung cancer cells 
along with a sustained drug release when compared to 
the free drug alone [187]. Conjugation of curcumin with 
solid lipid NPs is additional report for passive targeting of 
osteocarcoma cancer tissues with extremely higher tissue 
availability [188]. In contrast, for passive targeting of mel-
anoma and glioblastoma, temozolomide-SLN exhibited 
maximum inhibition in proliferation with low toxicity in 
normal counterparts when compared to temozolomide 
without solid lipid NPs [189].

A variety of NPs are now being used in clinical tri-
als, including Genexol-PM™ in Korea and ProLindac™ 
and Opaxio™ in the United States [190]. Awada et  al. 
and Burris et  al. have also validated the standards and/
or therapeutic efficacy of a variety of other NCs in clini-
cal trials, including AZD2811, NK911, and CPX-1 [191, 
192]. Though, many of these NCs basically change the 
toxicological profile, or drug solubility, some have also 
presented substantial survival advantages and improved 
therapeutic efficacy as stated in clinical reports. One case 
is Abraxane™ which established notably greater response 
rates as compared to standard paclitaxel treatment in a 
phase III trial conducted in breast cancer patients with 
metastasis [193].This findings is tremendously promis-
ing for this field which opens up innovative prospects 
in employing NCs as smart delivery vehicles for vari-
ous drugs. Unfortunately, passive targeting has several 
drawbacks, including non-specific drug distribution, 
restriction of the  EPR effect, and varying blood vessel 
permeability across tumors [194].

Active targeting
Active targeting approaches are considerably more com-
plicated than the passive approaches. It is remarkable that 
the active targeting is critical for the drug and gene deliv-
ery to the site of interest and thereby augments the ther-
apeutic efficacy and restricts side effects on the normal 
tissues. Active targeting is able to improve the amount 
of drug delivered to the target tumor cell compared 
passively targeted NCs. Following accumulation in the 
tumor site, the drug competence may be even augmented 
by the active targeting. This is accomplished via the deco-
ration of the NCs surfaces with ligands which could bind 
to overexpressed receptors in tumor cells [181]. This 
strategies will expand the affinities of the NCs for the 
tumor cell surface to improve the drug penetration capa-
bility. To ensure that the drugs are released at a specific 
location at a predetermined ratio, the binding of NCs 
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ligands to cancer cell receptors causes receptor-mediated 
endocytosis, which allows the NCs to effectively deliver 
the therapeutic drugs. Consequently, active targeting 
is specifically tailored toward the transport of macro-
molecular drugs, such as proteins and siRNAs. Target-
ing ligands include proteins (antibodies and fragments), 
nucleic acids (aptamers), and other peptides, vitamins, 
and carbohydrates [195]. The ligands attach to receptors 
on targeted cells, among which the most common are the 
transferrin receptor, folate receptor, glycoproteins, and 
epidermal growth factor receptor. Bartlett et al. demon-
strated that the active targeting of nucleic acids into cells 
may also be used to silence luciferase beacons targeting 
the transferrin receptor in neuroblastoma xenografts 
[196]. Although there are currently no commercially 

available active targeting NCs on the market, clinical tri-
als are under way for NCs based on liposome-targeted 
and polymeric NPs. For instance, MBP-426, MCC-465, 
SGT53, MM-302, BIND-014, CALEA-01, cetuximad-
decorated Doxil/Caelyx liposomes, and a retroviral vec-
tor are currently in phase I/II clinical studies for primary 
therapeutic targets, including EGF, Tf-R, PSMA, the sur-
face of gastric cancer cells, and HER-2 [191, 192].

In general, crossing the tumor endothelium is a fun-
damental footstep in the expedition of NPs from the 
administration region to diseased tissues. Earlier litera-
ture proposed that the vascular barrier of tumor blood 
vessels is compromised [197]. It is believed that com-
pared to healthy blood vessels, tumor blood vessels could 
demonstrate certain pathological features that affect NPs 

Fig. 7  Mechanisms of targeting NCs to tumors. A Passive targeting by nanomedicines is due to the enhanced permeability and retention 
(EPR) effect, which involves their extravasation from leaky tumor vasculature and poor lymphatic drainage. B Active targeting is achieved by 
functionalizing nanomedicines with targeting ligands that recognize tumor cell receptors, which increases cell specificity and uptake. Figure has 
been created using Biorender
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activity throughout accumulation inside tumor tissues 
[198] concisely, systemically controlled NPs could trans-
port from the tumor blood vessel lumen via the endothe-
lial spaces into the tumor interstitial area [197]. This is 
the central mechanism for both active and passive NPs 
targeting [199].

Challenges and future prospects
As nanotechnology and innovative functional materials 
have advanced, so has interest in polymer and hybrid-
based nanocarriers for drug delivery. Developing nano-
carriers for the delivery of pharmaceuticals has long been 
a focus of many scientists. Despite substantial advances 
with hybrid nanocarriers, polymer-based nanocarriers 
have had a lot of success in clinical studies. While in cir-
culation in the blood, nanocarriers must (1) prevent early 
leakage of therapeutic agents, (2) possess targeting ability 
so that therapeutic agents may aggregate at tumor sites 
and decrease severe side effects on healthy tissues, show 
biocompatibility, and (3) demonstrate degradability.

There has been a surge in interest in nanocarriers due 
to a variety of factors including their biodegradability, 
biocompatibility, physiological medium stability, and 
structural instability in malignancies. Polymer or hybrid-
based nanocarriers with stimuli-responsive properties 

have required a great deal of effort to create effectively. 
They were able to change their pH, enzyme, thermal, 
and ultrasonic responsiveness to deliver medications to 
tumors. It is possible to deliver chemotherapy chemi-
cals to tumors more accurately owing to nanocarriers, 
which both encapsulate and distribute the chemicals in 
a targeted manner. To improve the therapeutic efficacy 
of hybrid-based nanocarriers, these nanocarriers have 
also been used in imaging. Hybrid nanocarriers, which 
are being developed at a rapid pace, are anticipated to 
stimulate a combination of diagnostic and therapeutic 
in the area of cancer therapy. Researchers have proven 
that theragnostic hybrid nanocarriers with theragnostic 
capabilities may be utilized to correctly cure cancer in the 
future. To date, the hybrid-based nanocarriers’ therapeu-
tic efficacy has been improved by using these nanocarri-
ers in imaging. Nanocarriers that combine diagnostic and 
therapeutic capabilities are anticipated to be encouraged 
by the rapid development of hybrid nanocarriers. Hybrid 
nanocarriers with theragnostic capabilities may be 
employed to correctly treat cancer in the future as previ-
ously predicted.

A few issues remain in the design of nanocarriers con-
taining stimuli-responsive polymer or hybrid materials. 
Although progress has been made in the development 
of stable nanocarriers in a healthy medium and stable 

Table 4  List of NCs used in clinics or in clinical trials [200]

Products Drug Nanocarrier Application

In clinics

 ADI-PEG 20 Arginine deaminase Polymeric Hepatocellular carcinoma

 Doxil Doxorubicin Polymeric Leukemia, lymphoma, and carcinoma

 AP5280 Platinum Polymeric Solid tumors

 DepoCyt Cytarabine Liposomal Lymphomatous meningitis

 MAG-CPT Camptothecin Polymeric Solid tumors

 Visudyne Verteporfin Liposomal Macular degeneration

 Oncaspar L-Asparaginase Polymeric Lymphoblastic leukemia

 Pegasys Interferon alfa-2a Polymeric Hepatitis B and hepatitis C

Clinical trials

 PNU166945 Paclitaxel Polymeric Solid tumors

 Lipoplatin Cisplatin Liposomal Non-small cell lung cancer

 XMT-1001 Camptothecin Polymeric Gastric cancer and lung cancer

 Onco-TCS Vincristine Liposomal Relapsed non-Hodgkin lymphoma

 OSI-211 Lurotecan Liposomal Head, neck, and ovarian cancer

 SPI-077 Cisplatin Liposomal Head, lung, and neck cancer

 PEG-SN38 Irinotecan derivate Polymeric Solid tumors and breast cancer

 Livatag Doxorubicin Polymeric Liver cancer

 NKTR-105 Docetaxel Polymeric Solid tumors and ovarian cancer

 Paclical Paclitaxel Polymeric Breast, lung, and ovarian cancer

 PEG-docetaxel Docetaxel Polymeric Solid tumors
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nanocarriers at tumor locations, it is still challenging 
to accomplish. The discovery of novel hybrid-based 
nanocarriers, despite significant progress, continues to 
impede the development of nanomedicines. Nanocar-
riers have also been overdesigned in recent decades to 
integrate many functionalities into a single molecule in 
order to create a multifunctional nanomedicine. Nano-
carriers that are too complicated to be used in clinical 
trials are generally the result of over-engineering. Nature 
is always guided by the simplest and most cost-effective 
rules of operation. Polymer or hybrid nanocarriers that 
can be synthesized economically and at large scale will 
thus be the most beneficial. In the end, these issues and 
obstacles will encourage biomedical scientists to bet-
ter decipher the relationships between the nanocarriers 
structural and functional aspects and to enhance nano-
carrier design. Consequently, experts from a variety of 
fields will be better able to realize the promise of stimuli-
responsive nanocarriers for cancer treatment if they work 
together.

Conclusion
In this review, we have provided a broad overview of 
various materials that can be used as drug delivery NCs 
for cancer therapy, as well as stimuli-based drug delivery 
systems and the different mechanisms of targeting. Due 
to their unique characteristics, clinicians have been able 
to use drug delivery NCs as monotherapies or as adjuncts 
to current treatments in order to enhance therapeutic 
efficacy (Table 4). Although some of these systems have 
failed in clinical trials, numerous new and intriguing 
materials are currently under development and display 
tremendous potential, indicating that new therapeutic 
alternatives may soon be available. In particular, stimuli-
sensitive NCs provide high specificity as well as various 
desirable drug delivery functions, including regulated 
release, tumor accumulation, and better diagnostic and 
therapeutic efficacy.
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