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Abstract 

Background  Up to 85% of hepatocellular carcinoma (HCC) cases in China can be attributed to infection of hepatitis 
B virus (HBV). Lipid metabolism performs important function in hepatocarcinogenesis of HBV–related liver carcinoma. 
However, limited studies have explored the prognostic role of lipid metabolism in HBV–related HCC. This study estab-
lished a prognostic model to stratify HBV–related HCC based on lipid metabolisms.

Methods  Based on The Cancer Genome Atlas HBV–related HCC samples, this study selected prognosis-related 
lipid metabolism genes and established a prognosis risk model by performing uni- and multi-variate Cox regression 
methods. The final markers used to establish the model were selected through the least absolute shrinkage and selec-
tion operator method. Analysis of functional enrichment, immune landscape, and genomic alteration was utilized to 
investigate the inner molecular mechanism involved in prognosis.

Results  The risk model independently stratified HBV-infected patients with liver cancer into two risk groups. The 
low–risk groups harbored longer survival times (with P < 0.05, log–rank test). TP53, LRP1B, TTN, and DNAH8 mutations 
and high genomic instability occurred in high–risk groups. Low–risk groups harbored higher CD8 T cell infiltration 
and BTLA expression. Lipid–metabolism (including “Fatty acid metabolism”) and immune pathways were significantly 
enriched (P < 0.05) in the low–risk groups.

Conclusions  This study established a robust model to stratify HBV–related HCC effectively. Analysis results decode 
in part the heterogeneity of HBV–related liver cancer and highlight perturbation of lipid metabolism in HBV–related 
HCC. This study’s findings could facilitate patients’ clinical classification and give hints for treatment selection.
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Background
Accounting for 85–90% of primary liver cancer world-
wide [1], hepatocellular carcinoma (HCC) ranks as the 
4th attribution of carcinoma–related death [2]. In China, 
up to 85% of live carcinoma with infection of hepatitis 
B virus (HBV) [3]. Poor recovery and high recurrence 
characterize HBV–related HCC cases [4]. HBV–induced 
HCC has high intratumoral heterogeneity, and current 
therapy has obtained rare achievements [5]. Exploring 
this heterogeneity to effectively stratify patients with 
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potentially different survival rates and underlying molec-
ular mechanisms could inform prognosis and treatment 
selection.

Lipid metabolism is an energy source that can support 
rapid cell division, and it functions in micro–environmen-
tal adaptation and cell signaling in HCC [6, 7]. Perturba-
tion of lipid metabolism underlies tumorigenesis [8, 9]. In 
HBV–related HCC, lipid metabolism is a potential driv-
ing force and its perturbation plays an important role in 
hepatocarcinogenesis [6, 7]. In turn, HBV infection can 
affect pathways of lipid metabolism, including “fatty acid 
metabolism pathway” and “phospholipid and cholesterol 
metabolism pathway”, which ultimately result in meta-
bolic dysregulation [10]. Thus, it is crucial to investigate 
the function of lipid metabolism and its potential influ-
ence on patients’ survival in HBV+ HCC.

Several studies have developed prognostic biomark-
ers based on lipid metabolism for HCC [11, 12], but have 
ignored the high heterogeneity of HBV–related HCC. 
Little attention has been paid to HBV–related HCC, and 
no specific prognostic model based on lipid metabolism 
has been developed.

Another study discovered a significant correlation 
between immune cells of the tumor microenviron-
ment (TME) and lipid-metabolism, potentially indica-
tive of lipid metabolism’s immune regulation function 
[8]. Chronic HBV infection can induce immune imbal-
ance [13] and immune suppression [14]. HBV–positive 
HCC tumors have significantly lower expression levels 
of NK and CD8+ T cells than HBV-negative HCC [15]. 
These previous findings suggest that viral infection 
might shape a unique TME and that lipid metabolism 
might modulate the immune system in HBV–related 
liver cancer.

For the first time, this study explored the critical prog-
nostic role of lipid metabolism in HBV-related HCC. 
The risk model is a new independent prognostic tool to 
stratify HBV–related HCC patients. The molecular char-

acteristics that differ between the two risk groups might 
be potential targets for alternative immune therapies.

Material and method
Data collection and preprocessing
RNA–seq mRNA expression profiles with matching clinic 
data of HBV-infected patients were acquired from three 
cohorts: The Cancer Genome Atlas (TCGA) database, Gao 

et al. study [16] and Roessler et al. study [17]. The HBV–
related samples of the TCGA database were obtained as the 
training set, and the HBV–related samples were obtained 
according to two previous reports: 44 and 87 TCGA HBV–
related samples, respectively [18, 19]. The final sample 
union of 44 and 87 is 112. Thus, the training set includes 
112 unique samples. The risk model was validated in two 
independent datasets: 159 HBV–related samples with over-
all survival (OS) information collected from the Gao et al. 
study; 55 active HBV replication chronic patients with OS 
and relapse-free survival (RFS) information derived from a 
clinical trial cohort of Roessler et al. study, in which patients 
underwent radical resection with liver cirrhosis-related to 
HBV or HBV infection history [17].

Patients with less than 10 days of OS were eliminated 
because HCC might not have been the cause of death. 
In addition, 558 genes included in 21 lipid–metabolism 
pathways derived from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) were included in this study by 
reference to Hao et  al. [8]. To eliminate batch effects, 
gene–expression levels were z-score–normalized and 
subsequent analyses were based on the normalized data.

Prognostic risk model construction and validation
Uni-variate and multi-variate Cox regression methods 
were conducted to screen for lipid–metabolism genes 
related to prognosis to include in the risk model, The 
regression analysis filtered out 45 prognosis–related 
lipid–metabolism genes. Then Least Absolute Shrink-
age and Selection Operator (LASSO) were used to 
shrink variables to optimize the model (Fig. S1). Eleven 
genes were selected from the 45 prognosis–related genes 
through the LASSO algorithm with “lambda.min” as the 
shrinkage variable. The risk model was established using 
the 11 genes with multi-variate Cox regression coeffi-
cients as the risk parameters. For each sample Si, a new 
score was calculated as follows:

in which expi indicates gene expression values in the 
sample Si. The new score of each sample, Si score, was 
defined as the prognostic risk value. Subsequently, the 
“surv_cutpoint” function (the method in the R pack-
age: “survminer”) was utilized to determine the optimal 
threshold of patients’ prognostic risk scores to separate 
samples into two different risk groups (high-risk group: 

Si score = LPCAT3exp
i
∗ (−1.227194e − 05) + CAMKK2exp

i
∗ (1.575379e − 05) + GGT5exp

i
∗ (4.809144e − 06)

+ PLD4exp
i
∗ (−6.965001e − 05) + ADCY 5exp

i
∗ (−3.380608e − 05) + PLD1exp

i
∗ (2.600955e − 05)

+UGT8exp
i
∗ (3.719908e − 04) + LIPF exp

i
∗ (2.558418e − 03) + TNF exp

i
∗ (−2.889406e − 04) +MMP1exp

i
∗ (−3.260970e − 05)

+ G6PCexp
i
∗ (−2.651959e − 07),
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patients with scores more than the optimal threshold 
value; low-risk group: patients with scores less than the 
optimal threshold value). Additionally, the importance of 
11 genes was calculated in the risk model in each cohort 
using the varImp function to evaluate their prognostic 
contributions (Fig. S2). Survival was compared between 
two different groups by Kaplan–Meier method. P value 
was examined by Log–rank test.

Pathways enrichment analysis
Through “gseKEGG”, pathway enrichment of KEGG and 
Hallmark were analyzed. The “clusterProfiler” R package 
was utilized for Gene Set Enrichment Analysis. The signifi-
cant cut–off criteria of P is less than 0.05, the absolute value 
of the normalized enrichment score is not more than 1, and 
the cutoff of false discovery rate is not more than 0.25.

Intratumoral immune cell infiltration
Intratumoral immune–cell infiltration levels were quanti-
fied using the xCell, cibersort, and ESTIMATE methods 
in the “IOBR” and “estimate” R packages. Intratumoral 
immune infiltration was evaluated with the “gsva” func-
tion based on the expression of corresponding metagenes 
derived from an immunogenomic study [20]. The cluster-
ing was based on the k–means algorithm. The intergroup 
comparisons were carried out using Fisher’s exact test. 
The visual graphs of the analysis results were boxplots 
and heatmaps.

Genetic alteration analysis
Mutation analysis of the TCGA HBV–related HCC cohort 
was conducted to compare genetic alterations in two risk 
groups. Fisher’s exact test was used to assess the statistical 
significance. The genetic alteration analysis results were vis-
ualized through the maftools R package [21]. The MATH 
value in each tumor was calculated as described in a pre-
vious study [22]: MATH = 148.26 × MAD/median. MAD 
is the median absolute deviation, and median denotes the 
median mutation allele fragments value at cancer–specific 
mutation locus. Tumor mutation burden (TMB) values 
were derived from the R package: “TCGAmutations”.

Statistical analyses
Statistical analyses were conducted in R software with 
version 4.1.0. The clinical features comparison between 
the two groups were examined by Fisher’s exact test. 
Mutation differences were compared by utilizing Fisher’s 
exact test. Survival analysis was conducted by Kaplan–
Meier method and P values were examined by Log–rank 
test. Other intergroup differences were compared using 
the Wilcoxon rank–sum test. The significant statistics 
criterion of P is not more than 0.05.

Results
Lipid metabolism–related prognostic signature 
identification
Uni- and multi-variate Cox regression methods were 
implemented on 558 lipid metabolism–related genes 
to identify prognosis–related ones in the TCGA HBV–
related HCC dataset with disease–free interval (DFI) sur-
vival data. HBV–related HCC showed heterogeneity in 
OS. Within 2 years, HBV+ HCC patients had poorer sur-
vival than HBV– patients in the TCGA HBV–related live 
cancer cohort, whereas after 2 years, the survival trend 
was the opposite (Fig. S3). Considering lipid metabo-
lism’s important function in tumorigenesis, this study 
developed a lipid metabolism-based prognostic model of 
HBV+ HCC. In total, 59 genes were related to prognosis 
in uni-variate Cox regression analysis. Next, these genes 
were analyzed using multi-variate Cox regression and 
43 genes significantly (P  <   0.05) related to survival were 
selected. The coefficients of multi-variate Cox regression 
were set as the risk parameters. Finally, these 43 genes 
were screened using LASSO analysis (Fig. S1) to identify 
the most prognostic genes, and 11 genes were identified 
to include in the prognostic risk model.

The mRNA expression patterns and correspond-
ing protein expression in HBV+ liver carcinoma and 
normal tissue adjacent to tumor (NAT) of these 11 
genes were examined. In the TCGA HBV–related 
HCC cohort, eight genes showed significantly differ-
ent expression levels between NAT and HBV+ HCC 
groups. Seven of the genes (MMP1 being the exception) 
showed significantly lower expression in HBV+ HCC 
(P < 0.05; Fig. S4A). In the Gao et al. cohort, nine genes 
showed significantly different expression levels between 
HBV+ HCC and NAT. Seven genes had lower expres-
sion in HBV+ live cancer compared with NAT samples, 
with LPCAT3 and MMP1 being the exceptions (P < 0.05; 
Fig. S4B). Protein expression data were unavailable for 
the 11 markers in the TCGA HBV–related HCC cohort 
but available for 5 of the 11 markers in the Gao et  al. 
cohort. All five markers’ protein expression levels were 
significantly lower in HBV+ live cancer than in NAT 
samples (P < 0.001; Fig. S4C).

Prognostic risk model construction and validation 
of predictive performance
After identifying lipid metabolism–related prognosis 
signatures, the prognostic risk model based on these 
11 markers was constructed. For each sample, the risk 
value was calculated based on the product of risk-score 
parameters and the expression value of the 11 genes (see 
Materials and methods). On the basis of risk value, sam-
ples were divided into two risk groups (named high– and 
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low–risk groups). The clinical features of the two risk 
groups in both cohorts were listed in Tables 1 and 2. In 
the TCGA HBV–related HCC patients, tumor stage dis-
tribution was significantly different between the two 
groups. The high–risk patients harbored larger frac-
tions of stage II and III tumors (Table 1, 31.8 and 54.5%, 
respectively, P = 0.0001216) and a larger proportion of 
stage I in low–risk tumors (Table 1, 60%, P = 0.0001216). 
In Gao et al. cohort, the distribution of Barcelona clinic 
liver cancer stage (BCLC) and the distribution of tumor 
size was significantly different in the two risk groups, with 
larger proportions of small tumors (Table 2, P = 0.002239, 
<= 5.5 cm; 75%) and stage A tumors of BCLC (Table 2, 
P = 0.009862, 61.1%) in the low–risk patients.

Subsequently, survival analysis was utilized to determine 
whether this risk model could effectively stratify patient 
survival in the TCGA HBV–related HCC and another 
two independent cohorts, including Gao et  al. cohort 
and Roessler et  al. cohort. Kaplan–Meier curve showed 
a significantly worse prognosis of high–risk patients in 
the TCGA HBV–related HCC dataset (Fig.  1 A, B; OS: 
P < 0.001, DFI: P = 0.002). The Gao et  al. cohort consist-
ently showed the same trend (Fig. 1 C; OS: P = 0.005), in 
which low–risk patients exhibited better survival. This 
study obtained 55 active HBV replication chronic patients 
with overall survival (OS) and RFS information from the 
Roessler et  al. cohort. The risk model divided the cohort 
into two risk groups, with survival analysis showing a 
significant difference in RFS between the two groups. In 

addition, the high-risk groups had poorer survival (Fig. 
S5A; P = 0.033, HR = 2.12) than low-risk group. The OS 
showed survival probability difference among different 
follow-up periods (Fig. S5B; P = 0.47, HR = 1.35), in which 
high-risk groups showed poorer OS after about 32 months 
but better OS within about 32 months.

The risk model can independently predict prognostic 
for HBV–related HCC
Survival analytic results showed the prognostic capac-
ity of the risk model. Next, to explore whether the 
model can independently predict survival, uni- and 
multi-variate Cox regression analysis were carried out 
in the TCGA and Gao et  al. datasets. The uni-variate 
Cox regression method showed the tumor stage and 
the risk score significantly associated with OS (Fig. 1 D; 
risk score: P = 0.00027, hazard ratio [HR] = 3.7; tumor 
stage: P = 1.3E–06, HR = 5.7) in the TCGA HBV–related 
HCC cohort. Risk score (Fig.  1 E; P = 0.0079, HR = 3.5, 
95% CI = 1.4–9) and tumor stage (Fig.  1 E; P = 0.0083, 

Table 1  Clinical pathological characteristics of patients and the 
correlation between those parameters and overall survival in 
two risk groups for the TCGA cohort. BCLC, Barcelona clinic liver 
cancer stage

Variable High–risk Low–risk P
n = 22 (21.6%) n = 80 (80.4%)

Sex 0.3907

  Male 19 (86.4%) 61 (76.3%)

  Female 3 (13.6%) 19 (23.8%)

Age, years 0.1106

   > 60 3 (13.6%) 26 (32.5%)

   < =60 19 (86.4%) 54 (67.5%)

Tumor stage 0.0001216

  I 3 (13.6%) 48 (60%)

  II 7 (31.8%) 17 (21.3%)

  III 12 (54.5%) 14 (17.5%)

  IV 0 (0%) 1 (1.3%)

Histological grade 0.5494

  G1 3 (13.6%) 5 (6.3%)

  G2 7 (31.8%) 35 (43.8%)

  G3 11 (50%) 34 (42.5%)

  G4 1 (4.5%) 6 (7.5%)

Table 2  Clinical pathological characteristics of patients and the 
correlation between those parameters and overall survival in two 
risk groups for the Gao et al. cohort. BCLC, Barcelona clinic liver 
cancer stage

Variable High–risk Low–risk P
n = 123 (77.4%) n = 36 (22.6%)

Sex 0.3465

   Male 101 (82.1%) 27 (75%)

   Female 22 (17.9%) 9 (25%)

Age, years 0.101

   > 60 33 (26.8%) 15 (41.7%)

   < =60 90 (73.2%) 21 (58.3%)

Tumor number 0.8322

   > 1 32 (26%) 10 (27.8%)

   < =1 91 (74%) 26 (72.2%)

Tumor size, cm 0.002239

   > 5.5 67 (54.5%) 9 (25%)

   < =5.5 56 (45.5%) 27 (75%)

Lymph node metastasis 0.4027

   yes 1 (0.8%) 1 (2.8%)

   no 122 (99.2%) 35 (97.2%)

BCLC stage 0.009862

   A 46 (37.4%) 22 (61.1%)

   B 47 (38.2%) 5 (13.9%)

   C 30 (24.4%) 9 (25%)

TNM stage 0.3525

   I 71 (57.7%) 20 (55.6%)

   II 9 (7.3%) 5 (13.9%)

   III 42 (34.1%) 10 (27.8%)

   IV 1 (0.8%) 1 (2.8%)
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HR = 2.2) were significantly related to OS in the Gao 
et al. also. Multi-variate Cox regression showed risk score 
and prognosis remained significantly related after adjust-
ment of other clinic factors in both the TCGA (Fig. 1 D; 
P = 0.026, HR = 2.3) and Gao et al. (Fig. 1 E; P = 0.0073, 
HR = 3.6) cohorts. Uni- and multi-variate Cox regres-
sion were also conducted for DFI in the TGCA dataset 
and relapse–free survival (RFS) in the Gao et al. cohort, 
respectively (Fig. S6). The results show that risk score can 
predict prognosis for HBV–related HCC, independent 
of other clinicopathological factors, and that lower risk 
scores indicate longer survival times.

Decoding TME context in two risk groups
To decode the immune-cell landscape of two differ-
ent groups, the infiltration of immune–cells was quan-
tified (see Materials and methods). Results using the 
xCell methodology indicated that in the low–risk 
patients in each dataset, endothelial cells, macrophages, 
M1 and M2 macrophages all accounted for larger pro-
portions (Fig.  2 A, TCGA HBV–related HCC cohort: 

P = 3.43E–05, P = 0.0061, P = 0.0030, and P = 0.03; Fig. 2 
C, HBV–related HCC in the Gao et al. dataset: P = 0.016, 
P = 0.0059, P = 9.57E–05, and P = 0.031). In the low–risk 
patients, Plasmacytoid dendritic cells (pDCs) harbored 
higher infiltration (TCGA HBV–related HCC cohort: 
P = 1.50E–02; Gao et al. cohort: P = 6.31E–05).

According to the cibersort method, the low-risk 
patients harbored significantly larger proportions of CD8 
T cells and dendritic-resting cells (TCGA HBV–related 
HCC dataset: P = 0.039, P = 0.024, respectively; Gao et al. 
dataset: P = 0.00018, P = 0.0057). In the low–risk patients 
of the Gao et al. dataset, activated mast cells and M1 mac-
rophages harbored significantly higher expression levels 
(P = 0.0053, P = 0.047, respectively). M0 macrophages 
exhibited a converse trend, with higher proportions in 
the high–risk patients (TCGA HBV–related HCC cohort: 
P = 0.29, Gao et al. cohort: P = 0.00058; Fig. S7).

Consistently, StromalScore, ImmuneScore, and ESTI-
MATEScore quantified by the ESTIMATE method 
showed a higher score in low–risk cases (Fig.  2 B, D; 
TCGA HBV–related HCC cohort: P = 0.0018, P = 0.013, 

Fig. 1  Predictive performance and independent prognostic capacity of the risk model. A, B Kaplan–Meier survival curves of OS and DFI stratified by 
the risk model of the TCGA HBV–related HCC tumors. C OS Kaplan–Meier survival curves for HBV–related HCC tumors stratified by the risk model in 
the Gao et al. cohort. D, E) Uni- and multi-variate Cox regression methods results based on OS of the TCGA and Gao et al. cohorts, respectively
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P = 0.003, respectively; P = 2.2E–07, P = 6.3E–10, 
P = 5E–10, respectively in Gao et  al. cohort; Wilcoxon 
rank–sum test). Overall, immune cell infiltration was sig-
nificantly greater in the low–risk groups.

The intratumoral immune composition was explored 
more comprehensively by assessing 28 immune–cell sub-
populations reported in a pan–cancer immunogenomic 
analysis [20]. In general, the high–risk groups showed 
“cold” tumors with lower immune cells expression levels, 
whereas the low–risk patients had “hot” tumors (Fig. 3; 
TCGA HBV–related HCC cohort: P = 0.049, Gao et  al. 
cohort: P = 2.821E–08; Fisher’s exact test).

Function enrichment characterizes high–risk and low–risk 
patients
This study performed function analysis to explore the 
intrinsic biological mechanisms between two risk 
groups and the interaction of lipid-metabolism with 
the immune microenvironment. The overlapping 
pathways were exhibited, including lipid metabolism–
related and immuno–related pathways among all the 

significant enrichment pathways in the two datasets 
(Fig.  4). The detailed and complete results are avail-
able in Fig. S8. Collectively, the results revealed that 
in the high–risk groups, “Homologous recombination”, 
“Cell cycle”, “DNA replication”, “Mismatch repair” and 
“Base excision repair” pathways significantly enriched 
(Fig.  4). “Antigen processing and presentation”, “Leu-
kocyte transendothelial migration”, and “Th17 cell dif-
ferentiation” pathways were shared among low–risk 
patients in each dataset (Fig. 4). In high–risk patients of 
both cohorts, results of Hallmark analysis also showed 
the “DNA repair” pathway significantly enriched. Met-
abolic pathways consisting of “Fatty acid biosynthe-
sis”, “Fatty acid degradation”, “Fatty acid metabolism”, 
“PPAR signaling pathway”, and “Biosynthesis of unsatu-
rated fatty acids” significantly enriched in the low–risk 
group of the TCGA HBV–related HCC cohort (Fig. 4). 
Additionally, pathways of immune, including “Leu-
kocyte transendothelial migration”, “Antigen process-
ing and presentation”, and “Th17-cell differentiation” 
showed significant enrichment in low–risk cases of the 

Fig. 2  Immune–cell infiltration. Immune–cell infiltration differences between two groups of the TCGA HBV–related HCC dataset (A, B) and Gao 
et al. cohort (C, D) quantified by xCell and ESTIMATE. * a single asterisk means P < 0.05, ** two asterisks mean P < 0.01, and *** three asterisks mean 
P < 0.001
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TCGA HBV–related HCC dataset (Fig.  4). In the Gao 
et  al. dataset, low–risk enriched more immune path-
ways, involving “Leukocyte transendothelial migration”, 
“PDL1 expression and PD1 checkpoint pathway in can-
cer”, “Th1 and Th2 cell differentiation”, “B cell receptor”, 
“Natural killer cell mediated cytotoxicity”, “Th17 cell 
differentiation”, and “T cell receptor”, and “Antigen pro-
cessing and presentation” (Fig. 4).

The immune genes’ expression [23] was also exam-
ined in two groups. A heatmap (Fig. 5 A) outlines the 

expression landscape of those genes in the two cohorts, 
and boxplots show the significantly expressed results 
between two risk groups (Fig.  5 B, P < 0.05, TCGA 
HBV–induced HCC cohort; Fig. S9, P < 0.05, Gao 
et al. cohort; Wilcoxon rank sum test). In line with the 
immune–related pathways enrichment results observed 
in low–risk groups, 17 immune–related genes, includ-
ing a co–inhibitor (SLAMF7), ligands (CD40LG, 
CXCL9), a receptor (BTLA), a cell adhesion (SELP), 
molecules involved in antigen presentation, ENTPD1, 

Fig. 3  Heatmap of 28 immune–cell infiltration. Infiltration Heatmap of immune cells in the TCGA HBV–related HCC dataset (A) and Gao et al. (B) 
cohorts. The row means the type of immune cell. The column corresponds to each sample. The upper right bar chart in each panel shows the 
proportions of “hot” and “cold” immune states in two risk groups
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Fig. 4  Functional enrichment analysis. A, B Representative and significantly enriched KEGG pathways in two risk groups of the TCGA and Gao et al. 
cohorts. C, D Hallmark pathway analysis results in two risk groups of the TCGA and Gao et al. cohorts. Green and blue indicate enriched pathways in 
high– and low-risk patients with significant P 
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GZMA, and PRF1 expressed significantly higher in 
low-risk patients of both cohorts (Fig. 5 B, Fig. S9). In 
low–risk groups, the immune checkpoint gene BTLA 
had significantly elevated expression in both cohorts. 
In the Gao et al. cohort, PDCD1 and CD274 had signifi-
cantly increased expression (Fig. S9).

More genetic mutations occurred in high–risk groups
Further exploration of gene mutation levels was con-
ducted in HBV+ HCC. As indicated in Fig.  6, the 20 
most frequently altered genes were identified. Muta-
tion of TP53 and LRP1B was identified in 40.6 and 9.9%, 
respectively, in the cohort of TCGA. In the high–risk 

Fig. 5  Immune gene expression differences between two risk groups. A Average expression heatmap of 78 immune genes. The row and column 
represent a kind of gene and a group. B Box plots of genes with significantly different expression levels between two risk groups of the TCGA HBV–
related HCC cohort
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patients, TP53 and LRP1B mutations rate had sig-
nificantly higher levels (63.6 and 27.3%, respectively) 
(Fig.  6; P < 0.05). TTN and DNAH8 showed mutation 
frequencies of 28.7 and 8.9%, respectively, in the whole 
cohort. Similar to TP53 and LRP1B, the mutation rate 
of TTN and DNAH8 were significantly higher in high–
risk patients. To further explore mutation numbers 
and genetic heterogeneity between the two groups, 
we examined TMB and MATH values and high–risk 
cases showed higher median TMB and MATH val-
ues (Fig. S10A–B; median TMB: 2.29 vs. 2.16, median 
MATH value: 86.5 vs. 83), but the differences were not 
significant.

Mutation landscape of two risk groups. The top bar 
chart shows the gene mutation counts of each sample. 
The table on the left indicates gene mutation frequency 
in two risk groups and the whole cohort. The heatmap 

portrays the gene mutation landscape, in which dif-
ferent mutation types were annotated with different 
colors. The bar plot next to the heatmap indicates the 
mutation type proportions in all samples for each gene. 
The bar graph on the far right exhibits mutation pro-
portion in two risk groups for each gene. The bottom 
bar chart shows clinical characteristics. * a single aster-
isk means P < 0.05, ** two asterisks mean P < 0.01.

Discussion
The assessment of intratumoral immune–cell infil-
tration revealed that high–risk patients tended to be 
cold tumor whereas low–risk groups had hot tumors. 
Significantly higher expression of BTLA was found in 
low–risk groups. Cai et  al. revealed that upregulation 
of BTLA can restrict T–cell responses [24], suggesting 
that blockage of BTLA might be a potential therapeutic 

Fig. 6  The gene mutation landscape of the TCGA HBV–related HCC cohort
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option for low–risk groups. In addition, in the Gao 
et  al. cohort, immune checkpoint genes’ expression 
including PDCD, CD274 and CTLA4, was significantly 
elevated in low–risk groups. A previous study found 
that immune checkpoint genes, including those three 
genes, showed significantly increased expression in 
“immune high” HBV patients [25], which is consistent 
with our results.

Function analysis showed DNA replication and 
repair–related pathways significantly enriched in high-
risk patients, which might indicate that more genomic 
alterations occurred in these patients. Consistently, the 
genomic mutation analysis revealed more gene muta-
tions (including in TP53, LRP1B, DNAH8, and TTN) in 
high–risk cases, suggestive of higher genomic instabil-
ity. Consistent with a previous report that mutations 
of TP53 and LRP1B indicate poor prognosis [26], the 
high–risk groups had more mutations in these genes 
and showed shorter survival times. As reported by 
Dong et al., mutated DNAH8 is associated with a worse 
prognosis [27] and shorter disease–free survival. Simi-
larly, this study’s high–risk groups had a higher fre-
quency of DNAH8 mutation harboring and reduced OS 
and DFI. In addition, a published study identified TP53 
and TTN as among the top ten genes with high muta-
tion rates and cancer drivers of HBV–related HCC [19]. 
All results indicated high–risk groups harbored high 
genomic instability and might be sensitive to DNA–
damaging therapy.

Comparing with other studies and contribution to existing 
knowledge
Given the high heterogeneity of HBV–induced HCC 
and the limited achievements of current therapies, 
novel strategies to stratify patients could be valuable to 
inform prognosis and potentially guide clinical therapy. 
Dysregulation of lipid metabolism can lead to tumo-
rigenesis, and there is complicated crosstalk between 
immune response and lipid-metabolism [8, 9]. In HBV–
related liver carcinoma, lipid metabolism functions 
as the driving force and affects hepatocarcinogenesis 
[6, 7]. HBV infection, in turn, can affect lipid metabo-
lism. However, most studies have focused on exploring 
prognostic markers for all HCC patients without con-
sidering HBV-related HCC’s heterogeneity. This study 
explored the lipid metabolism’s prognostic function in 
HBV–related liver cancer patients and the molecular 
mechanisms between different risk groups.

Study strengths and limitations
For the first time, based on lipid metabolism–
related genes, a prognostic model was established 

for HBV–related HCC. The lipid metabolism mark-
ers showed downregulated in HBV–related liver can-
cer. The risk model can effectively stratify patients 
into two risk groups and was validated through two 
independent datasets. The low–risk groups showed 
significantly better survival. And the model can also 
serve as an independent prognostic tool. Furthermore, 
TME, genomic alteration, and the intrinsic association 
between the immune microenvironment and lipid-
metabolism were explored between the two groups. 
High–risk groups showed lower immune-cell infiltra-
tion levels. In the low–risk group, high macrophages 
and CD8 T cells infiltration levels and elevated BTLA 
expression suggested that alternative immune therapy 
might hold promise for these patients. The results 
showed higher genomic instability in high–risk groups, 
indicating that these patients might be more sensitive 
to DNA–damaging treatment.

Certain limitations of this study should be noted. 
Although the risk model showed robust performance, 
the validation was conducted in two independent 
datasets because limited HBV–related HCC datasets, 
including transcriptome and survival information, are 
available. Thus, the risk model warrants further inves-
tigation and validation in more independent cohorts. 
In addition, corresponding potentially sensitive drugs 
of high- and low-risk groups suggested according to 
distinct TME, genomic and transcriptomic charac-
teristics need to be further explored and validated in 
both molecular mechanism and clinical trial levels. 
Although this study revealed simultaneous enrichment 
of immune and metabolism pathways in the low–risk 
groups, the inner mechanism by which metabolism 
affects the immune microenvironment, or vice versa, 
needs further exploration.

Conclusions
This work highlights the perturbation of lipid metabo-
lism in HBV–related HCC and partly shows the inner 
molecular and prognosis heterogeneity of HBV–
related liver carcinoma patients. The risk model can 
facilitate stratifying clinical HBV–related liver carci-
noma patients. The risk model based on lipid metabo-
lism can independently predict prognosis with robust 
performance and the low-risk group showed signifi-
cantly better survival than the high-risk group. Multi-
omics analysis showed distinct characteristics of two 
risk groups and the key characteristics exhibited in 
two risk groups might lead toward the development 
of different therapeutic methods. The low-risk group 
patients showed higher CD8 T cell infiltration levels 
and elevated expression of the immune checkpoint 
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gene BTLA, which implies that alternative immune 
therapy might hold promise for the low-risk group 
patients. The high–risk groups exhibited higher 
genomic instability with more gene mutation and 
enriched DNA replication and repair–related path-
ways, suggesting that the high-risk group might be 
more sensitive to DNA–damaging treatment.

Abbreviations
OS	� Overall survival
TCGA​	� The Cancer Genome Atlas
LASSO	� Least Absolute Shrinkage and Selection Operator
HCC	� Hepatocellular carcinoma
RFS	� Relapse-free survival
KEGG	� Kyoto Encyclopedia of Genes and Genomes
TME	� The tumor microenvironment
HBV	� Hepatitis B virus
NAT	� Normal tissue adjacent to tumor

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12944-​023-​01780-9.

Additional file 1: Fig. S1. Feature selection by LASSO logistic regression. 
Fig. S2. The prognostic contributions of eleven marker genes in the risk 
model. Fig. S3.Survival difference analysis between hbv + and hbv- HCC 
patients in the TCGA cohort. Fig. S4. Expression patterns comparison 
of 11 marker genes between hbv + HCC and normal samples. (A-B) The 
mRNAs expression level of 11 genes in the TCGA and Gao et al. cohorts, 
respectively. (C) The protein expression level of 11 genes in Gao et al. 
cohort. Fig. S5. Survival analysis of high- and low-risk groups. Fig. S6. 
Independent prognostic prediction analysis of our risk model. Fig. S7. 
Immune cells infiltration difference between high- and low-risk groups 
quantified by cibersort algorithm. Fig. S8. Functional enrichment analysis. 
Fig. S9. Analysis of immune gene expression difference in high- and 
low-risk groups. Fig. S10. TMB and intratumor genetic heterogeneity dif-
ference between high- and low-risk groups.

Acknowledgements
Not applicable.

Authors’ contributions
Lili Zhou and Shaohuai Xia: Methodology, Writing-Reviewing and Editing; Yaoyao 
Liu: Visualization, Writing original draft; Qiang Ji and Xiaodi Guo: Data curation; 
Lifeng Li: Software; Xuan Gao, Xin Yi: Supervision; Feng Chen: Conceptualization 
and Supervision. The author(s) read and approved the final manuscript.

Funding
No relevant funding.

Availability of data and materials
The data analyzed are publicly available in published articles which were cited 
in this study and the TCGA database (https://​portal.​gdc.​cancer.​gov/).

Declarations

Ethics approval and consent to participate
Not applicable for this study.

Consent for publication
Not applicable for this study.

Competing interests
There are no competing interests.

Author details
1 Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No. 119 
Nansihuan West Road, Fengtai District, Beijing 100070, China. 2 Beijing Fuzheng 
Cancer Hospital, No. 20 Jinghai 3rd road, Yizhuang Economic and Technologi-
cal Development Zone, Beijing 100070, China. 3 Beijing GenePlus Genomics 
Institute, Beijing 102205, China. 4 State Key Laboratory of Microbial Resources, 
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. 
5 Shenzhen GenePlus Clinical Laboratory, ShenZhen 518122, China. 

Received: 13 November 2022   Accepted: 24 January 2023

References
	1.	 El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and 

molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76.
	2.	 Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global 

view of hepatocellular carcinoma: trends, risk, prevention and manage-
ment. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604.

	3.	 Prevention of Infection Related Cancer Group SCoCP, Control CPMA, Non c, 
Chronic Disease C, Prevention Society CPMA, Health Communication Soci-
ety CPMA. [Strategies of primary prevention of liver cancer in China: expert 
consensus (2018)]. Zhonghua Yu Fang Yi Xue Za Zhi. 2019;53(1):36–44.

	4.	 Chan HL, Sung JJ. Hepatocellular carcinoma and hepatitis B virus. Semin 
Liver Dis. 2006;26(2):153–61.

	5.	 Tsounis EP, Tourkochristou E, Mouzaki A, Triantos C. Toward a new era of 
hepatitis B virus therapeutics: the pursuit of a functional cure. World J 
Gastroenterol. 2021;27(21):2727–57.

	6.	 Hayes CN, Zhang P, Chayama KJEP. The role of lipids in hepatocellular 
carcinoma 2019:95–110.

	7.	 Sangineto M, Villani R, Cavallone F, Romano A, Loizzi D, Serviddio G. Lipid 
metabolism in development and progression of hepatocellular carci-
noma. Cancers (Basel). 2020;12(6).

	8.	 Hao Y, Li D, Xu Y, Ouyang J, Wang Y, Zhang Y, et al. Investigation of lipid 
metabolism dysregulation and the effects on immune microenviron-
ments in pan-cancer using multiple omics data. BMC Bioinformatics. 
2019;20(Suppl 7):195.

	9.	 Hu B, Lin JZ, Yang XB, Sang XT. Aberrant lipid metabolism in hepatocel-
lular carcinoma cells as well as immune microenvironment: a review. Cell 
Prolif. 2020;53(3):e12772.

	10.	 Shi YX, Huang CJ, Yang ZG. Impact of hepatitis B virus infection on hepatic 
metabolic signaling pathway. World J Gastroenterol. 2016;22(36):8161–7.

	11.	 Zhu P, Li FF, Zeng J, Tang DG, Chen WB, Guo CC. Integrative analysis of the 
characteristics of lipid metabolism-related genes as prognostic predic-
tion markers for hepatocellular carcinoma. Eur Rev Med Pharmacol Sci. 
2021;25(1):116–26.

	12.	 Wang W, Zhang C, Yu Q, Zheng X, Yin C, Yan X, et al. Development of a 
novel lipid metabolism-based risk score model in hepatocellular carci-
noma patients. BMC Gastroenterol. 2021;21(1):68.

	13.	 Chen Y, Tian Z. HBV-induced immune imbalance in the development of 
HCC. Front Immunol. 2019;10:2048.

	14.	 Li TY, Yang Y, Zhou G, Tu ZK. Immune suppression in chronic hepatitis 
B infection associated liver disease: a review. World J Gastroenterol. 
2019;25(27):3527–37.

	15.	 Varn FS, Schaafsma E, Wang Y, Cheng C. Genomic characterization of six 
virus-associated cancers identifies changes in the tumor immune microen-
vironment and altered genetic programs. Cancer Res. 2018;78(22):6413–23.

	16.	 Gao Q, Zhu H, Dong L, Shi W, Chen R, Song Z, et al. Integrated Proteog-
enomic characterization of HBV-related hepatocellular carcinoma. Cell. 
2019;179(2):561–77 e22.

	17.	 Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, et al. A unique metas-
tasis gene signature enables prediction of tumor relapse in early-stage 
hepatocellular carcinoma patients. Cancer Res. 2010;70(24):10202–12.

	18.	 Cancer Genome Atlas Research Network. Electronic address wbe, Cancer 
genome atlas research N. comprehensive and integrative genomic char-
acterization of hepatocellular carcinoma. Cell. 2017;169(7):1327–41 e23.

	19.	 Kong F, Kong D, Yang X, Yuan D, Zhang N, Hua X, et al. Integrative analysis 
of highly mutated genes in hepatitis B virus-related hepatic carcinoma. 
Cancer Med. 2020;9(7):2462–79.

https://doi.org/10.1186/s12944-023-01780-9
https://doi.org/10.1186/s12944-023-01780-9
https://portal.gdc.cancer.gov/


Page 13 of 13Zhou et al. Lipids in Health and Disease           (2023) 22:46 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	20.	 Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder 
D, et al. Pan-cancer Immunogenomic analyses reveal genotype-Immu-
nophenotype relationships and predictors of response to checkpoint 
blockade. Cell Rep. 2017;18(1):248–62.

	21.	 Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient 
and comprehensive analysis of somatic variants in cancer. Genome Res. 
2018;28(11):1747–56.

	22.	 Mroz EA, Rocco JW. MATH, a novel measure of intratumor genetic hetero-
geneity, is high in poor-outcome classes of head and neck squamous cell 
carcinoma. Oral Oncol. 2013;49(3):211–5.

	23.	 Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Yang T-HO, et al. 
Immune Landscape Cancer 2018;48(4):812–30. e14.

	24.	 Cai G, Nie X, Li L, Hu L, Wu B, Lin J, et al. B and T lymphocyte attenuator is 
highly expressed on intrahepatic T cells during chronic HBV infection and 
regulates their function. J Gastroenterol. 2013;48(12):1362–72.

	25.	 van Buuren N, Ramirez R, Turner S, Chen D, Suri V, Aggarwal A, et al. Char-
acterization of the liver immune microenvironment in liver biopsies from 
patients with chronic HBV infection. 2021;100388.

	26.	 Wang L, Yan K, Zhou J, Zhang N, Wang M, Song J, et al. Relationship of 
liver cancer with LRP1B or TP53 mutation and tumor mutation burden 
and survival. Am Soc Clin Oncol. 2019.

	27.	 Dong F, Yang Q, Wu Z, Hu X, Shi D, Feng M, et al. Identification of survival-
related predictors in hepatocellular carcinoma through integrated 
genomic, transcriptomic, and proteomic analyses. Biomed Pharmacother. 
2019;114:108856.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	A lipid metabolism–based prognostic risk model for HBV–related hepatocellular carcinoma
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Material and method
	Data collection and preprocessing
	Prognostic risk model construction and validation
	Pathways enrichment analysis
	Intratumoral immune cell infiltration
	Genetic alteration analysis
	Statistical analyses

	Results
	Lipid metabolism–related prognostic signature identification
	Prognostic risk model construction and validation of predictive performance
	The risk model can independently predict prognostic for HBV–related HCC
	Decoding TME context in two risk groups
	Function enrichment characterizes high–risk and low–risk patients
	More genetic mutations occurred in high–risk groups

	Discussion
	Comparing with other studies and contribution to existing knowledge
	Study strengths and limitations

	Conclusions
	Anchor 26
	Acknowledgements
	References


