
Fu et al. J Nanobiotechnol  (2015) 13:81 
DOI 10.1186/s12951-015-0142-0

RESEARCH

Rough surface Au@Ag core–shell 
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Abstract 

Immunochromatographic sensors (ICSs) are inexpensive, simple, portable, and robust, thus making ICSs common-
place in clinical diagnoses, food testing, and environmental monitoring. However, commonly used gold nanoparticles 
(AuNPs) ICSs have low sensitivity. Therefore, we developed highly sensitive surface enhanced Raman scattering (SERS) 
ICSs. To enhance the sensitivity of SERS ICSs, rough surface core–shell Au@Ag nanoparticles (RSAu@AgNPs) were 
prepared by coating silver on the surface of gold nanoflowers (AuNFs). Then these nanoparticles were used as SERS 
substrate in the SERS ICSs, after which the SERS ICSs were implemented to detect haemoglobin and heavy metal 
cadmium ion (Cd2+). The limit of detection (LOD) of the SERS ICSs for detecting haemoglobin was 8 ng/mL, and the 
linear range of the SERS ICSs was from 31.3 to 2000 ng/mL. The LOD of the SERS ICSs for detecting Cd2+ was 0.05 ng/
mL and the linear analysis range was from 0.05 to 25 ng/mL. The cross reactivity of the SERS ICSs was studied and 
results showed that the SERS ICSs exhibited highly specific for detection of haemoglobin and Cd2+, respectively. The 
SERS ICSs were then used to detect haemoglobin (spiked in serum and in stool) and Cd2+ (spiked in tap water, river 
water, and soil leaching water), and the results showed high recovery. These characteristics indicated that SERS ICSs 
were ideal tools for clinical diagnosis and environmental pollution monitoring.
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Background
Due to their low cost, robustness, convenience and rapidity, 
immunochromatographic sensors (ICSs) have been exten-
sively used in medicine, agriculture, and over-the-counter 
personal use, such as pregnancy tests [1–5]. Many kinds 
of materials, such as colloidal gold [6], colloidal carbon [7], 
liposome [8, 9], quantum dots [10, 11], fluorescent nano-
particles [12], and organic fluorescent dyes [13] were used 
as racers in ICSs. Among the aforementioned materials, 

AuNPs were widely adopted, due to their vivid color, ease 
of synthesis, low cost, and excellent chemical stability. 
However, when compared with laboratory based methods, 
the sensitivity of most AuNPs ICSs to detect biomarkers 
was significantly less than other methods, such as enzyme-
linked immunoassay (ELISA). Consequently, AuNPs ICSs 
are not particularly useful for detecting lower concentration 
biomarkers. Compared with AuNPs ICSs, fluorescent ICSs 
exhibit higher sensitivity (10-30 times higher than AuNPs 
ICSs). Currently used fluorescent tracers in ICSs are organic 
fluorescent dyes, fluorescent nanoparticles, and quantum 
dots. However, organic fluorescent dyes such as FITC are 
known to be photo-unstable and have relatively low fluo-
rescence intensities. Even though fluorescent nanoparticles 
have high fluorescence intensity, excellent photo-stability, 
and high conjugation efficiency, both organic fluorescent 
dyes and fluorescent nanoparticles have a relatively small 
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Stokes shift that often leads to fluorescent ICSs suffering 
from background interference. Another fluorescent tracer 
currently used in ICSs is quantum dots. This is because of 
the excellent features of quantum dots: they have very high 
levels of brightness, size-tunable fluorescence emission, nar-
row spectral line widths, large absorption coefficients, and 
excellent stability against photo-bleaching. However, the 
price of quantum dots is currently relatively high.

Surface-enhanced Raman scattering (SERS) based sen-
sors provide the potential for rapid, high-throughput, sen-
sitive detection. SERS have been used for cell imaging 
[14–16], tumor diagnosis [17–19], enzyme activity analy-
sis [20, 21], nucleic acids analysis [22–24], gene mutations 
analysis [25], immune sensors [26, 27], and aptamer sen-
sors [28, 29]. Over the past decade, the SERS field has wit-
nessed many achievements, including a theoretical study of 
SERS [30, 31], the development of portable and high-perfor-
mance Raman spectrometers [32–35], and the fabrication 
of highly sensitive, uniform, and reproducible SERS sub-
strates [36, 37]. These important studies provide the basis 
for many SERS applications. AuNPs and silver nanoparti-
cles (AgNPs) are the most widely used substrates for SERS. 
The SERS enhancement factor of AgNPs was demonstrated 
to be higher than that of AuNPs. It has been theoretically 
predicted and experimentally confirmed that sharp metal-
lic protrusions and nano-gaps, called ‘hot spots’, are essen-
tial for a stronger SERS response [38–40]; these include: 
nanoflowers, nanosatellites, nanourchins, nanostars, etc. 
In addition, Au@Ag core–shell nanoparticles exhibit a 
higher SERS efficiency than AuNPS or AgNPs under near-
infrared excitation [41]. Xie reported flower-like AuNPs 
(three-dimensional branched nanoparticles with more than 
10 tips) that exhibited strong Raman enhancement factors 
[42]. During our research, to obtain higher enhanced effi-
cient SERS substrate, we coated silver on AuNFs to prepare 
higher SERS efficiency rough surface Au@Ag core–shell 
nanoparticles (RSAu@AgNPs). These nanoparticles were 
used to fabricate the highly sensitive SERS ICSs. We used 
the developed SERS ICSs to detect haemoglobin and Cd2+. 
The results showed that SERS ICSs have a high sensitivity 
and high recovery. These characteristics indicated that SERS 
ICSs were ideal tools for clinical diagnosis and environmen-
tal pollution monitoring.

Experimental
Reagents and materials
Chloroauric acid (HAuCl4, 99.99  %), silver nitrate 
(99.80  %), HEPES, 4-mercapto-benzoic acid (4-MBA), 
and ascorbic acid were obtained from Sigma-Aldrich 
(Shanghai, China). Other metal powders were purchased 
from Merck Chemical (Darmstadt, Germany). Nitrocel-
lulose (NC) membranes were purchased from Millipore 

(Shanghai, China). Plastic backing, conjugation pads, 
sample pads and absorbent pads were purchased from 
Shanghai JieNing Bio-tech (Shanghai, China). Anti-Cd2+-
EDTA monoclonal antibodies (mAb) and BSA-Cd2+-
EDTA were prepared in our laboratory (Additional file 1). 
A couple of Anti-haemoglobin monoclonal antibodies 
and haemoglobin were gifted from Guangzhou Weimi 
Bio-Tech CO., LTD.

Equipment
A field-emission transmission electron microscope 
(TEM, Philips, Holland), centrifuge (Beckman, Ger-
many), and ICP-MASS (Thermo-Fisher, USA) were used. 
An XYZ 3200 series dispense system (Bio-Dot Scientific 
Equipment, Pvt. Ltd.), a programmable HGS201 strip 
cutter (purchased locally in Shanghai, China), and an 
Advantage 785 Near Infrared (NIR) Raman Spectrometer 
(SciAps, Inc.) were also used in this study (laser power60 
mW).

Preparation of RSAu@AgNPs
AuNFs were synthesized following a previous research 
paper [42]. In a typical experiment, 0.2  mL of 25  mM 
HAuCl4 was added to 10  mL of a 20  mM HEPES solu-
tion (pH 7.4). The formation of AuNFs was indicated 
when the initially light-yellow mixture changed to pur-
ple within approximately 30 min. The AuNFs were then 
stored at 4 °C until further use. RSAu@AgNPs were syn-
thesized as follows: 40 µL of 0.1 M NaOH and 30 µL of 
0.1  M ascorbic acid were added to 1  mL of the AuNFs. 
After shaking vigorously, 400 μL of 10 mM AgNO3 was 
added to the above solution. Following this addition, the 
mixture was again shaken vigorously and the color of the 
solution changed rapidly from purple to yellow, indicat-
ing the formation of RSAu@AgNPs. Preparations of 
AuNPS, AgNPs, and Au@AgNPs are displayed in Addi-
tional file 1.

Preparation of mAb‑RSAu@AgNPs‑4MBA
A total of 0.2 μL of 10 mM 4-MBA contained in ethanol 
was added to 1 mL of the prepared RSAu@AgNPs, which 
was then shaken vigorously for 1 h. Then, 3 μL of 1 mg/
mL monoclonal antibody (mAb) and 15 μL of 1 mg/mL 
PVP were added simultaneously to the above-mentioned 
solution and were shaken vigorously. After incubating at 
room temperature for 30 min, 100 μL of 10 mg/mL PVP 
was used to cover the surface of the RSAu@AgNPs for 
1  h. The resulting colloid was centrifuged at 7000  rpm 
for 10  min. Then, this supernatant was discarded and 
the remaining pellet was suspended in 200 μL of dilution 
buffer [15  mM  PB buffer (pH 8.0) containing 1  % (w/v) 
BSA, 20 % (w/v) sucrose, 20 % (w/v) trehalose, 1 % (w/v) 
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Tween-20, and 0.02 % sodium azide]; it was then stored 
at 4 °C for further use.

Fabrication of SERS ICSs
Prepared SERS ICSs for detecting Cd2+: coating antigen 
Cd2+-EDTA-BSA (0.1  mg/mL) was dispensed on the 
specified area of an NC membrane that was designated 
as the test line (T-line) by using an automatic dispenser 
with a volume of 1 μL/cm. The NC membrane was dried 
at 37 °C for 24 h. Sample pad was pre-treated with 0.01 M 
PBS buffer (pH 7.2), containing 0.5 % (w/v) BSA and 2 % 
Triton X-100. Using a dilution buffer, the mAb-RSAu@
AgNPs-4MBA was diluted 64 times and then dispensed 
on the conjugate pad using the automatic dispenser with 
a volume of 2 μL/cm. After the pads were dried at 37 °C 
for 2 h, all components of the SERS ICSs were assembled 
with 2 mm overlaps. These stacks were then cut into ICSs 
strips and placed into plastic housings. Prepared SERS 
ICSs for detecting haemoglobin: mAb-RSAu@AgNPs-
4MBA was diluted 32 times and then dispensed on NC 
membrane at T-line. Other similar processes to SERS 
ICSs for detecting Cd2+ were applied.

Performance of the SERS ICSs
For detecting haemoglobin: A series of concentrations 
of a haemoglobin solution (60 μL) in PBS was detected 
using the SERS ICSs. After 15  min, Raman signals of 
these ICSs were recorded using a portable Raman spec-
trometer with an integration time of 20 s. For detecting 
Cd2+: Cd2+ solution was diluted to a series of concentra-
tions by 50  nM EDTA-Na2 and detected by using SERS 
ICSs. After 15 min, the Raman signals of these ICSs were 
recorded as mentioned above. SERS ICSs detection of 
haemoglobin or Cd2+ in spiked samples is displayed in 
Additional file  1. Additionally, experimental procedures 
that study the specificity and recovery of SERS ICSs are 
displayed in Additional file 1.

Results and discussion
Synthesis and characterization of nanoparticles
AuNFs were synthesized using HEPES to reduce the 
chloroauric acid and were coated with a silver shell 
by reducing AgNO3 to elemental silver. We optimized 
the SERS efficiency of RSAu@AgNPs and showed that 
RSAu@AgNPs exhibited higher SERS efficiency by add-
ing 400 μL 10  mM AgNO3 in 1  mL AuNFs (Additional 
file 1: Figure S4). Figure 1b–c show typical TEM images 
of the AuNFs, RSAu@AgNPs. Compared with AuNPs 
(Additional file  1: Figure S1), AgNPs (Additional file  1: 
Figure S2) and Au@AgNPs (Additional file 1: Figure S3), 
the RSAu@AgNPs surfaces are much rougher (Fig.  1b). 
AuNFs exhibited an SPR peak at 560  nm; whereas, 
the RSAu@AgNPs and mAb-RSAu@AgNPs-4MBA 

presented an SPR peak at 420 nm, indicating that the sil-
ver had successfully coated the surfaces of AuNFs (Addi-
tional file 1: Figure S6). Figure 1d shows the Raman signal 
intensity of the reporter molecule 4-MBA enhanced by 
the AuNFs, AuNPs, Au@AgNPs, RSAu@AgNPs and 
mAb-RSAu@AgNPs-4MBA. To accurately assess the 
SERS activity of these nanomaterials, the same amount 
of 4-MBA was added to an equal volume of each of the 
nano-materials with the same concentration. After opti-
mization of 4-MBA concentration conjugate with RSAu@
AgNPs-4MBA (Additional file  1: Figure S5), 0.2 μL of 
10  mM 4-MBA was mixed with 1  mL of nanomaterials 
at room temperature. After 1  h, the SERS spectra were 
detected with exposure times of 20 s. The SERS spectrum 
of 4-MBA was characterized by peaks at 1077 cm−1. The 
SERS intensities of the RSAu@AgNPs-4MBA and mAb-
RSAu@AgNPs-4MBA were considerably higher than 
those of the AuNPs-4MBA, AuNFs-4MBA, AgNPS-
4MBA, and Au@AgNPs-4MBA. These results indicated 
that core–shell structures and rough surfaces give higher 
SERS efficiency to RSAu@AgNPs. These results are con-
sistent with previous reports [41, 43].

The SERS ICSs to detect haemoglobin
In clinical studies, hemoglobin is an important biomarker 
for diagnosing intestinal bleeding. In this study, we pre-
pared SERS ICSs and used them to detect haemoglobin. 
The SERS ICSs for detecting haemoglobin consisted of 
five components (from top to bottom): (a) a sample pad 
for applying samples, (b) a conjugate pad for loading 
mAb-RSAu@AgNPs-4MBA, (c) a 25 mm NC membrane 
acting as the chromatography matrix, (d) an absorbent 
pad serving as the liquid sink, and (e) a plastic backing 
for supporting all the components (Fig. 2a). The capture 
mAb was dispensed on the NC membrane at T-line. The 
principle of the SERS ICSs is shown in Fig. 2b–c. When 
negative samples (not containing analytes) were applied, 
the liquid samples dispersed mAb-RSAu@AgNPs-
4MBA that were preloaded on the conjugation pad and 
made the mAb-RSAu@AgNPs-4MBA migrate toward 
the absorbent pad. Hemoglobin did not bind with mAb-
RSAu@AgNPs-4MBA; therefore, when samples reached 
T-line zone, mAb-Au@AgNPs-4MBA could not bind to 
the coating mAb at T-line. Subsequently, a weak SERS 
signal at T-line was detected. In contrast, when a cer-
tain amount of haemoglobin solution was applied to the 
sample pad, haemoglobin would first bind to the mAb-
RSAu@AgNPs-4MBA; these nanoparticles were then 
captured by mAb at T-line and a strong Raman signal 
was detected. Raman signal intensity of the ICSs at T-line 
increased, as concentrations of haemoglobin elevated. 
To facilitate the analysis of the detection results, we 
chose Raman intensity at the peak of 1077  cm−1 as the 
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test signal and the integration times of the ICSs test were 
maintained at 20 s.

The surfactant triton X-100 accelerated the diffusion 
speed of mAb-RSAu@AgNPs-4MBA at NC membrane, 
thereby, reducing the time taken for SERS to detect hae-
moglobin. However, a high concentration of surfactant 
triton X-100 reduced the amount of time that mAb-
RSAu@AgNPs-4MBA stayed at T-line and decreased 
the sensitivity of SERS ICSs. Considering the detection 
time and sensitivity of the SERS ICSs, 2 % triton X-100 
was contained in sample pad treatment agent (Addi-
tional file  1: Figure S7). Following these procedures, 

concentrations of mAb-RSAu@AgNPs-4MBA that dis-
persed on conjugation pad, which impacted the perfor-
mance of ICSs, were optimized. A high concentration of 
mAb-RSAu@AgNPs-4MBA dispersed on conjugation 
pad enhanced the sensitivity of SERS ICS; however, this 
also may have increased the background SERS signal on 
nitrocellulose membrane. Considering the background 
SERS signal and sensitivity of the SERS ICSs, mAb-
RSAu@AgNPs-4MBA was diluted 32 times and then dis-
persed on conjugation pad (Additional file 1: Figure S8).

The results for detecting a series of concentrations 
of haemoglobin are shown in Fig.  2b–c. The detection 

Fig. 1  Synthesis and characterization of mAb-RSAu@AgNPs-4MBA. a Schematic diagram of synthesized mAb-RSAu@AgNPs-4MBA. b–c TEM images 
of AuNFs and RSAu@AgNPs, scale bars were 50 nm. d Comparisons: SERS efficiency of AuNFs-4MBA, RSAu@AgNPs-4MBA and mAb-RSAu@AgNPs-
4MBA, AuNPs-4MBA, AgNPs-4MBA and Au@AgNPs-4MBA. The Raman signal was detected in 96-well micro-plates, and the exposure time was 20 s
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time was chosen as 15 min (Additional file 1: Figure S9). 
When negative samples were applied to the SERS ICSs, 
the Raman signal intensity at T-line was 492 a.u. When 
haemoglobin concentrations were higher than 15.6  ng/
mL, SERS signal at T-line showed a gradual increase. 
When haemoglobin concentrations were higher than 
16,000 ng/mL, SERS signal at T-line remained at approxi-
mately 24,500 a.u. The calibration curve of SERS ICSs for 
detecting haemoglobin had a positive slope, with a linear 

detection range from 32.3 to 2000  ng/mL. The LOD of 
SERS ICSs was 8  ng/mL, calculated by a concentration 
response to the SERS intensity (SRES intensity of nega-
tive sample + 3 × SD).

The SERS ICSs for detecting Cd2+

To demonstrate that SERS ICSs were appropriate for detect-
ing small molecules, we further used them to detect heavy 
metal cadmium (Cd2+). Cd2+ is believed to have a biological 

Fig. 2  a Schematic diagram of the SERS ICSs for detecting haemoglobin. The SERS ICSs consists of five overlapping layers: absorption pad, NC 
membrane, conjugation pad and sample pad, which were placed on a plastic backing. Capture mAb was dispensed at T-line. When the SERS ICSs 
detected negative samples, Raman signal at T-line was weak; whereas, when the SERS ICSs detected positive samples, Raman signal at T-line was 
strong. b Concentration dependent SERS spectra of SERS ICSs obtained from detecting different concentrations of haemoglobin: The entire SERS 
spectra are shown in Additional file 1: Figure S10–21. Detailed vibrational assignments of Raman peaks are presented in Additional file 1: Table S1. c 
Calibration curve of SERS ICSs for the detection of haemoglobin
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half-life of greater than 10 years in the human body. Humans 
are exposed to cadmium predominantly through the inges-
tion of cadmium contaminated food, water, and soil, or 
through the inhalation of cadmium-containing dusts. After 
ingestion, cadmium accumulates in the kidneys, liver, lungs, 
and gastrointestinal tract, where it can then cause progres-
sively toxic effects, including cancer and renal damage [44, 
45]. Because Cd2+ is too small to be recognized by antibod-
ies, EDTA-2Na was selected to chelate Cd2+ to form a spe-
cific hapten. To prepare the complete antigen, iEDTA was 
used to conjugate Cd2+ and link the carrier proteins. To 
prepare SERS ICSs for detecting Cd2+: Cd2+-EDTA-BSA 
was dispersed at T-line and anti-Cd2+-EDTA mAb labeled 
RSAu@AgNPs-4MBA were dispersed on conjunction pad. 
The principle of the SERS ICSs that detected Cd2+ is shown 

in Fig.  3. When negative samples (containing no analytes) 
were applied, mAb-RSAu@AgNPs-4MBA were dispersed 
in samples and migrated toward the absorbent pad. When 
samples reached T-line zone, mAb-RSAu@AgNPs-4MBA 
bound to Cd2+-EDTA-BSA at T-line and the SERS signal 
was detected. In contrast, when a certain amount of positive 
sample solution was applied, Cd2+-EDTA would first bind 
to the mAb-RSAu@AgNPs-4MBA. Then, the amount of 
mAb-RSAu@AgNPs-4MBA that bound at T-line decreased 
and the intensity of the Raman signal at T-line became 
weaker. The Raman signal intensity at T-line decreased, as 
the concentration of Cd2+ in the samples increased. Expo-
sure times of the Raman spectrometer were maintained at 
20  s. The results for detecting different concentrations of 
Cd2+ are shown in Fig. 3b–c. When negative samples were 

Fig. 3  a Schematic diagram of the SERS ICSs for detecting Cd2+. b Concentration dependent SERS spectra of the ICSs obtained from the precipi-
tates that corresponded to different concentrations of Cd2+. The entire SERS spectra are shown in Additional file 1: Figure S24–38. c Calibration 
curve of SERS ICSs for the detection of Cd2+
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applied to the ICSs, the Raman signal intensity at T-line 
reached 2300 a.u. The SERS signal intensity began decreas-
ing when Cd2+ concentrations were greater than 0.05  ng/
mL, and SERS signal intensity gradually decreased when 
Cd2+ concentrations increased. When Cd2+ concentrations 
were higher than 25 ng/mL, the signal at T-line remained 
at approximately 100 a.u. As shown in Fig. 3c, the calibra-
tion curve of SERS ICSs for detecting Cd2+ shows a negative 
slope and a linear detection range between 0.05 and 25 ng/
mL. The LOD of SERS ICSs was 0.05  ng/mL, which was 
calculated by concentration response to the SERS intensity 
(SERS intensity of negative sample  –  3 ×  SD). A thermal 
accelerated test was used to study the storage time of SERS 
ICSs for detecting Cd2+ ion. These SERS ICSs were stored 
at 37 °C and SERS intensity of the ICSs was kept constant 
for 30 days. According to Arrhenius equation, the developed 
SERS ICSs could be stored for 120 days at 25 °C (Additional 
file 1: Figure S43).

Comparison of SERS ICSs and AuNPs ICSs for detecting 
haemoglobin and Cd2+

A comparison of SERS ICSs and AuNPs ICSs based on 
the same antigen and antibody is shown in Table 1. The 
sensitivity of SERS ICSs is higher than AuNPs ICSs and 
has a wider dynamic detection range.

Specificity of the SERS ICSs
The cross reactivity of SERS ICSs is shown in Fig. 4. For 
studying specificity of SERS ICSs that detect haemoglobin, 
20,000  ng/mL of thrombin, casein, BSA, and OVA were 
dissolved in PBS and then detected using the SERS ICSs. 
The results indicated that the SERS ICSs had low cross 
reactivity with casein, BSA, and OVA. While researching 
the specificity of SERS ICSs used to detect Cd2+, various 
metal ions (25 ng/mL) were spiked in water samples and 
then detected by using SERS ICSs. The results indicated 
that the developed ICSs had cross-reaction rates of 0.55, 
0.02, 2.24, 1.32, 0.89, 0.38, 0.30, 0.36, 0.85, 0.87, 0, and 
1.28 % with Co2+, Cu2+, Fe2+, Hg2+, K+, Li+, Mg2+, Na+, 
Ni+, Pb2+, Zn2+, and Al3+ respectively. These results indi-
cated that the developed SERS ICSs had high specificity.

Recovery of SERS ICSs for detecting haemoglobin and Cd2+

While studying the recovery of SERS ICSs for detect-
ing haemoglobin, SERS ICSs were also used to detect 
haemoglobin that had been spiked in blood and stool 
samples. Additionally, while researching the recov-
ery of SERS ICSs for detecting Cd2+, SERS ICSs were 
used to detect Cd2+ that were spiked in tap water, river 
water, and soil leaching water. Table 2 summarizes the 
recovery of SERS ICSs. Recoveries of SERS ICSs that 
detected haemoglobin spiked in serum and stool var-
ied from 5.06 to 14.8  %. For detecting Cd2+ spiked in 
tap water, Pearl River water, and soil leaching water, 
the recoveries of SERS ICSs were ranged from 90.67 
to 110.0 %, 96.0 to 120.0 % and 92.00 to 116 %, respec-
tively. These correlated results that haemoglobin was 
detected by using ELISA and Cd2+ was detected by 
using ICP-MASS.

Conclusion
In conclusion, because of their core–shell structures 
and rough surfaces, RSAu@AgNPs have a high Raman 

Table 1  Comparison of SERS ICSs, AuNPs ICSs

Details of AuNPs ICSs are presented in the Additional file 1: Figure S34–38

Analytes Methods Detection  
range  
(ng/mL)

Limit of  
detection  
(ng/mL)

Detection  
time 
(min)

Haemoglobin SERS ICSs 31.3–2000 8 15

AuNPs ICSs 2000–16,000 1000 15

Cd2+ SERS ICSs 0.05–25 0.05 15

AuNPs ICSs 25–400 25 15

Fig. 4  Specificity of the SERS ICSs. a Specificity of the SERS ICSs for 
detecting hemoglobin. b Specificity of the SERS ICSs for detecting 
Cd2+
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enhancement efficiency, and be used to fabricate high 
sensitivity SERS ICSs for detecting haemoglobin and 
Cd2+. When compared with AuNPs ICSs, the developed 
SERS ICSs possessed a higher sensitivity, which indicated 
that SERS ICSs could detect lower concentrations of ana-
lytes when AuNPs ICSs were unavailable. In actual test-
ing, pH, ionic strengths, and impurities in samples often 
affected the stability and accuracy of detection results. 
Therefore, by using SERS ICSs, samples could be diluted 
many times to reduce the effects of pH, ionic strength, 
and impurities. These results indicate that SERS ICSs are 
ideal tools for clinical diagnoses, food safety testing, and 
environmental pollution monitoring.
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