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Diet/lifestyle and risk of diabetes and
glycemic traits: a Mendelian randomization
study
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Abstract

Background: Observational studies have demonstrated diet/lifestyle play roles in development of type 2 diabetes
(T2DM); however, it remains unclear whether these relationships are causal.

Methods: A two-sample MR approach was used to examine the causal effect of diet/lifestyle upon risk of T2DM
and glycemic traits.

Results: The protein intake-increasing allele C of FTO was significant associated with higher risk of T2DM (Beta ± SE =
0.104 ± 0.014, P = 4.40 × 10− 11), higher level of HOMA-IR (Beta ± SE = 0.016 ± 0.004, P = 9.55 × 10− 5), HOMA-B
(Beta ± SE = 0.008 ± 0.003, P = 0.020). Using MR analyses, increased protein intake was causally associated with
an increased risk of T2DM (Beta ± SE = 0.806 ± 0.260, P = 0.002). In addition, smoking cessation was causally
associated with increased levels of glycemic traits such as HOMA-IR (Beta ± SE = 0.165 ± 0.072, P = 0.021), fasting insulin
(Beta ± SE = 0.132 ± 0.066, P = 0.047) and fasting glucose (Beta ± SE = 0.132 ± 0.064, P = 0.039).

Conclusions: These results provide evidence supporting a causal role for higher protein intake and smoking cession in
T2DM. Our study provides further rationale for individuals at risk for diabetes to keep healthy lifestyle.

Background
Diabetes has become a worldwide epidemic, with an es-
timated more than 387 million people with diabetes in
2014. However, the etiology of diabetes is poorly under-
stood. Identifying potentially causal risk factors could
help guide prevention efforts.
Compelling evidence showed that excessive caloric in-

take is a major driving force behind escalating obesity
and type 2 diabetes (T2DM) epidemics, Importantly, diet
quality of fats, carbohydrates and protein, [1] and un-
healthy lifestyles have been also implicated in the rapid
rise of T2DM [1]. For example, cigarette smoking is a
well-established risk factor for T2DM, and smoking ces-
sation leads to higher short-term risk [2]. In addition,
both short and long sleep duration are associated with a
significantly increased risk of T2DM [3]. However, it

remains uncertain whether these relationshipsare causal
since it is difficult to fully protect observational studies
from bias due to reverse causation or confounding.
In the absence of high-quality RCT data, the principles

of Mendelian randomization (MR) can be applied to
strengthen or refute the causality of diet/lifestyle in
T2DM etiology [4]. This approachis based on the
principle that genetic variants are randomly allocated at
meiosis, and consequently are independent of many fac-
tors that bias observational studies, such as confounding
and reverse causation [4]. Therefore, MR is conceptually
similar to an RCT.
Recent advances in GWAS have substantially im-

proved our understanding of genetic roles in diet/life-
style such as macronutrients, [5, 6] cigarette smoking,
[7] smoking initiation, [7] smoking cessation, [7] sleep,
[8] allowing us to use MR to estimate their causal
effects. Therefore, we undertook an MR analysis using
summary statistics from DIAGRAM for T2DM and
GAGIC consortium for glycemic traits, respectively to
estimate the causal effects of diet/lifestyle factors on risk
of T2DM and glycemic traits.
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Methods
SNP selection and data sources
The design of our study had three key components:
1) the identification of genetic variants to serve as in-
strumental variable (IV) for diet/lifestyle; 2) the acqui-
sition of summary datafor the genetic variants from
the DIAGRAM and MAGIC consortium; and 3) the
estimate of causal effect of diet/lifestyleon T2DM and
glycemic traits.
We searched the GWAS catalog to identify single nu-

cleotide polymorphisms (SNPs) associated with diet/life-
style [9]. We included all SNPs identified from original
study reports for diet/lifestyle such as macronutrients,
[5, 6] cigarette smoking, [7] smoking initiation, [7]
smoking cessation, [7] sleep [8] in the GWAS catalog as
potential IV. Effect estimates of these diet/lifestyle-asso-
ciated SNPs on the risk of T2DM [10] and glycemic
traits such as HOMA-IR, [11] HOMA-B, [11] fasting in-
sulin, [11] fasting glucose, [11] Hba1c, [12] 2hGLU [13]
were assessed using the summary statistics from the
DIAGRAM consortium and MAGIC consortium, re-
spectively. Summary statistics from these consortia can
be downloaded at the following links: DIAGRAM con-
sortium, http://diagram-consortium.org/; MAGIC con-
sortium, https://www.magicinvestigators.org/.Cohorts
participating in the DIAGRAM consortium and MAGIC
consortium received ethics approval from local institu-
tional review boards and informed consent from all
participants.
We harmonized the data from the summary statistics

of consortium [14]. First, we identified variants that do
not share the same allele pair between datasets, and then
correct this if possible. Second, we identified variants
with unmatched effect and other alleles and then ‘flip’
their effect estimates and effect allele frequencies in only
one of the datasets.

MR estimates and statistical analyses
Inference of causality in the estimated etiological associ-
ations between diet/lifestyle and risk of T2DM and gly-
cemic traits is based on three MR assumptions [15]. The
selected genetic variants are valid instrumental variables
if these three assumptions are satisfied (Fig. 1). Three as-
sumptions are a) the genetic variant (instrumental vari-
able) is associated with exposure (diet/lifestyle); b) the
genetic variant is not associated with confounders; and
c) the genetic variant is associated with outcomes
(T2DM and glycemic traits) only through their effect on
exposure, not through other pathways.
Here, we employed the previously described methods

to examine the causal association of diet/lifestyle with
T2DM and glycemic traits [16]. We obtained the effect
estimates of the selected SNPs on diet/lifestyle, and cor-
responding effect estimates for the selected SNPs on

T2DM and glycemic traits were extracted from the DIA-
GRAM and MAGIC consortium. A two-sample MR
approach were applied to examine causal effect. This
two-sample approach has equivalent statistical power to
one-sample approaches [17] and is favorable in this set-
ting since large GWAS consortium and are thus better
powered than an MR study in a single cohort with a
smaller sample size. This approach weighted the effect
estimate of each SNP on T2DM and glycemic traits by
its effect on diet/lifestyle. These estimates were then
pooled using a fixed meta-analytic model to produce a
summary measure of the effect of diet/lifestyle on
T2DM and glycemic traits [18].
P values were two-sided and evidence of association

was declared at P < 0.05. Where indicated, Bonferroni
corrections were used to make allowance for multiple
testing, although this is likely to be overly conservative
given the non-independence of many of the outcomes
tested. All analyses were performed in R version 3.1.2
and Stata release 13.1 (StataCorp, College Station, TX).

Results
SNP selection
Overall, we identified 2, 2, 1, 8, 3, 1, 1that achieved
genome-wide significance for carbohydrate intake, pro-
tein intake, fat intake, smoking, smoking initiation,
smoking cessation, respectively. The SNPs for carbohy-
drate intake, protein intake, smoking, smoking initiation,
and sleep duration are LD-independent SNPs. Therefore,
in total we used 15 SNPs for our MR analysis, as shown
in Table 1.

Association of the selected SNPs with diet/lifestyle
Table 1 displays the SNPs that identified in GWAS for
diet/lifestyle and describes their associations with carbo-
hydrate intake, [6] protein intake, [5, 6] fat intake, [6]
smoking (number), [7] smoking initiation, [7] smoking
cessation, [7] and sleep [8]. Each of these SNPs ex-
plained an important proportion of the population-level
variance in diet/lifestyle.

Association of the selected SNPs with T2DM and glycemic
traits
We found that protein intake SNP rs1421085 at FTO
was significantly associated risk of T2DM and glycemic
traits (Table 2). The protein intake-increasing allele C of
FTO was significant associated with higher risk of
T2DM (Beta ± SE = 0.104 ± 0.014, P = 4.40 × 10− 11),
higher level of HOMA-IR (Beta ± SE = 0.016 ± 0.004, P =
9.55 × 10− 5), HOMA-B (Beta ± SE = 0.008 ± 0.003, P =
0.020), Hba1c (Beta ± SE = 0.008 ± 0.004, P = 0.028),
whereas lower level of fasting insulin (Beta ± SE = − 0.015
± 0.004, P = 7.48 × 10− 5). In addition, the G allele of SNP
rs3025343 at DBH forsmoking cessation was significantly
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associated with higher level of HOMA-IR (Beta ± SE =
0.020 ± 0.008, P = 0.010), fasting insulin (Beta ± SE =
0.016 ± 0.008, P = 0.032), and fasting glucose (Beta ±
SE = 0.016 ± 0.007, P = 0.029).

MR estimates
Using MR analyses, we found that increased percentages
of total energy consumption from protein was causally
associated with an increased risk of T2DM (Beta ± SE =
0.806 ± 0.260, P = 0.002) (Table 3). TheI2estimate for het-
erogeneity was 0% (95% CI 0% -12%). However, in-
creased percentages of total energy consumption from
protein was not associated with glycemic traits (Table 3).
In addition, our results also suggested that smoking

cessation was causally associated with increased levels
of glycemic traits such as HOMA-IR (Beta ± SE =
0.165 ± 0.072, P = 0.021), fasting insulin (Beta ± SE =
0.132 ± 0.066, P = 0.047) and fasting glucose (Beta ±
SE = 0.132 ± 0.064, P = 0.039). However, we did no ob-
serve significant association between fat intake, carbo-
hydrate intake, sleep duration, and smoking initiation
and number of cigarettes and risk of T2DM and gly-
cemic traits (Table 3).

Discussion
Using a MR study design, we found that genetically ele-
vated protein intake and smoking cession are causally
associated with an increased risk of T2DM and higher

Table 1 Characteristics of single nucleotide polymorphisms used as instrumental variables

Lifestyle factors Lifestyle-Associated
SNP

Nearest
Gene(s)

Chr effect
allele

Effect allele
frequency

lifestyle

Beta SE P

Carbohydrate [5] rs10163409 FTO 16 A 0.69 0.19 0.05 2.2 × 10−4

Carbohydrate [5] rs197273 TANK 2 A 0.48 0.23 0.04 9.6 × 10− 8

Carbohydrate [6] rs838145 IZUMO1 19 G 0.46 0.25 0.04 1.68 × 10− 8

Protein [6] rs1421085 FTO 16 C 0.42 0.09 0.023 4.80 × 10− 7

Protein [5] rs838133 FGF21 19 G 0.55 0.11 0.02 7.9 × 10− 9

Fat [6] rs838145 IZUMO1 19 A 0.54 0.21 0.04 1.57 × 10− 9

Smoking (number) [7] rs1051730 CHRNA3 15 A 0.35 1.021 0.056 2.75 × 10− 73

Smoking (number) [7] rs1329650 LOC100188947 10 G 0.72 0.367 0.059 5.67 × 10− 10

Smoking (number) [7] rs3733829 CYP2A6 19 G 0.36 0.333 0.058 1.04 × 10− 8

Smoking initiation [7] rs6265 BDNF 11 C 0.79 0.061 0.011 1.84 × 10− 8

Smoking cessation [7] rs3025343 DBH 9 G 0.84 0.121 0.022 3.56 × 10− 8

Sleep [8] rs1191685 PAX8 2 C 0.37 2.87 0.47 1.06 × 10− 9

Sleep [8] rs2394403 CBWD 6 C 0.8 3.07 0.56 4.39 × 10−8

Sleep [8] rs4248149 CBWD 6 T 0.8 3.08 0.56 3.95 × 10− 8

Sleep [8] rs4587207 CBWD 6 A 0.8 3.14 0.56 2.02 × 10− 8

Smoking initiation (ever versus never smokers); Smoking cessation (former versus current smokers)

Fig. 1 Schematic representation of an MR analysis. This diagram shows that SNPs associated with diet/lifestyle were selected from the GWAS studies.
Corresponding effect estimates for these SNPs upon diabetes and glycemic traits were obtained from the DIAGRAM and MAGIC consortium. Because
of the randomization of alleles at meiosis, SNPs are not associated with confounding variables that may bias estimates obtained from observational studies
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level of insulin resistance. These results provide evidence
supporting a causal role for higher protein intake and
smoking cession in diabetes, and suggest that individuals
at risk for diabetes to keep healthy lifestyle.
Previous research efforts have focused on macronutri-

ent intake in relation to type 2 diabetes risk, [19] but
mainly on relative carbohydrate and fat content. Mean-
while, high-protein diets may contribute to disturbance
of glucose metabolism. Previous studies addressing diet-
ary protein and diabetes risk focused mainly on high-
protein food groups, such as meat and soy. For example,
red processed meat intake was related to increased dia-
betes risk [20–22]. In addition, another study found an
increased diabetes risk with higher intake of animal pro-
tein and no association with vegetable protein intake,
[23] whereas intake of legumes and soy decreased dia-
betes risk in Asians [24]. However, the Nurses Health
Study II did not find such an association, [25] suggesting
divergent effects of animal and vegetable protein. The
contradictory findings may reflect reverse causation bias
and confounding effects. Interestingly, the European
Prospective Investigation into Cancer and Nutrition
(EPIC)-NL study found that high total protein intake
was associated with increased diabetes risk, [22] and
suggested that this relation was not explained by specific
protein sources such as meat [22]. However, the causal-
ity between protein intake and risk of diabetes is not
documented. Furthermore, several trials showed beneficial
effect of high protein intake on glycemic traits, [26, 27]
whereas, high protein diet did not decrease hemoglobin
A1c and fasting plasma glucose, and increase insulin
sensitivity, [28] making the conclusion difficulty. In the
present MR analysis, we found that protein intake was
causally associated with increased risk of diabetes and in-
sulin resistance. Our results were generated by using the
large scale GWAS summary results, which suggest the ro-
bustness of our findings. Our findings for protein intake
are generally consistent with those based on prospective
observational studies, which tend to report increased risk
of diabetes. In addition, reliable GWAS identified genetic
variants for protein intake were used as instrumental vari-
ables to infer the causality, therefore, our findings were
protected from bias such as confounding and reverse
causation [4].
Cigarette smoking is an established predictor of inci-

dent T2DM. Therefore, smoking cessation should be as-
sociated with a decrease in the risk of T2DM. However,
smoking cessation is associated with substantial weight
gain, [29] which could increase diabetes risk. Several
studies have found an increased diabetes risk after smok-
ing cessation [2, 30–32]. However, residual confounding
is possible even with meticulous adjustment for estab-
lished diabetes risk factors in the observational studies.
Interestingly, a systematic review and meta-analysis of

data from randomised controlled trials of smoking cessa-
tion in adults with diabetes found that pooled results did
not provide evidence of efficacy for smoking cessation
interventions in people with diabetes [33]. Therefore,
the causality between smoking cessation and risk of dia-
betes are still unknown. Using GWAS identified genetic
variants for smoking cessation as instrumental variable,
our MR analysis provided robust evidence to support
that smoking cessation might cause increased risk of
T2DM. These findings may carry important public
health implications. Smokers at risk for diabetes who
quit should receive advice about avoiding weight gain
and about diabetes prevention and early detection.
However, our MR did not observe causal association

of other lifestyle factors such as fat and carbohydrate in-
takes and number of smoking cigarettes, smoking initi-
ation, sleep duration, and morning person with risk of
T2DM. These findingsare generally contradictory to
those based on previous prospective studies, which tend
to report increased risk for diabetes in individuals with
smoking, both shorter and longer sleep. The contradict-
ory findings may reflect confounding effects, e.g. due to
cases being slightly older than controls, or reverse caus-
ation bias in the retrospective studies, whereby lifestyle
changes arise as a result of disease.
Given the random distribution of genotypes in the

general population with respect to lifestyle and other en-
vironmental factors, the results of the MR analysis may
offer some of the best evidence to assess the causal role
of protein and smoking cession in T2DM etiology since
the results are less likely to be biased by confounding or
reverse causation than traditional observational epi-
demiological study designs. By employing the two-
sample MR approach, we were able to increase statistical
power by selecting summary statistics from the largest
GWAS studies for T2DM (DIAGRAM, n = 149,821) and
glycemic traits (MAGIC, n = 133,010).
Our study is subject to some limitations. First, our re-

sults assume that the samples used to define the instru-
mental variable for diet/lifestyle and the samples from
consortium used to estimate the genetic association with
disease/traits are from the same population. Second, our
results mightbeconfoundedby pleiotropic pathways.35We
cannot entirely rule out this possibility. Third, our study
assumed a linear relationship between diet/lifestyle and
T2DM and glycemic traits. In this study, we could not
investigate nonlinear effects of diet/lifestyle. Fourth, we
cannot exclude the possibility of sample overlap since
both DIAGRAM and the MAGIC consortiums used
samples from the lifestyle GWASstudy. Therefore, this
might introduce bias into our results. Finally, we cannot
rule out chance of violation of any of the three MR as-
sumptions, which would potentially bias the magnitude
of the estimated causal association [34].
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Conclusions
In summary, these results provide evidence supporting a
causal role for higher protein intake and smoking ces-
sion in diabetes. This provides further rationale for indi-
viduals at risk for diabetes to keep healthy lifestyle.
However, whether different sources of protein diet, or
duration of smoking cession, is mediating these relation-
ships warrants further investigations.
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