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Abstract 

Background: Due to their distinctive physicochemical properties, nanoparticles (NPs) have proven to be extremely 
advantageous for product and application development, but are also capable of inducing detrimental outcomes in 
biological systems. Standard in vitro methodologies are currently the primary means for evaluating NP safety, as vast 
quantities of particles exist that require appraisal. However, cell-based models are plagued by the fact that they are 
not representative of complex physiological systems. The need for a more accurate exposure model is highlighted 
by the fact that NP behavior and subsequent bioresponses are highly dependent upon their surroundings. Therefore, 
standard in vitro models will likely produce inaccurate NP behavioral analyses and erroneous safety results. As such, 
the goal of this study was to develop an enhanced in vitro model for NP evaluation that retained the advantages of 
cell culture, but implemented the key physiological variables of accurate biological fluid and dynamic flow.

Results: In this study, a cellular microenvironment was modeled and created after an inhalation exposure scenario. 
This system comprised of A549 lung epithelial cells, artificial alveolar fluid (AAF), and biologically accurate dynamic 
flow. Under the influence of microenvironment variables, tannic acid coated gold NPs (AuNPs) displayed modu-
lated physicochemical characteristics, including increased agglomeration, disruption of the spectral signature, and 
decreased rate of ionic dissolution. Furthermore, AuNP deposition efficiency, internalization patterns, and the nano-
cellular interface varied as a function of fluid composition and flow condition. AAF incubation simultaneously influ-
enced both AuNPs and cellular behavior, through excessive NP agglomeration and alteration to A549 morphology. 
Dynamic flow targeted the nano-cellular interface, with differential responses including modified deposition, inter-
nalization patterns, and cellular elongation. Lastly, the biocompatibility of the system was verified to ensure cellular 
health following AAF exposure and fluid dynamics.

Conclusions: This study confirmed the feasibility of improving standard in vitro models through the incorporation 
of physiological variables. Utilization of this enhanced system demonstrated that to elucidate true NP behavior and 
accurately gauge their cellular interactions, assessments should be carried out in a more complex and relevant bio-
logical exposure model.
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Background
In recent years, nanoparticle (NP) usage throughout the 
consumer, industrial, and medical markets has exponen-
tially grown. This is due to the fact that unique properties 
inherent with nano-sized materials, such as increased 
transport potential, unique optical properties, and aug-
mented reactivity, make them extremely attractive for 
product and application development [1]. To date, gold 
NPs (AuNPs) are among the most frequently investigated 
and utilized materials. Due to their unique plasmonic 
properties, general biocompatibility, and ease of func-
tionalization, AuNPs have distinguished themselves as a 
leading candidate for a vast number of biomedical appli-
cations, including photothermal therapy, drug delivery, 
and enhanced bio-imaging [2, 3]. However, coinciding 
with this growth in NP utilization is an increased likeli-
hood of unintentional material exposure, with yet unre-
solved biological consequences.

The rapid development and increased rate of NP 
exposure has resulted in the critical need to evaluate 
NP safety, as well as establish recommended exposure 
limits [4, 5]. This is an arduous task as NPs are variable 
by nature and include tunable parameters such as size, 
shape, surface modification, and composition [6, 7]. Cur-
rent nanotoxicological efforts have identified that both 
direct and indirect biological impacts, such as cytotox-
icity, activation of stress responses, and immune system 
induction, are dependent on these tunable parameters [8, 
9]. These finding, have substantially complicated and hin-
dered efforts to standardize safe NP practices and expo-
sure limits, of which few currently exist [4]. As a result, 
novel types and classes of NPs are being generated at a 
pace that far exceeds current capacities for evaluating 
their safety and establishing occupational protocols.

Currently, NP safety assessments are being carried out 
in both cell-based in vitro or animal-based in vivo mod-
els. As in  vitro methodologies provide a fast and cost 
effective option for NP screening, cell-based systems 
are predominantly utilized [10]. However, traditional 
cell culture models possess the considerable drawback 
that they are not an accurate representation of a physi-
ological environment; thereby producing a less realistic 
exposure scenario and limited predictive capabilities. 
While in  vivo evaluations can be easily extrapolated to 
safety guidelines, animal models are encumbered with 
significant time, regulatory, and financial constraints, 
limiting their usage. Moreover, due to the innate differ-
ences between these models, NP evaluations performed 
in in vitro systems have demonstrated poor correlation to 
in vivo analyses [11–13]. As such, there exists a tremen-
dous need for the development of an enhanced, novel cel-
lular system that preserve the advantages of in vitro while 

incorporating in vivo influences to produce a more realis-
tic and relevant NP exposure scenario.

NPs possess characteristics that distinguish them 
from traditional chemicals, such as an insoluble nature, 
agglomeration tendencies, and non-uniform concentra-
tion gradients; further complicating the establishment 
of appropriate exposure conditions [14]. As NP behavior 
is strongly dependent on environmental factors, recent 
studies have begun modifying traditional cell culture 
in an effort to mimic a physiological system and obtain 
more accurate NP responses. One current approach is to 
generate an immune inclusive co-culture model, allow-
ing for assessment of immune activation, which is a key 
biological endpoint frequently overlooked in in  vitro 
investigations [15, 16]. Recent studies identified an active 
immune response, even in the absence of NP-induced 
cytotoxicity, demonstrating the importance of includ-
ing immune functionality and uncovering responses not 
obtainable with standard techniques. It is also possible 
to alter the immediate physical environment to greater 
reflect complex in  vivo surroundings. For example, the 
inclusion of physiological fluids, either artificially syn-
thesized or procured from an in  vivo source, replicates 
an environment that NPs will likely encounter. Current 
studies using physiological fluids have demonstrated that 
environmental factors modulate both NP–NP and NP-
cell interactions [17–19]. Moreover, the cardiovascular 
system surrounds all tissues, producing either direct or 
indirect fluid movement. Current in vitro techniques are 
static by nature and as such are neglecting this significant 
physiological influence. Early studies demonstrated that 
the introduction of lateral flow to a NP system altered 
the balance between diffusion and sedimentation forces, 
thereby modifying dosimetry, NP internalization, and 
bioresponses [20, 21].

Extensive work has been done to develop associations 
between NP parameters and observed cellular conse-
quences [6, 7]. However, recent investigations have dem-
onstrated that NP physicochemical properties are altered 
by physiological variables [17–21]: providing a rationale 
for the poor correlation between in vitro and in vivo NP 
assessments. Taken together, these facts suggest that to 
improve predictive capabilities for NP safety evaluations 
and efficacy of nano-based applications, an enhanced 
exposure system is required [22]. As previously dis-
cussed, in  vitro systems have been successful modified 
through a number of means, providing a mechanism to 
develop biologically accurate evaluation of NP behavior 
and induced biorepsones.

It is established that the extent and mechanism of NP 
interaction with the cellular membrane, known as the 
nano-cellular interface, determine observed cellular 
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responses. These evaluations are challenging to perform 
in vitro [23] and nearly impossible in vivo. To overcome 
these challenges, recent advances have been made in 
the predictive modeling of AuNP interactions with lipid 
membrane and their degree of endocytosis following 
exposure [24–26]. These studies have successfully iden-
tified the capabilities of AuNPs to translocate into cyto-
plasm and correlate uptake kinetics to cytotoxicity. Given 
both the high number of NPs that require testing and the 
novel conditions arising from enhanced in vitro systems, 
these simulations hold tremendous potential to predict 
NP internalization patterns and bioresponses.

The goal of this study was to design and implement 
an enhanced cellular microenvironment for improved 
assessment of NP behavior. As inhalation is a common 
route of NP exposure, our generated microenvironment 
was designed as an alveolar system and incorporated a 
lung alveolar epithelial cell line (A549), artificial alveolar 
fluid (AAF), and dynamic flow at accurate physiologi-
cal rates. Following introduction of tannic acid coated 
AuNPs to the microenvironment, our results demon-
strated modified AuNP behavior and reshaping of the 
nano-cellular interface. Taken together, these results indi-
cate that enhanced in  vitro models, can uncover novel 
responses not present in a traditional in vitro model, and 
may be better suited for evaluation of nano-based prod-
ucts and applications.

Results and discussion
Generation of enhanced cellular microenvironment
In an effort to more accurately mimic in vivo NP expo-
sure, the microenvironment generated in this study 
incorporated three critical design elements: physiologi-
cally accurate flow rates, biological fluids that NPs would 
likely encounter, and a cell model appropriate for the 
selected fluid. Dynamic flow was established through the 
use of a multi-channel peristaltic pump, which allowed 
for the simultaneous evaluation of different samples. 
The pump operated at a target volumetric flow rate of 
0.75 mL/min, which produced an average linear velocity 
of 0.63 cm/s with the tubing; matching standard veloci-
ties of the cardiovascular system [27]. The A549 cells 
experienced a fluid velocity of 0.0065  cm/s across their 
surface, which in addition to being orders of magnitude 
lower than the tubing, is representative of the mass and 
fluid transport occurring between the alveolar cells and 
surrounding capillary networks [28].

One major advantage of the current microenvironment 
design is that it can be customized to target specific cel-
lular locations, simply by selecting relevant cell types, 
incorporating a corresponding fluid, and adjusting the 
flow to predetermined rates. For this proof-of-concept 
study, an alveolar lung region was modeled, as inhalation 

is a primary route of NP exposure [29]. The A549 model, 
an alveolar basal epithelial cell line, was specifically cho-
sen due to its relevance, robustness, and the fact that it 
has been extensively studied following NP introduc-
tion [30]. To support the lung exposure route, artificial 
alveolar fluid (AAF) was implemented, as this fluid is the 
predominant environment in the alveolar region of the 
lungs. During evaluation, a matrix of static/dynamic and 
media/AAF conditions were generated and compared to 
identify the role of each variable on NP characterization, 
cellular responses, and the nano-cellular interface. A 
schematic of microenvironment design is shown in Fig. 1.

NP selection and initial characterization
This study utilized tannic acid coated, 60 nm AuNPs as 
the experimental target within the generated microen-
vironment system. AuNPs were included in this study 
owing to the considerations that they are one of the 
mostly commonly employed NPs, their synthesis proce-
dures are optimized, and their biologically responses are 
well documented; providing both a rationale for their 
investigation and benchmark behavioral responses [3, 8]. 
Furthermore, AuNPs are being explored for drug delivery 
and imaging techniques within the lungs, making them 
relevant to our target system [31]. As surface chemis-
try has been proven to dictate cellular interactions, and 
thereby responses, tannic acid was specifically chosen 
owing to its known ability to promote NP–NP interac-
tions as well as its documented protein affinity [23, 32].

As the field of nanotechnology has developed, the 
vital need for NP characterization has emerged. There-
fore, prior to cellular exposure, evaluation of key NP 
physicochemical properties was carried out through the 
standard array of characterization techniques. Trans-
mission electron microscopy (TEM) confirmed spheri-
cal particle morphology and was used to determine the 
primary particle size of 65 nm (Fig. 2a). Within a fluid 
environment, all NPs will agglomerate to some degree, 
although final aggregate size is dependent on both 
NP physicochemical parameters and environmental 

Traditional In Vitro
Media
Static

A549 cells

Microenvironment
AAF

Dynamic

A549 cells
Fig. 1 Comparison of a traditional in vitro model to the microenvi-
ronment utilized in this study. Primary differences that exist between 
these models was replacing media with AAF and the introduction of 
dynamic flow. All experimentation was carried out in 24-well plates
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composition [17, 32]. In water, the AuNPs displayed 
minimal inter-particle binding with a final agglomer-
ate size of approximately 75 nm (Table 1). Through zeta 
potential analysis, it was determined that stock AuNP 
displayed a negative charge, in accordance with the tan-
nic acid coating. Lastly, the rate of ionic dissolution was 
determined after a 24 h incubation in water, and found 
to be a marginal 0.8 %.

Fluid‑induced alterations to AuNP characteristics
Recent studies have elucidated an intrinsic link between 
local environmental factors, NP behavior, and resultant 
cellular effects [8, 9]. Therefore, we wanted to isolate and 
identify if NP behavior within the microenvironment was 
a function of both dynamic flow and fluid composition 
prior to cellular exposure. Initial characterization efforts 
centered on agglomeration tendencies, spectral pro-
files, and kinetic rates of ionic dissolution in an acellular 
environment.

Following incubation in AAF, the AuNPs underwent 
TEM imaging to identify if basic morphology or pri-
mary size was altered (Fig.  2b). From this image, it was 
seen that the AuNPs were still spherical in nature with no 
change to primary diameter. Next, AuNP spectral profiles 
were generated following dispersion in water, media, and 
AAF (Fig. 2c). In water, the profile demonstrated a single, 
well defined plasmonic peak at approximately 550  nm, 
confirming the quality and uniformity of the NP set. In 
media, the spectral signature was relatively unchanged, 
with a minor right-shift identified. However, in AAF the 
AuNPs exhibited a significant loss in maximum absorb-
ance, accompanied by extensive peak broadening and the 
appearance of a second peak at approximately 700  nm. 
The presence of additional peaks are indicative of exces-
sive NP agglomeration, whereas peak broadening and 
decrease in absorbance are associated with loss of stabil-
ity and particle sedimentation [33]. Therefore, the spec-
tral profiles suggest that distribution in AAF induced 
significant modifications to AuNP characteristics.

To confirm this theory, the extent of NP agglomera-
tion in media and AAF was evaluated via dynamic light 
scattering (DLS) (Fig.  3a), and agreed with the previ-
ous spectral profiles. A minor increase in agglomeration 
was noted for media, corresponding with the slight right 
shift in the plasmonic peak. In contrast, AAF exposure 
resulted in considerable AuNP agglomeration, with final 
aggregate sizes of approximately 260  nm. Therefore, it 
is probable that these large NP agglomerates became 
unstable and altered the spectral profile. Moreover, the 
fluid specific AuNP agglomeration patterns were further 
verified via inspection: with a visible color shift from red 
to purple in AAF (Additional file  1: Figure S1). Taken 
together, these results demonstrated that degree of NP 
agglomeration, a critical behavior, was dependent upon 
environmental composition.
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Fig. 2 Characterization of the 60 nm tannic acid AuNPs. a Represent-
ative TEM image of the stock AuNPs verified spherical morphology 
and was used for analysis of primary NP size. b TEM imaging of the 
AuNPs was repeated after a 24 h incubation in AAF. c Spectral profile 
of the AuNPs following dispersion in water, media, and AAF demon-
strate a fluid-specific disruption of the AuNPs plasmonic properties

Table 1 Characterization of the stock AuNPs

Primary size (nm) 65.1 ± 5.3

Agglomerate size (nm) 74.8 ± 4.6

Zeta potential (mV) −31.8 ± 0.9

Ionic dissolution (%) 0.8 ± 0.5
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Fig. 3 AuNP Characterization as a function of fluid and flow. Evalua-
tion was carried out to identify if a AuNP agglomerate size and b rate 
of ionic dissolution varied under the influence of microenvironment 
variables (data represents four independent trials, asterisk denotes 
statistical significance between media and AAF samples under the 
same flow condition)
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The next step was to ascertain if exposure to dynamic 
flow modified AuNP agglomeration. As seen in Fig.  3a, 
irrespective of fluid composition, the introduction of 
shear stress through dynamic flow had no impact on 
agglomerate size. As the flow rate in this study was set 
to low, biological levels, these results were not surprising. 
To further explore the stability of these aggregates, this 
experiment was repeated at a significantly higher flow 
rate, with a tube-side velocity of 5.5  cm/s (Additional 
file  1: Figure S2). Even following 24  h exposure to high 
flow and shear stress rates, NP agglomeration remained 
unaltered.

Lastly, the rate of AuNP ionic dissolution was evalu-
ated as a function of environmental composition and 
dynamic flow (Fig. 3b). While ionic dissolution may not 
be a standard characterization assessment for AuNPs, 
it is a critical element for a variety of other NPs, includ-
ing silver, titanium dioxide, and copper [34]. As such, we 
determined if and to what degree ion generation var-
ied in the microenvironment. While dissolution rates 
between static and dynamic conditions were unvaried, a 
fluid dependency existed, with AAF exposure decreasing 
ion production. This fluid-specific effect agrees with pre-
vious literature that correlated higher dissolution rates 
to smaller NP agglomerates [35]. Due to extensive AuNP 
agglomeration in AAF, they exhibited a smaller surface 
area to volume ratio, thus resulting in lower NP reactivity 
and ion production.

Biocompatibility of the AuNPs and the microenvironment
AuNPs are renowned for their biocompatibility, which 
is one feature that makes them attractive for nano-based 
applications. However, as the AuNPs displayed modified 
properties under the influence of microenvironment var-
iables, we wanted to ensure that no negative synergistic 
biological responses occurred. Biocompatibility within 
the microenvironment was confirmed through quanti-
fication of lactate dehydrogenase (LDH) leakage (cyto-
toxicity) and reactive oxygen species (ROS) production 
(oxidative stress).

The results from the LDH analysis are shown in Fig. 4 
and revealed an increase in LDH release as a function of 
AuNP dosage and flow, but not fluid composition. Look-
ing first at static conditions (Fig.  4a), AAF and media 
alone had comparable LDH levels, indicating that AAF 
exposure didn’t induce apoptosis. Following the addition 
of AuNPs, a minimal increase in LDH was observed for 
both fluids, as anticipated, but not to a degree indicative 
of cell death. Moving to dynamic conditions (Fig.  4b), 
dynamic flow increased LDH levels over static, but no 
synergistic response occurred. Again there was a mini-
mal increase in LDH following the addition of AuNPs, 
but as before, still within biocompatible regimes.

Next, stress activation was evaluated through ROS pro-
duction (Fig.  5). ROS was specifically selected as it is a 
recognized marker of cellular stress and serves as an early 
predictor of apoptosis [36]. Analogous to LDH release, 
no fluid-specific effect was observed, but ROS was a 
function of both AuNP addition and flow status. Under 
static conditions (Fig.  5a), ROS generation was essen-
tially equivalent for all examined parameters, confirming 
the safety of AAF and flow exposure. When examining 
dynamic results (Fig. 5b), basal ROS levels were increased 
approximately 30  % by the presence of fluid flow. As 
fluid-induced shear stress is known to cause basal ROS 
production, the increase over static conditions was not 
surprising [37]. Interestingly, following AuNP exposure 

AuNP Concentration
(µg/ml)

AuNP Concentration
(µg/ml)

LD
H

 L
ea

ka
ge

(%
 C

on
tr

ol
)

0 25 0 25
0

50

100

150

200 Media
AAF

Media
AAF

LD
H

 L
ea

ka
ge

(%
 C

on
tr

ol
)

0

50

100

150

200
*

Static Dynamic

* *

a b

Fig. 4 LDH release from A549 cells under microenvironment influ-
ences. a Evaluation of LDH release in a static environment after a 24 h 
exposure to the denoted conditions. b Toxicological analysis under 
dynamic conditions demonstrated greater LDH secretion. For both 
static and dynamic, control conditions were static/media without 
AuNPs (data represents three independent trials, asterisk denotes 
statistical significance between 0 and 25 μg/mL AuNPs in the same 
fluid/flow conditions)
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Fig. 5 Evaluation of ROS production following AuNP exposure within 
the microenvironment. a ROS generation was evaluated under static 
conditions to the denoted exposure parameters. b ROS levels were 
quantified under dynamic conditions for AuNPs in either media or 
AAF. For both static and dynamic, control conditions A549 cells under 
static/media conditions without AuNPs (data represents three inde-
pendent trials, asterisk denotes statistical significance between 0 and 
25 μg/mL AuNPs in the same fluid/flow conditions)
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under dynamic conditions, the ROS levels decreased, 
likely due to the ability of AuNPs to act as an antioxidant 
and counteract the increased ROS levels [38]. Therefore, 
we confirmed that exposure to dynamic flow and AAF 
within the microenvironment, both with and without the 
addition of AuNPs, did not elicit an overtly harmful bio-
logical response.

Modulation of AuNP deposition and the nano‑cellular 
interface
Following evaluation of NP physicochemical properties 
and assessment of biocompatibility under microenvi-
ronment influences, we next examined the nano-cellular 
interface. The first means of assessment was to determine 
the fraction of NPs that associated with the cell surface, 
referred to as the NP deposition efficiency (Fig. 6). Look-
ing at fluid comparisons, incubation in AAF more than 
doubled the deposited AuNP dose over media condi-
tions. This is due to the extensive AuNP agglomeration in 
AAF, shifting predominant transport mechanisms from 
diffusion to sedimentation [39, 40].

The introduction of dynamic flow altered deposition 
efficiency, in conjunction with environmental factors. For 
AAF exposure no change was noted between static and 
dynamic, again due to the presence of large agglomerates, 
strong sedimentation forces, and the ability of tannic 
acid to tightly couple with the protein membrane. How-
ever, for media, a drop in deposition occurred follow-
ing the introduction of fluid flow. This loss is due to the 
forced lateral movement of the system, which overpow-
ers and disrupts the diffusion rate, thus inhibiting contact 
between AuNPs and A549 surfaces [41].

Investigation into the deposition of the AuNPs was 
taken one step further and TEM images were obtained to 
visualize uptake patterns within the A549 model (Fig. 7). 
Control images of A549 cells in media and AAF under 
static and dynamic conditions are included in Additional 
file 1: Figure S3. Looking first at media (Fig. 7a, c), small 
AuNP agglomerates are found internalized within the 
cytoplasm. Furthermore, no discernable differences were 
noted under static versus dynamic conditions, in general 
agreement with the deposition data.

When looking at AAF (Fig. 7b, d), TEM imagery con-
firmed greater deposition, with large particle clusters 
and NP-cell associations easily visible. In static condi-
tions, AAF aggregates were located both within intra-
cellular vacuoles and bound to the cell surface (denoted 
by arrows). Interestingly, under dynamic flow in AAF, 
no internalized AuNPs were identified, with all particles 
remaining bound to the outside cell membrane. There-
fore, while deposited dose was unaltered, the effective 
internalization rate was a function of flow condition. 
Taken together, these TEM images confirm that both 
fluid environment and flow status impact the AuNP dep-
osition as well as internalization patterns.

Finally, the nano-cellular interface was examined 
using high resolution fluorescence microscopy (Fig.  8), 
revealing much regarding cellular behavior and modes 
of NP/A549 interactions. Firstly when examining AuNP 
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Fig. 6 AuNP deposition efficiency associated with A549 cells. 
Evaluation of NP deposition after a 24 h exposure was carried out in 
both media and AAF environments under static and dynamic flow 
conditions. (data represents four independent trials, asterisk denotes 
statistical significance between media and AAF samples under the 
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Fig. 7 TEM visualization of AuNP deposition patterns. Representative 
images are shown of A549 exposure under the following conditions: 
a static media, b static AAF, c dynamic media, and d dynamic AAF. 
The area within the black box is enlarged within the inset for each con-
dition. Black arrows point out additional AuNP agglomerates bound 
to the cell surface, but not internalized
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exposure in media (Fig. 8c, g), fewer particles were seen 
than with AAF (Fig. 8d, h), in agreement with deposition 
results. When in an AAF environment, the visible AuNPs 
were larger and denser, consistent with TEM images. Of 
greater interest, however, are the extensive influences that 
the microenvironment had on cellular morphology. Even 
under the low flow rates, cellular elongation in the direc-
tionality of flow was identified. Moreover, incubation in 
AAF produced a curved cell morphology (Fig. 4d), which 
has been reported in in vivo alveolar epithelial cells as a 
result of the high surface tension associated with alveo-
lar fluid [42]. Both these observations were verified with 
standard light microscopy (Additional file  1: Figure S4) 
to ensure that this was not an artifact of fixing the cells, 
but present in live cultures as well. Taken together, these 
results confirm that both fluid composition and dynamic 
flow modified the nano-cellular interface.

Implications of these results
Through the inclusion of relevant physiological variables, 
we successfully generated an enhanced in  vitro system 
more closely represented in vivo models. This system was 
designed to target an alveolar NP exposure and included 
alveolar epithelial cells, artificial alveolar fluid, and low 
dynamic flow representative of accurate biotransport 
rates. As it is well established that NP characteristics and 
behavior are dependent on both key physicochemical 
traits and the surrounding environment, we anticipated 
that the 60 nm tannic acid coated AuNPs would exhibit 
modified traits.

Starting with behavior of the AuNPs acellularly, an 
AAF environment resulted in significant AuNP agglom-
eration and dependent spectral shifts. The AAF aggre-
gates were approximately 2.5 times larger, likely leading 
to a loss of particle stability and increased sedimentation 
[39, 40]. Due to the large effective size, AuNPs in AAF 
had a lower surface area to volume ratio versus their 
media counterpart, resulting in a significantly lower 
ionic dissolution rate [35]. While ion formation is not 
critical for AuNPs, the generation of ions from other 
metallic NPs, such as silver, titianium dioxide, and cop-
per, have been directly correlated to cytotoxicity and 
disruption of cellular homeostasis, making it an impor-
tant behavioral endpoint [34, 43]. These results suggest 
that if other NPs follow similar agglomeration patterns, 
ion-dependent cytotoxicity may less influential following 
inhalation exposure.

The nano-cellular interface was also transformed fol-
lowing exposure in the microenvironment. The afore-
mentioned AAF-induced agglomeration and increased 
sedimentation also resulted in a substantially greater 
deposited dose. Increased deposition in AAF over media 
was confirmed both with TEM and fluorescence imaging. 
The introduction of fluid dynamics also impacted both 
deposition and the nano-cellular interface. In media, 
the introduction of lateral flow was able to reduce AuNP 
deposition, likely through disruption of established diffu-
sion patterns. This has been previously seen in literature, 
with dynamic flow reducing the contact between NPs 
and surrounding biological systems [39–41].

 

f g h

St
at
ic

D
yn

am
ic

Media AAF Media/AuNPs AAF/AuNPs
a b c d

e

Fig. 8 Visualization of the nano-cellular interface within the microenvironment. Representative images are shown for: a static media control, b 
static AAF control, c static media with AuNPs, d static AAF with AuNPs, e dynamic media control, f dynamic AAF control, g dynamic media with 
AuNPs, and h dynamic AAF with AuNPs. Directionality of flow was from left to right across the image. In these images, actin and nuclei are stained 
red and blue, respectively, with the NPs appearing as white
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In conjunction with AAF, dynamic flow impacted the 
effectiveness of cellular internalization. Under static flow, 
TEM images demonstrate both AuNP internalization and 
surface association. However, for AAF/dynamic environ-
ments, no evidence of internalization was seen; AuNPs 
were only identified coupled to the plasma membrane. 
An explanation for this may arise from the fluorescence 
imaging which highlighted significant morphological 
alterations. Dynamic flow induced cellular elongation and 
AAF exposure promoted membrane curvature. While 
these morphological phenomena are found in literature 
[42] we hypothesize that this fluid-specific alteration is a 
result of the phosphatidylcholine additive of AAF; a lipid 
which is a major component of the cellular membrane. 
Excess phosphatidylcholine has been associated with loss 
of membrane integrity, supporting this supposition and 
agreeing with the observed membrane curvature [44]. 
Given both the simultaneous elongation and membrane 
alterations under concurrent AAF/dynamic exposure, it 
is possible that standard mechanisms of cellular internal-
ization, which are initiated at the cell surface, are inhib-
ited as a result of these cellular disruptions.

Conclusions
The goal of this study was to construct an enhanced in vitro 
model that incorporated physiological fluids and dynamic 
flow in an effort to generate a means of rapid NP evalua-
tion in a more relevant model. Through the selection of an 
alveolar cell line (A549) and use of AAF, our devised micro-
environment targeted an alveolar NP exposure scenario. 
Through changes to morphology that align with in  vivo, 
including cellular elongation and curved membranes, this 
study demonstrated that inclusion of dynamic flow and bio-
logical fluids are positive steps towards increasing in vitro 
model relevance. Additionally, we identified modified NP 
behavior, confirmed A549 viability, and observed altera-
tion of the nano-cellular interface. Moreover, a number of 
these responses were undetected in a traditional in  vitro 
model, supporting the emerging conviction that environ-
mental variables are capable of influencing NP-dependent 
bioeffects. As such, the utilization of a complex biological 
model, such as the one devised and implemented here, is 
necessary to accurately and effectively evaluate the safety 
and performance of NPs and nano-based applications.

Methods
Cell culture
The A549 human alveolar epithelial cell line was pur-
chased from ATCC (American Type Cell Culture) and 
grown in RPMI 1640 medium, supplemented with 1  % 
penicillin/streptomycin and 10  % fetal bovine serum. 
Cultures were maintained on tissue culture treated petri 
dishes (BD Falcon) in a 5 % CO2 incubator at 37 °C. For 

experimentation, A549 cells were seeded at a density of 
1.6 × 105 cells per well in a 24-well plate and returned to 
the incubator for 24 h to equilibrate.

Dynamic Flow Exposure System
Dynamic flow was implemented using a multi-channel 
peristaltic pump (Ismatec, model #ISM939D) with each 
channel exclusively connected to a single well (1.56  cm 
diameter) of a 24-well plate. The 1/16 inch (inner diam-
eter) tubing was secured through the culture plate lid to 
ensure unidirectional flow. Prior to exposure, the tubing 
was primed to ensure consistent liquid heights between 
static and dynamic conditions. The entire pump system 
was stored within the incubator to maintain environmen-
tal conditions. During experimentation, flow was set to a 
target volumetric flow rate of 0.75  mL/min, producing 
average linear velocities of 0.63 and 0.0065 cm/s in the tub-
ing and across the A549 surface, respectively. This flowrate 
was specifically chosen to match physiological patterns, 
with the NPs experiencing equivalent cardiovascular-
based flow in the tubing and the cells undergoing flow 
comparable to diffusion and facilitated transport rates [27].

Artificial alveolar fluid
Artificial alveolar fluid (AAF) served as the physiologi-
cally relevant environment in this study. Alveolar fluid 
exists in the pulmonary alveolus, forming a coating over 
the cells that comprise the alveolar wall, and facilitates 
transport between air and the surrounding capillaries. 
AAF was synthesized using previously published recipe 
by Stopford et al. [45]. AAF was comprised of numerous 
salts supplemented with the lipid phosphatidylcholine 
with a pH of 7.4.

Nanoparticle characterization
The 60  nm, tannic acid AuNPs were purchased from 
nanoComposix as a concentrated liquid stock. For all 
experimentation, NP solutions were freshly prepared by 
diluting the stock to a final concentration of 25 µg/mL in 
the designated fluid. TEM was carried out on a Hitachi 
H-7600 microscope to visualize the AuNPs. NP agglom-
eration and surface charge was measured through DLS 
and zeta potential analyses, respectively, using a Malvern 
Zetasizer Nano ZS. The NP spectral profile was visual-
ized with UV–VIS using a SpectraMAX Plus 190 micro-
plate reader.

For evaluation of NP ionic dissolution, the area under 
the spectra curve was measured before and after a 24 h 
incubation, under the denoted conditions. Standard 
curves were generated for each NP/fluid combination to 
directly correlate area under the curve to NP concentra-
tion. Dissolution was calculated by determining percent 
mass lost during incubation.
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Biological response evaluation
LDH release was used to assess cytotoxicity. A549 cells 
were plated in 24-well plate at density of 1.6 × 105 cells 
per well, allowed time to adhere, then underwent expo-
sure to the denoted conditions for 24 h. The quantity of 
LDH released was quantified using the CytoTox 96 Non-
Radioactive Cytotoxicity Assay (Promega) in accordance 
with the manufacturer’s instructions. Additional fluid 
specific controls were added to account for the change 
in media and AAF color, as this assay has a colorimetric 
endpoint.

Production of ROS was used to assess A549 stress acti-
vation. Again, A549 cells were plated in 24-well plates 
and equilibrated. The cultures were then treated with 
100  μM of dichloroofluorescein diacetate (DCFH-DA) 
for 30 min, washed, and exposed to the denoted condi-
tions. After 24  h, the fluorescence was measured using 
a Spectra MAX Gemini Plus fluorescent plate reader, in 
accordance with the manufacturer’s instructions.

NP deposition efficiency
For NP deposition, 1.6 ×  105 cells were plated per well 
in a 24-well plate. Following a 24  h growth period, the 
A549 s were washed and replenished with the indicated 
fluid/NP combination (25 μg/mL) for a 24  h exposure, 
under either static or dynamic conditions. Fluid samples 
were then removed without disturbing the cells, and the 
final NP concentration determined through UV–VIS 
analysis [46]. The change in NP solution concentration 
following cellular exposure was used to calculate the dep-
osition efficiency. Fluid samples were also removed after 
30 min to account for any non-specific binding of NPs to 
the tubing or culture dishes.

Visualizing NP uptake
For NP uptake, 1.6 × 105 cells were plated per well in a 
24-well plate and equilibrated, then exposed to the indi-
cated NP/fluid combination (25  µg/mL) in either static 
or dynamic flow conditions for 24 h. The cells were then 
washed, pelleted, fixed in a 2 % glutaraldehyde/2 % para-
formaldehyde solution (Electron Microscope Sciences; 
EMS), stained with 1  % ssmium tetroxide (EMS), and 
dehydrated in increasing ethanol concentrations. Cell 
pellets were then cured in LR white resin (EMS) over-
night in a vacuum oven. Cell pellets were thinly sectioned 
using an ultramicrotome (Model EM UC7, Leica,) and 
imaged via TEM.

Evaluating the nano‑cellular interface
For cellular morphology evaluation, 1.5 × 105 cells were 
plated per chamber on a 2-well chambered slide and 

returned to the incubator to adhere. The cells were then 
exposed to the NP/fluid combinations in either static or 
dynamic flow conditions for 24  h. Following exposure, 
the cells were fixed with 4 % paraformaldehyde and incu-
bated with Alexa Fluor 555-phalloidin (Invitrogen) for 
actin staining and 4′,6-diamidino-2-phenylindole (DAPI; 
Invitrogen) for nuclear staining. The slides were then 
sealed and imaged using a CytoViva 150 ultraresolution 
attachment and an Olympus BX41 microscope (Aetos 
Technologies). Images were captured and compiled using 
QCapture Pro Imaging Software.

Statistical analysis
Data is expressed as the mean ±  the standard error of 
the mean (SEM). A two-way ANOVA with a Bonfer-
roni post-test was performed on data sets using Graph 
Pad Prism to identify statistical significance between 
flow conditions and fluid environments, as indicated. 
In all cases, a p value threshold of 0.05 was set for 
significance.
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