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Ethyl pyruvate is a novel anti-inflammatory
agent to treat multiple inflammatory organ
injuries

Runkuan Yang1,2,3* , Shengtao Zhu4 and Tor Inge Tonnessen3,5
Abstract

Ethyl pyruvate (EP) is a simple derivative of pyruvic acid, which is an important endogenous metabolite that can
scavenge reactive oxygen species (ROS). Treatment with EP is able to ameliorate systemic inflammation and
multiple organ dysfunctions in multiple animal models, such as acute pancreatitis, alcoholic liver injury, acute
respiratory distress syndrome (ARDS), acute viral myocarditis, acute kidney injury and sepsis. Recent studies have
demonstrated that prolonged treatment with EP can ameliorate experimental ulcerative colitis and slow multiple
tumor growth. It has become evident that EP has pharmacological anti-inflammatory effect to inhibit multiple early
inflammatory cytokines and the late inflammatory cytokine HMGB1 release, and the anti-tumor activity is likely
associated with its anti-inflammatory effect. EP has been tested in human volunteers and in a clinical trial of
patients undergoing cardiac surgery in USA and shown to be safe at clinical relevant doses, even though EP fails to
improve outcome of the heart surgery, EP is still a promising agent to treat patients with multiple inflammatory
organ injuries and the other clinical trials are on the way. This review focuses on how EP is able to ameliorate
multiple organ injuries and summarize recently published EP investigations.
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Background
Pyruvate is the final product of glycolysis and the starting
substrate for the tricarboxylic acid (TCA) cycle, and this
important metabolic intermediate is also an effective scav-
enger of hydrogen peroxide and other ROS [1, 2].
Pharmacological administration of pyruvate is able to
improve organ function in animal models of oxidant-
mediated cellular injury [1, 2]; however, pyruvate is
unstable in aqueous solutions and this certainly limits its
therapeutic potential. EP, a simple derivative of pyruvic
acid, is also an ROS scavenger, but exerts pharmacological
effects, such as the anti-inflammatory effects, which are
quite distinct from those exerted by pyruvate anion [1, 2].
Treatment with EP has been shown to improve survival
and/or ameliorate multiple organ dysfunctions in a wide
variety of preclinical models of critical illnesses [1, 2]. Up
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to date, about 340 EP related papers have been published;
about 100 new papers published after 2010 have not been
summarized and reviewed. This review focuses on how EP
is able to ameliorate inflammatory injures of multiple vital
organs and summarizes new findings from recently pub-
lished EP investigations.
EP ameliorates severe acute pancreatitis (SAP)
and attenuates SAP related distant organ injury
Acute pancreatitis (AP) is a relatively common disease,
its severe form is potentially fatal and SAP is associated
with high mortality, ranging from 15–40% [3–8]. The
inflammatory cytokines play a crucial role in the patho-
genesis of SAP [3, 8, 9]; furthermore, the damaged
pancreatic acinar cells and the activated inflammatory
cells produce a large amount of oxygen radicals in AP,
and these ROS molecules can damage the lipid mem-
branes of pancreatic acinar cells, they can also injure the
capillary endothelium in the circulation to accelerate the
progress of SAP [7]. Currently, therapeutic efforts are
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limited to supportive measures, because no effective
specific treatment exists.

The effect of EP on acute pancreatitis
EP has been repeatedly reported to ameliorate SAP in
different animal models [4, 6, 10, 11]. EP treatment [EP
source in this review was all from Sigma-Aldrich unless
otherwise noted. EP dissolved in commercially available
Ringer’s lactate solution (RLS). Commercially available
RLS was used as the control solution. EP (40 mg/kg)
was intraperitoneally injected every 6 h for 48 h)] signifi-
cantly ameliorates pancreatic injury and necrosis [4, 6];
EP therapy also markedly reduces pancreatic expression
of TNF-α, IL-6, HMGB1 and NF-kB DNA binding [4, 6];
treatment with EP reduces the number of inflammatory
cell infiltration and decreases the pancreatic level of lipid
peroxidation, which is a parameter of ROS [4]. Because
early inflammatory cytokines (such as TNF-α and IL-6),
late inflammatory mediator HMGB1 and ROS play a sig-
nificant role in the pathogenesis of SAP [4, 6, 10, 11],
and EP can reduce the levels of these inflammatory cyto-
kines and scavenge ROS. Therefore, EP may attenuate
pancreatic injury during SAP.

The effect of EP on severe acute pancreatitis related
multiple organ injuries
About 20–30% of all acute pancreatitis patients de-
velop SAP in clinical practice, and the mortality rate
in SAP is 20–30% [3]. SAP starts as a local inflamma-
tion of pancreatic tissue that induces the development
of multiple extrapancreatic organs dysfunction [6, 8].
During SAP, the concentrations of both early (TNF-α,
IL-6) and late inflammatory cytokines are significantly
increased [6, 10–13], these cytokines play a significant
role in the pathogenesis of SAP [6, 12]. The late in-
flammatory cytokine HMGB1 is particularly important
because extracellular HMGB1 can aggravate the pan-
creatic inflammatory process [14] and HMGB1 can
also contribute to multiple distant organ injuries in
the following experimental models as well: HMGB1
contributes to liver injury in ischemia-reperfusion
[15]. Exogenous HMGB1 injection is able to induce liver
injury in normal mice [16]. HMGB1 impairs hepatocyte
regeneration during acetaminophen hepatotoxicity and
blockade of HMGB1 improves hepatocyte regeneration in
acetaminophen overdose-induced fatal liver injury [17].
Anti-HMGB1 treatment protects against APAP
hepatotoxicity in rats [18]. HMGB1 also contributes to
renal ischemia reperfusion injury [19], sepsis-induced kid-
ney injury [20] and severe acute pancreatitis related kidney
injury [21]. HMGB1 is also found to significantly
contribute to hemorrhagic shock related acute lung injury
(ALI) [22]; hypoxia-induced ALI [23] and severe acute
pancreatitis related ALI [24]. HMGB1 is also an important
factor that not only significantly contributes to gut muco-
sal injury [16], but also mediates gut bacterial transloca-
tion (BT) [25], and blockade of HMGB1 can even prevent
gut BT [25]. Gut mucosal injury and intestinal BT in SAP
is particularly important because the intestine is the
biggest reservoir of bacteria in the body and leakage of
bacteria or microbial products, notably LPS, from the
lumen of the gut into the systemic circulation, which
drives the development of systemic inflammation and
multiple organ dysfunction syndrome (MODS) in experi-
mental models [26]. SAP frequently induces gut barrier
dysfunction [6, 9, 27, 28]. The small intestine becomes
damaged by intestinal ischemia-reperfusion during SAP
[29, 30], and the failure of gut barrier is associated with
BT [29], which is evident in SAP [6, 27, 28, 31]. SAP pa-
tients have significantly increased serum LPS [32], 68.8%
of the SAP patients have bacteraemia and these bacteria
are highly likely gut-derived opportunistic pathogens [27].
Furthermore, BT and infected pancreatic necrosis in acute
necrotizing pancreatitis derive from small bowel rather
than from the colon [28]. BT and/or gut derived LPS play
a critical role in the development of systemic inflamma-
tory response syndrome (SIRS) and MODS during SAP
[29, 33], because BT not only contributes to pancreatic in-
fection [28, 33], but also induces/triggers SIRS/sepsis in
critical illness [33, 34]. The profound SIRS/sepsis can lead
to MODS and mortality in SAP [9, 29, 31, 33], this is one
of the underlying mechanisms that AP frequently affects
extrapancreatic organs [6, 25], and the incidence of
MODS in SAP is not available but certainly higher than
the 20–30% of mortality rate in SAP [3]. Systemic inflam-
mation with multi-organ dysfunction is the cause of death
in a murine ligation-induced SAP, and SIRS and MODS
can lead to the preponderance of mortality (75%) in this
lethal SAP model [9] while bile duct ligation does not have
mortality, even though obstructive jaundice is prone to
sepsis [9]. Therefore, the gut is thought to act as the
starter of SIRS [29] and HMGB1 may be an important fac-
tor that links gut barrier dysfunction and MODS during
SAP. EP (40 mg/kg was intraperitoneally injected every
6 h for 48 h) can ameliorate SAP related multiple organ
injuries [6, 10, 11] at least partly because EP not only re-
duces the inflammation in these organs [6, 10, 11], but
also inhibits nearly 90% of the hepatic tissue HMGB1 to
release [12] and other related cells to release HMGB1 [10,
12], thereby decreases the circulating HMGB1 level in
SAP [10, 14]. Thus, HMGB1 is an important factor that
not only directly contributes to multiple organ injuries,
but also mediates gut BT to trigger/induce systemic
inflammation/sepsis, the latter can lead to MODS.
Currently, the circulating HMGB1 level is thought to be
reliable to predict the severity of SAP [10, 14], this is likely
because HMGB1 is linked to multiple organ injuries dur-
ing SAP [10, 12, 14], the liver is an important source of
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circulating HMGB1 [12], and the circulating HMGB1
level could reflect the severity of liver injury, which is one
of the important parameters for diagnosing SAP [6, 12].
SAP associated BT was reduced by 90% following EP
treatment [6] breaking the link between BT and MODS.
Therefore, EP could be a better treatment option against
SAP related multiple organ injuries in experimental
models [6, 10, 11].

The effect of EP on liver injuries
The liver is the largest organ in the body, hepatocytes ac-
count for 70–80% of the hepatic cytoplasmic mass and
non-parenchymal cells make up 20–30% of the hepatic
cytoplasmic mass [35]. Kupffer cells (KCs) are the most
abundant mononuclear phagocytes in the body and a pre-
dominant source of inflammatory cytokines released into
the systemic circulation [8]. The amount of cytokines re-
leased from the liver represents about 50% of the total
cytokine content in the body [36], suggesting that the liver
is the major contributor of the circulating cytokines.

EP ameliorates experimental alcoholic liver injury
Alcoholic hepatitis is associated with considerable mor-
bidity; 46% of patients with the severe alcoholic hepatitis
die within 30 days of the onset [37]. General measures
for treatment include abstinence from alcohol and
supportive care. Alcoholic hepatitis is reversible if the
patient stops drinking, it usually takes several months to
resolve, however, abstinence from alcohol is difficult,
and the treatment is still challenging. In an experimental
murine model, alcohol induces fatty change and
piecemeal necrosis; alcohol administration also induces
significantly increased hepatic lipid peroxidation, NF-kB
activation, TNF-α mRNA expression; furthermore, alco-
hol administration induces a large amount of gut BT,
which can serve as the “second hit” to contribute to the
alcoholic liver injury. All of these alcohol-induced effects
are ameliorated by treatment with EP (40 mg/kg was in-
traperitoneally injected every 6 h for 48 h) instead of
Ringers lactate solution, suggesting that EP ameliorates
hepatic inflammatory response and hepatic lipid peroxi-
dation, and resultantly decreases hepatocellular injury
duo to acute alcoholic intoxication [37].

EP ameliorates experimental obstructive jaundice induced
liver injury
Obstructive jaundice and cholangitis are common diseases
that are prone to sepsis that can lead to mortality [38]. In
an experimental murine model of common bile duct
ligation model [38], obstructive jaundice induces evident
hepatocellular necrosis and significantly increased circu-
lating ALT and total bilirubin levels. Obstructive jaundice
also induces increased hepatic lipid peroxidation and in-
creased hepatic expression of transcripts for TNF-α, IL-6,
and iNOS. Furthermore, bile duct ligation also induces a
large amount of gut BT, which can serve as the “second
hit” to contribute to the liver injury. All of these changes
can be significantly attenuated by delayed treatment with
EP (40 mg/kg was intraperitoneally injected every 8 h for
72 h) instead of RLS, suggesting that EP ameliorates
hepatic inflammation, lipid peroxidation and necrosis in
obstructive jaundice [38]. In addition, EP treatment
increases NF-kB DNA binding, which often modulates in-
flammation when hepatic necrosis is not evident [37] but
modulates regeneration when hepatic necrosis is evident
[38], this concept has been proved in acetaminophen
hepatotoxicity in which massive hepatocyte necrosis is a
predominant feature [39, 40]. Therefore, it is likely that EP
enhances NF-kB DNA binding to improve hepatocyte re-
generation in obstructive jaundice.
EP ameliorates acute liver injury secondary to severe
acute pancreatitis
SAP frequently affects the liver and the inflamed liver play
a significant role in the pathogenesis of SAP [6, 12, 13]. In
a lethal experimental SAP murine model, SAP induces
significantly increased hepatic lipid peroxidation, NF-kB
activation, hepatic expression of transcripts for TNF-α,
IL-6, iNOS and COX-2 [12]. SAP also induces focal hep-
atocyte necrosis and a large number of inflammatory cell
infiltration [6, 12, 13], all of these changes can be signifi-
cantly decreased by delayed treatment with EP instead of
Ringers lactate solution [12]. In particular, SAP can induce
the loss of nearly 85% of hepatic tissue HMGB1 tested by
western blot using whole hepatic tissue, and this effect can
be reversed by EP treatment (40 mg/kg intraperitoneally
injected every 6 h for 48 h) [12], suggesting that the liver
is an important resource of the circulating HMGB1, and
EP is a potent HMGB1 inhibitor [12]. In another SAP rat
model, SAP induces significantly increased hepatic lipid
peroxidation, hepatic NF-kB DNA binding and hepatic ex-
pression of transcripts for TNF-α, IL-1 and HMGB1 [13],
all of these changes can be significantly reduced by EP
treatment (40 mg/kg intraperitoneally injected every 6 h
for 48 h) [13].
The effect of EP on fatty liver
Fatty liver is common world widely, and its treatment is
problematic. In a high-fat induced rat model, the fatty
liver induces increased serum ALT and increased hepatic
TNF-α level; these changes can be significantly de-
creased by EP intake (supplemented in 0.3% drinking
water for 6 weeks) but EP does not affect the develop-
ment of a fatty liver [41], suggesting that EP can protect
against inflammation induced liver cell damage but EP
cannot prevent the development of fatty liver in animal
experiment.
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The effect of EP on hepatic ischemia-reperfusion injury
Hepatic ischemia-reperfusion (I/R) is a pivotal clinical prob-
lem occurring in many clinical conditions such as trans-
plantation, trauma and hemorrhagic shock [42]. Hepatic I/R
induces significantly increased hepatic expression of TNF-α,
IL-6, HMGB1 and NF-kB activation, and hepatic I/R also in-
duces markedly increased hepatic expression of Bcl-2, Bax,
Beclin-1 and LC3, which play an important role in the regu-
lation of intrinsic pathway of apoptosis and autophagy, all of
these changes are significantly reduced by EP treatment (1 h
before the ischemia procedure, a single dose of EP was intra-
peritoneally injected to animals in the 20 mg/kg group, the
40 mg/kg group and the 80 mg/kg group, liver tissue sam-
ples were obtained 4 h, 6 h and 16 h after I/R), suggesting
that EP ameliorates hepatic I/R injury via its anti-
inflammatory and its anti-apoptosis effect.

The effect of EP on acute fatal liver injury
Drug-induced acute fatal liver injury is the leading cause
of acute liver failure (ALF) in the developed countries
[43–46], and ALF has a high mortality and the treatment
is still quite challenging [43].
Concanavalin A induces autoimmune hepatitis with sig-

nificantly increased hepatic expression of TNF-α, IL-6, IL-1,
HMGB1 and NF-kB activation, EP treatment (1 h before the
Con A injection, a single dose of EP was intraperitoneally
injected to the animals in the 40 mg/kg EP group and the
80 mg/kg EP group; liver tissue samples were obtained 3 h,
6 h and 24 h after Con A injection) reduces all of these
changes and resultantly ameliorates Concanavalin induced
autoimmune hepatitis [44], which can be fatal.
D-galactosamine induces acute fatal liver injury with

significantly increased serum TNF-α, HMGB1, IFN-
gamma and endotoxin, all of these changes can be sig-
nificantly decreased by EP treatment (A single dose of
40 mg/kg EP was intraperitoneally injected 2 h after
ALF induction, samples were taken 22 h after EP injec-
tion), therefore, EP can ameliorate acute fatal liver injury
induced by D-galactosammine [45].
Acute-on-Chronic liver failure (ACLF) rats have sig-

nificantly increased serum endotoxin, TNF-α, HMGB1,
IFN-gamma and IL-18, EP administration (40 mg/kg
was intraperitoneally injected at 3 h, 6 h, 12 h, 24 h after
the induction of ACLF, and samples were taken 48 h
after the induction of ACLF) decreases all of these
changes to protect against ACLF in rats [46].
Acetaminophen is the leading cause of drug induced

ALF, and EP treatment (40 mg/kg was intraperitoneally
injected every 8 h for 24 h) can reduce liver injury at
early phase by its potent anti-inflammatory effect [43].

The effect of EP on diabetes induced liver injury
Diabetes can lead to an increased oxidative stress that
significantly contributes to diabetes-induced liver injury
[47]. Diabetes induces significantly increased total anti-
oxidant status and hepatic peroxidation. EP therapy
(50 mg/kg was intraperitoneally injected twice a day for
14 days) (instead of Ringer solution) significantly de-
creases all of these changes and resultantly ameliorates
diabetes-induced liver injury in a streptozocin induced
diabetic rat model [47].

The effect of EP on acute lung injuries
EP on SAP related acute lung injury
Acute lung injury (ALI), also addressed as mild acute re-
spiratory distress syndrome (MARDS), is a significant
health problem associated with high mortalities [8, 48];
MARDS is also a severe complication and a major feature
of MODS to SAP [8]. In patients with AP, up to 20% of all
deaths occur prior to admission to hospitals, and MARDS
is the predominant cause of death in these cases [48]. In
SAP, the MARDS is the main contributing factor to early
deaths, i.e. within the first week after admission [49]. The
inflammatory mediators and the profound SIRS are
thought to play a key role in the development of MARDS
[3, 50, 51] because the significantly increased serum in-
flammatory mediators activate alveolar macrophages to
release chemotactic mediators that play an important role
in recruiting neutrophils, which work together with the el-
evated circulating pro-inflammatory mediators to severely
damage alveolar epithelium and microvascular endothe-
lium, and resultantly causes the increased permeability of
the alveolar-capillary barrier and pulmonary edema. This
theory is supported by the following evidence in which the
alveolar-capillary barrier is severely injured and the pul-
monary permeability is significantly increased in an ex-
perimental acute necrotizing pancreatitis [6]. The anti-
inflammatory agent EP (40 mg/kg intraperitoneally
injected every 6 h for 48 h) markedly decreases the lung
permeability and alleviates pulmonary edema at least
partly by reducing pulmonary inflammation and neutro-
phils infiltration in a couple of experimental SAP models
with acute lung injury [6, 10, 52, 53]. Increased local and
systemic levels of IL-6 are associated with inflammatory
process, including neutrophil infiltration of the alveolar
space, resulting in lung injury [54]. EP treatment reduces
the IL-6-induced release of IL-8 and decreases IL-6-
induced neutrophil adhesion to the lung epithelial cells
[54], and this anti-inflammatory effect is via Akt and NF-
kB p65 pathway [55]. Therefore, EP reduces secretory and
adhesive potential of lung epithelial cells under inflamma-
tory conditions [54, 55].

The effect of EP on endotoxin-induced acute lung injury
LPS intravenous injection induces significantly increased
plasma TNF-α, IL-6; LPS administration also induces
significantly increased expression of HO-1 and iNOS in
lung tissue. In addition, LPS also induces lung edema
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and infiltration of neutrophils, all of these changes can
be reduced by EP treatment (intravenously infused for
4 h into the animals in the following 3 different EP con-
centration groups: 20, 40 and 60 mg/kg, and lung tissue
samples were harvested 6 h after EP administration)
[56]. In a murine model, LPS intratracheal administra-
tion significantly increases the release of TNF-α, IL-6,
IL-1 and HMGB1 into bronchoalveolar lavage, all of
these changes can be markedly decreased by EP treat-
ment (100 mg/kg was intraperitoneally injected at 0 h,
12 h, 24 h and 48 h after the induction of ALI), and early
administration of EP can improve survival [57].

The effect of EP on hyperoxia-induced acute lung injury
Prolonged exposure to hyperoxia results in ALI, accom-
panied by significantly increased levels of proinflammatory
cytokines and a large number of leukocyte infiltration in
the lungs [58]. HMGB1 plays a critical role in mediating
hyperoxia induced ALI through the recruitment of
leukocytes into the lung [58], a single dose of EP treat-
ment (40 mg/kg intraperitoneal injection prior to hyper-
oxia exposure, and lung tissue samples were taken 24 h
after hyperoxia exposure) attenuates the hyperoxia in-
duced ALI probably by inhibiting HMGB1 secretion from
hyperoxic macrophages [58], suggesting that EP may treat
oxidative inflammatory lung injury in patients receiving
hyperoxia through mechanical ventilation.

The effect of EP on macrophages, systemic
inflammation and sepsis
EP inhibits LPS-stimulated macrophages to release both
early and late inflammatory cytokines
In cultured macrophages, LPS stimulates the macrophages
to release TNF-α, IL-6, and HMGB1, and these changes
can be effectively prevented by EP treatment (cells were
incubated with 25 mM EP for 48 h) [59]. LPS stimulates
macrophages to release HMGB1 and up-regulates iNOS
expression, EP treatment (cells were incubated with
25 mM EP for 24 h) can reverse these effects by inducing
heme oxygenase-1 (HO-1) via a p38 MAKP- and NRF2-
dependent pathway [60]. HMGB1 is a ubiquitous nuclear
protein that can be actively secreted by immunocompe-
tent cells, including monocytes, macrophages and neutro-
phils, and this highly conservative nuclear protein is an
important late inflammatory mediator in sepsis [61].
HMGB1 can also be passively released by dying cells or
necrotic tissue [25]. HMGB1 plays an important role in
modulating inflammatory cascade in activated
macrophages: HMGB1 stimulates macrophages to release
TNF-α and IL-6, while HMGB1neutralizing antibody can
block TNF-α release [62, 63] and knocking-out HMGB1
receptor can reverse IL-6 release [63]. In macrophages
cultures, LPS stimulates macrophages to release high con-
centrations of early inflammatory cytokines such as TNF-
α, IL-6 and IL-1 and the late mediator HMGB1 [61–63],
and EP treatment reduces these changes by specifically
inhibiting the activation of p38 mitogen activated protein
kinase and NF-kB, two signalling pathways that are critical
for cytokines release [61].

EP prevents lethality in mice with sepsis and systemic
inflammation
Sepsis is a serious clinical syndrome, which is mediated
by an early (such as TNF-α and IL-1) and late (such as
HMGB1) pro-inflammatory cytokine response to infec-
tion [61]. Delayed treatment with EP (40 mg/kg intraper-
itoneally injected 24 h, 30 h, 48 h, and 54 h after cecal
puncture, the experiment finished 120 h after cecal
puncture) significantly increases survival and markedly
reduces circulating levels of HMGB1 in mice with sepsis
[61]. EP increases survival and decreases serum HMGB1
by up-regulation of HO-1 level in septic animals [60]. In
an established septic animal model, sepsis induces sig-
nificantly increased plasma TNF-α, IL-6 and IL-1; sepsis
also increases hepatic lactate, lactate/pyruvate levels and
down-regulates hepatic ATP and energy charge levels;
all of these effects can be reversed in the septic mice
treated with a single dose of EP (40 mg/kg intraperito-
neal injection, and the liver samples were taken 6 h after
EP injection), suggesting that EP protects against sepsis
by regulating energy metabolism and inhibiting systemic
inflammation [64]. In addition, EP improves sepsis out-
come by reducing mitochondrial swelling and dysfunc-
tion in experimental sepsis [65]. Septic patients have
significantly increased serum HMGB1 levels, which can
induce endothelial cell hyperpermeability via BAX and
BCL-2 regulated apoptosis, EP can reverse these detri-
mental effects to prevent endothelial cell injury in ex-
perimental sepsis [66]. Furthermore, EP can effectively
reduce vascular endothelial inflammation and this effect
at least partly depends on the attenuation of endoplas-
mic reticulum stress [67].

The effect of EP on acute kidney injuries
Acute kidney injury (AKI) is a common serious compli-
cation of SAP and sepsis. Endotoxin and ROS play an
important role in the pathogenesis of AKI and SAP.

The effect of EP on sepsis-induced acute renal failure
Sepsis is a common cause of acute renal failure (ARF),
and the incidence of sepsis increases markedly after age
of 50 [68]. Sepsis induces significantly increased plasma
TNF-α, creatinine and causes tubular damage and mul-
tiple organ injury, sepsis also induces increased mRNA
for TNF-α, tissue factor, PAI-1, and urokinase-like
plasminogen activator; all of these changes can be sig-
nificantly decreased by EP treatment (a single dose of
40 mg/kg was intraperitoneally injected 12 h after cecal
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puncture and experiment finished 24 h after cecal punc-
ture), therefore, EP attenuates sepsis-induced ARF in an
animal model [68].

The effect of EP on diabetic nephropathy
Diabetic nephropathy is a common complication [69].
Diabetic rats have increased laminin, type IV collagen
and fibronectin deposition in the glomeruli and these
animals also have albuminuria and increased NADPH-
dependent ROS generation; all of these changes can be
significantly decreased by EP treatment (40 mg/kg intra-
peritoneally injected every other day for 12 weeks) [69],
suggesting that EP might be a novel therapy to treat dia-
betic nephropathy.

The effect of EP on cisplatin-induced nephrotoxicity
Cisplatin-induced nephrotoxicity is common in clinical
practice. Cisplatin induces significantly increased perfu-
sion pressure, serum urea, creatinine, total oxidant sta-
tus and tissue lipid peroxidation, all of these changes
can be significantly decreased by EP therapy (50 mg/kg
was intraperitoneally injected once a day for 5 days)
[70], suggesting that EP has a protective effect against
cisplatin nephrotoxicity.

The effect of EP on heart injury
EP attenuates acute viral myocarditis
Inflammation plays important roles in the pathogenesis
of coxsackievirus B3 (CVB3)-induced acute viral myo-
carditis (AVMC) [71]. CVB3 virus induces increased
levels of HMGB1, TNF-α, IL-1, IL-17 in the heart and
serum of the AVMC mice, and all of these changes can
be significantly decreased by EP treatment (40 mg/kg/
day and 80 mg/kg/day intraperitoneally injected on day
5, day 6 and day 7 post infection), and this protective ef-
fect is associated with inhibition of HMGB1/RAGE/NF-
kB pathway [71].

EP protects against myocardial ischemia/reperfusion
HMGB1 is a late inflammatory cytokine that triggers and
amplifies the inflammation cascade following ischemia/re-
perfusion (I/R), and EP can inhibit HMGB1 release in I/R
models [72]. I/R procedure induces increased levels of
HMGB1, TNF-α, IL-6, these changes can be significantly re-
duced by EP treatment (a single dose of EP with 40 mg/kg
concentration was intravenously injected prior to the 48 h
reperfusion) instead of PBS, the accumulation of HMGB1 is
deleterious to the heart following myocardial I/R [72]. In an-
other rat cardiac I/R model, EP treatment significantly
preserves cardiac function, enhances tissue ATP levels, at-
tenuates myocardial oxidative injury and reduces apoptosis
following myocardial ischemia [73]. In another regional
heart I/R rat model, EP therapy (a single dose of 40 mg/kg
was intraperitoneally injected 1 h prior to the 24.5 h I/R
procedure) inhibits I/R-induced NF-kB translocation and
neutrophil activation in myocardium, EP also decreases
the serum levels of inflammatory cytokines, and resul-
tantly EP improves cardiac function and reduces in-
farct size after regional I/R injury [74]. In another
prolonged rat myocardial ischemia model, EP therapy
enhances myocardial ATP levels, attenuates myocar-
dial oxidative injury, and resultantly decreases infarct
size and preserves cardiac function [75].
The effect of EP on acute brain injury
EP attenuates traumatic brain injury
In a rat model of unilateral cortical contusion injury
(CCI), EP treatment (40 mg/kg was intraperitoneally
injected 1 h, 12 h and 24 h after brain injury, brain sam-
ples were harvested 72 h after brain injury) significantly
decreases the number of dead/dying cells in the ipsilat-
eral hippocampus and improves recovery of beam-
walking, neurological scores after injury, suggesting that
EP treatment after CCI is neuroprotective and improves
neurobehavioral recovery [76]. Traumatic brain injury
(TBI) can cause brain cell death/dying, and the/dead/
dying cells can release nuclear protein HMGB1 that can
activate inflammatory pathways, therefore, the HMGB1
inhibitor EP (75 mg/kg was intraperitoneally injected at
5 min, 1 h, 6 h after brain injury, and brain samples were
harvested 24 h after brain injury) significantly decreases
the expressions of HMGB1, TLR4, NF-kB DNA binding
and inflammatory mediators, such as, TNF-α, IL-1 and
IL-6. EP treatment also ameliorates beam walking per-
formance, brain edema and cortical apoptotic cell death,
suggesting that the protective effects of EP maybe medi-
ated by the reduction of HMGB1/TLR4/NF-kB-medi-
ated inflammatory response in the injured rat brain [77].
Many TBI survivors sustain neurological disability and
cognitive impairment due to the lack of defined therapy
to reduce TBI-induced long-term brain damage, EP
(40 mg/kg was intraperitoneally injected at 15 min, 12 h,
24 h, 36 h, 48 h, 60 h after brain injury, and brain sam-
ples were taken 28 days after brain injury) confers long-
term neuroprotection against TBI, possibly via breaking
the vicious cycle among matrix metalloproteinase-9-
mediated blood–brain barrier disruption, neuroinflam-
mation and long-lasting brain damage [78]. Experimen-
tal TBI is known to produce an acute increase in
cerebral glucose utilization, followed rapidly by a gener-
alized cerebral metabolic depression. Early administra-
tion of EP (40 mg/kg was intraperitoneally injected at
0 h, 1 h, 3 h, 6 h after brain injury, and brain samples
were harvested 24 after brain injury) enhances cerebral
glucose metabolism and neuronal survival, therefore, EP
therapy is able to attenuate cerebral metabolic depres-
sion and neuronal loss after traumatic brain injury [79].
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EP ameliorates acute intracerebral haemorrhage-induced
brain injury
Intracerebral haemorrhage (ICH) is a devastating disease
with no specific treatment. Increasing evidence indicates
that inflammatory response plays an important role in
ICH-induced brain damage [80, 81]. In a murine model of
ICH, EP treatment (3 concentrations of EP at 10 mg/kg,
50 mg/kg and 100 mg/kg were intraperitoneally injected
to animals in 3 separate groups at 1 h, 6 h, 12 h after the
induction of ICH, and brain samples were harvested 72 h
after the induction of ICH) reduces brain edema and im-
proves neurological function after ICH. EP also protects
neurons from haemoglobin-induced cell death in vitro
and neuronal cell degeneration in ICH mice. EP exerts
anti-inflammatory effects via inhibiting microglia activa-
tion, NF-kB activation and decreasing TNF-α, IL-1 pro-
duction. These results indicate that EP protects ICH
induced brain damage via anti-cell death and anti-
inflammatory actions [80]. In another rat ICH model, EP
treatment (40 mg/kg was intraperitoneally injected at 1 h,
6 h and 12 h after the induction of ICH, and brain samples
were harvested 72 h after the induction of ICH) signifi-
cantly reduces inflammatory cell infiltration and expres-
sion of IL-1, matrix metalloproteinase-9 in the
perihematoma after ICH. EP therapy also shows less brain
edema, less haemorrhage and greater neurobehavioral
function. The results suggest that EP ameliorates inflam-
matory damage after ICH via HMGB1-RAGE signalling
pathway [81].

EP alleviates early brain injury induced by subarachnoid
hemorrhage
Subarachnoid hemorrhage (SAH) is also a devastating
disease with no specific treatment [82]. In a rat model of
SAH, EP treatment (A single dose of EP at 100 mg/kg
concentration was intraperitoneally injected 1 h after the
induction of SAH, and brain samples were harvested
24 h after the induction of SAH) inhibits microglia acti-
vation and reduces the expression of inflammatory cyto-
kines TNF-α and IL-1; EP therapy also inhibits apoptosis
and prevents the disruption of tight junction proteins to
stabilize the BBB [82].

EP decreases the cerebral ischemic injury
In a rat cerebral ischemia model, EP administration
(intraperitoneally injected at the doses of 1, 4, 20 and
40 mg/kg at 4 h and 24 h after the brain ischemia injury,
and the size of infarct was assessed after 2 days of reper-
fusion) significantly reduces infarct volume and also sup-
presses the infarct volume related motor impairment,
neurological deficits, microglial activation and inflamma-
tory cytokine expression. Furthermore, the neuroprotec-
tive effect is still evident even when the EP treatment is
given as late as 24 h after the cerebral ischemia induction,
suggesting that EP can protect against cerebral ischemia
injury with a wide therapeutic window [83].

EP exerts neuroprotective effects against hypoxic-
ischemic brain jury
Neonatal hypoxic-ischemic (HI) brain injury causes
severe brain damage in newborns. Following HI injury,
rapidly accumulating oxidants injure neurons and inter-
rupt ongoing developmental processes [84]. EP therapy
(a single dose of EP at 25 mg/kg was intraperitoneally
injected 30 min after HI brain injury, and brain samples
were harvested at 3 h, 6 h, 12 h, 24 h,48 h,72 h, 7 days
and 4 weeks after HI brain injury) and the insulin-like
growth factor-1 (IGF-1) treatment protect the neonatal
rats brain against HI injury and improve neurological
performance and these effects are additive [84].

The effect of EP on inflammatory bowel disease
Inflammatory bowel disease is characterized by overpro-
duction of inflammatory mediators and reactive oxygen
that induce intestinal damage and chronic inflammation.
Inflammatory bowel disease is common but the treat-
ment is still challenging [85, 86]. In a rat TNBS-induced
colitis model, EP treatment (20 mg/kg, 40 mg/kg and
100 mg/kg were orally administered to 3 separate groups
once a day for 7 days) significantly recovers the mucosal
cytoarchitecture by reducing neutrophil infiltration and
decreasing the levels of multiple inflammatory mediators
(IL-1, IL-17, IL-6, IL-23, iNOS) [86]. EP therapy (40 mg/
kg was intraperitoneally injected once a day for 7 days)
also ameliorates experimental colitis in mice by inhibit-
ing the HMGB1-Th17 and Th1/Tcl responses [85].

The effect of EP on tumour
As inflammation is linked to cancer growth, the anti-
inflammatory agent EP is expected to have anti-tumor activ-
ity, and EP administration (40 mg/kg and 80 mg/kg intra-
peritoneally injected once a day for 9 days) significantly
inhibits hepatic tumor growth [87]. The low-cost EP
(40 mg/kg intraperitoneally injected twice a day for 3 weeks)
elicits a potent immune-based antitumor response through
inhibition of indoleamine 2, 3-dioxygenase (IDO), a key
tolerogenic enzyme for many human tumors [88]. EP treat-
ment (40 mg/kg intraperitoneally injected once a day for
2 weeks) inhibits tumor angiogenesis by inhibition of the
NF-kB signalling pathway [89]. HMGB1 and RAGE are
significantly expressed in gastric adenocarcinoma, and EP
treatment (40 mg/kg and 80 mg/kg intraperitoneally
injected once a day for 2 weeks) inhibits gastric cancer
growth via regulation of the HMGB1-RAGE and Akt path-
ways [90]. EP administration (cultured cancer cells were
treated with EP at 10 mM and 20 mM for up to 120 h) also
inhibits growth and invasion of gallbladder cancer cells via
down-regulation of the HMGB1-RAGE axis [91].
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Hepatocellular carcinoma (HCC) develops in response to
chronic hepatic injury. Although p53 is usually regarded as
a tumor suppressor, its constant activation can promote
pro-tumorigenic inflammation, at least in part, via inducing
HMGB1 release. EP administration (40 mg/kg was intraperi-
toneally injected once every other day for 7 weeks) prevents
tumorigenesis in rat livers by restoring p53, and EP treat-
ment does not affect p53-mediated hepatic apoptosis [92].
Furthermore, EP treatment (Cultured cancer cells were
treated with 10 mM, 20 mM EP up to 72 h) induces apop-
tosis and cell-cycle arrest in G phase in hepatocellular car-
cinoma cells [93]. In addition, EP treatment (Cultured
cancer cells were treated with 10 mM, 20 mM, 40 mM EP
up to 120 h) defangs some malignancy-associated properties
of prostate cancer cells including proliferation, invasion and
anchorage-independent growth [94]. Taken together, EP
may have a potential as a new multi-functional compound
for cancer therapy.

Molecular mechanisms responsible for the anti-
inflammatory effects of EP
EP does not inhibit nuclear translocation of NF-kB family
members but attenuates NF-kB DNA binding in an experi-
mental colitis model [95], more specifically, EP inhibits NF-
kB activation by alkylating a critical cysteine residue (Cys38)
in the p65 subunit of the NF-kB heterodimer, and alkylation
of Cys38 interferes with DNA-binding by the transcription
factor [1, 2]. EP also interacts with NF-kB subunits, Rel A
and p50 to inhibit their functions at multiple points, for ex-
ample, EP is able to inhibit the nuclear association of Rel A
after TNF-α treatment [96]. At least some of the anti-
inflammatory effects EP are related to its ability to scavenge
ROS, since EP is an anti-oxidant [1, 2, 12], and oxidative
stress is able to activate NF-kB-dependent gene transcription
[1, 2, 12]. EP not only prevents nuclear-to-cytoplasmic
translocation of HMGB1 [95], but also inhibits cytoplasmic
HMGB1 to be released extracellularly [12]. Moreover, EP in-
hibits HMGB1 release from primary microglial cells via dir-
ect intracellular Ca (2+) chelation [97], and EP also regulates
inflammation and exerts a neuroprotective effect via dual
functions, chelating intracellular Zn (2+) and promoting
NAD replenishment [98].

EP administration on translational/clinical practice
EP therapy has been confirmed to be effective and safe in
multiple SAP animal models and multiple liver injury
models, it would be reasonable to focus on SAP and
alcoholic hepatitis clinical trials next step. Intravenous in-
fusion is used to administer EP (from Critical Therapeu-
tics Inc, Lexington, MA, USA) to healthy volunteers and
high-risk patients undergoing coronary artery bypass graft
and/or cardiac valvular surgery with cardiopulmonary by-
pass. EP (90 mg/kg) was administered intravenously start-
ing after the induction of general anesthesia followed by 5
more doses of 90 mg/kg administered every 6 h. EP treat-
ment did not reduce major complications within 14 or
28 days of surgery. EP solution has a pH of less than 7, so
EP administration may contribute to acidosis, however, no
significant safety concerns were discovered during the
clinical trial because the adverse event profile for patients
receiving EP (n = 49) was similar to that of patients receiv-
ing placebo (n = 53). EP administration has been proved
to be safe in a large number of experimental animals, no
severe side effect has been reported.

Conclusions
EP is a novel anti-inflammatory agent and ROS scavenger,
this safe and low-cost compound is able to treat multiple
inflammatory organ injuries and systemic inflammation in
experimental animal models. EP also has a potential to in-
hibit multiple tumor growth, and this anti-tumor activity
may be associated with its anti-inflammatory effect.
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