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Abstract

One of the limitations for ranking foods and meals for healthiness on the basis of the glycaemic index (Gl) is that the Gl
is subject to manipulation by addition of fat. Postprandial lipemia, defined as a rise in circulating triglyceride containing
lipoproteins following consumption of a meal, has been recognised as a risk factor for the development of cardiovascular
disease and other chronic diseases. Many non-modifiable factors (pathological conditions, genetic background, age, sex
and menopausal status) and life-style factors (physical activity, smoking, alcohol and medication use, dietary choices) may
modulate postprandial lipemia. The structure and the composition of a food or a meal consumed also plays an important
role in the rate of postprandial appearance and clearance of triglycerides in the blood. However, a major difficulty in
grading foods, meals and diets according to their potential to elevate postprandial triglyceride levels has been the lack of
a standardised marker that takes into consideration both the general characteristics of the food and the food's fat
composition and quantity. The release rate of lipids from the food matrix during digestion also has an important role in
determining the postprandial lipemic effects of a food product. This article reviews the factors that have been shown to
influence postprandial lipemia with a view to develop a novel index for ranking foods according to their healthiness. This
index should take into consideration not only the glycaemic but also lipemic responses.
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Background

Fasting and postprandial blood triglyceride levels are risk
factors for cardiovascular and other chronic diseases [1].
Although fasting blood lipid levels indicate cumulative
effects of composite diets and metabolic activity, they do
not reflect accurately the impact of individual foods or
meals consumed during the day. Typically, humans are
in an absorptive state (non-fasting) for over 18 h in a
day and therefore, postprandial triglyceride levels are
now recognised as an important risk factor for cardio-
vascular disease [2]. Despite providing key substrates in
metabolic pathways and being source of energy, fatty
acids can be detrimental if in excess in the circulation.
Excess fat consumption can induce a lipotoxic state,
involving activation of various inflammatory pathways
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[3]. As early as one hour after consumption of a high fat
meal, nuclear factor-kB, a key regulator of fat-induced
inflammation [4, 5], is activated [6, 7], likely due to the ac-
tivation of cell surface receptors by free fatty acids [8—10].
This leads to increased expression of pro-inflammatory
mediators, including interleukin-6 (IL-6), tumour necrosis
o (TNF-a) and interleukin-8 (IL-8) [10, 11]. In addition,
oxidative stress may be triggered by an increase in the
generation of reactive oxygen species by mononuclear
cells and polymorphonuclear leukocytes [6, 7, 12] and an
increase in other markers of oxidative stress [12, 13], one
to three hours postprandially.

Indeed, the oxidative degradation of fatty acids and the
transient production of pro-inflammatory mediators, as
nutrients are metabolised, are appropriate homeostatic re-
sponses. However, these responses become undesirable
when the host is unable to efficiently clear nutrients that
are consumed in excess. The response to metabolic sur-
plus can include various adverse outcomes, such as vascu-
lar events [14, 15], insulin resistance [16] or inflammatory
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cell recruitment [17]. It has also been demonstrated that
post-meal hypertriglyceridemia has adverse effects on
endothelial function [17, 18]. The exchange of core lipids
between postprandial lipoproteins and low density lipo-
protein and high density lipoprotein is increased during
prolonged lipemia, resulting in the formation of highly
atherogenic (small and dense) low density lipoprotein par-
ticles and reduced high density lipoprotein levels [19].
Therefore, a prolonged and high postprandial lipemia has
the potential to increase the risk of developing cardiovas-
cular disease [2, 15, 20] and other chronic diseases, espe-
cially in groups already at risk [21]. Figure 1 summarises
the  pathophysiological  effects of  postprandial
hypertriglyceridemia.
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Fig. 1 Summary of the pathophysiological effects of postprandial
hypertriglyceridemia. ICAM-1, Intercellular Adhesion Molecule 1; IL-6,
interleukin-6; IL-8, interleukin-8; NF-kB, nuclear factor kB; ROS, reactive
oxygen species; TLR4, toll like receptor 4; TNF-g, tumour necrosis factor-a
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After digestion, lipids present in food products are
absorbed in the small intestine, packed into chylomicrons
and transferred into the blood via the lymphatic system.
The appearance of chylomicrons in the circulation is
followed by an increase in liver-derived very low density
lipoproteins (VLDL) due to competition for lipolysis be-
tween VLDL and chylomicrons [22, 23]. Thus, postprandial
lipemia is a result of an increase in both intestine-derived
chylomicrons and liver-derived VLDL. As chylomicrons are
more readily targeted by lipoprotein lipase and the liver re-
ceptors, VLDL tend to increase in a greater extent than
chylomicrons postprandially [23].

The rate at which lipids from individual foods and
meals are digested, absorbed, incorporated into the
blood stream and cleared depends on various non-
modifiable factors (pathological conditions, genetic
background, age, sex and menopausal status) as well
as life style choices (physical activity, smoking, alco-
hol and medication use, dietary choices) [24]. The
structure and the composition of the meal or food
consumed are also an important factor in the control
of postprandial lipemia, modulating the duration and
the intensity of the postprandial response [25-27].
This article discusses the effects of those factors on
the rate of appearance and clearance of lipids in the
blood stream. We also make a case for blending the
postprandial lipemic responses with the glycaemic re-
sponse for the development of a novel tool for deter-
mining the healthiness of individual foods and mixed
meals.

Factors modulating postprandial lipemia

Structure and composition of the meal or food consumed
The amount of dietary fat, as well as its fatty acid compos-
ition, has been demonstrated to influence postprandial
triglyceride metabolism. Food structure, macronutrient
and micronutrient composition have the potential to delay
or expedite digestion and absorption of lipids; and there-
fore may also have an effect on the duration and intensity
of the postprandial lipemia.

Lipid quantity

Postprandial triglyceride response to a meal has been
shown to increase in proportion to the amount of fat
in the meal in normal weight and obese individuals
[28-31]. In normal weight and obese subjects an
increase in the total fat content of a single meal
increased postprandial chylomicron triglyceride re-
sponse [30]. Postprandial investigation of obese boys
has also demonstrated a greater increase in total
plasma triglyceride levels after a high fat meal (about
68 g total fat) compared to a moderate fat meal
(about 35 g total fat) [29].
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Fatty acid composition and triglyceride structure

Evidence concerning the effect of fatty acid composition
and triglyceride structure of the meal on postprandial
lipemia is contradictory. It has been demonstrated that
different dietary fatty acids modulate differently the
plasma triglyceride peak concentration and the time of
peak concentration as well as the rate of triglyceride
clearance from plasma [32-43]. However, these studies
are not consistent on their findings regarding the plasma
triglyceride incremental area under the curve (iAUC).
Some studies have reported no difference in plasma tri-
glyceride iAUC between different fatty acids [36, 44],
while other studies have reported lower plasma triglycer-
ide iAUC after consumption of saturated fatty acid (SFA)
rich meals compared with n-6 polyunsaturated fatty acids
(n-6PUFA) and monounsaturated fatty acids (MUFA) rich
meals [37, 39]. And another study has reported lower
triglyceride iAUC after consumption of meals rich in n-
6PUFA compared to MUFA and SFA [35].

The consumption of a dairy fat-based rich meal de-
layed plasma triglyceride peak time postprandially com-
pared to a high n-6PUFA meal, although both meals
yielded equivalent triglyceride iAUC and peak concen-
tration over 8 h in overweight men [36]. Boham and col-
leagues [32] observed lower postprandial chylomicron
triglycerides after the consumption of a dairy fat-based
meal compared to a vegetable oil-based meal, despite
observing no difference in total postprandial plasma tri-
glycerides between test meals. Similar effect was ob-
served in healthy young men consuming a saturated fat
(dairy) rich meal compared with a n-6PUFA rich meal,
with a more pronounced triglyceride peak in lipopro-
teins for subjects consuming a n-6PUFA rich meal [45].

Interventions comparing meals containing fatty acids
in different positional configurations in the triglyceride
have also presented conflicting results. Some studies
have demonstrated a significant difference in the post-
prandial lipemia of subjects fed natural fats (palm oil
and cocoa butter) compared to subjects fed interesteri-
fied fats [46—48]. However, other studies failed to dem-
onstrate any difference in the lipemic response of
subjects fed meals containing similar fatty acid compos-
ition with different positional configuration [49, 50].

Furthermore, as demonstrated by Weintraub and
colleagues [51], postprandial lipemia is not only mod-
ulated by the fatty acid composition of the meal, but
also by the fatty acid composition of a subject’s usual
diet. Study subjects presented with a saturated fat
challenge following chronic consumption of saturated
fat experienced a more pronounced postprandial
lipemia than subjects presented with an n-6PUFA
challenge, following n-6PUFA chronic feeding or an
omega-3 polyunsaturated fatty acid (n-3PUFA) chal-
lenge following n-3PUFA chronic feeding [51].
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Chronic supplementation with long chain n-3PUFA
has also been demonstrated to reduce postprandial
lipemia in response to a fat challenge [52, 53].

Macronutrient composition

Some postprandial studies have demonstrated that the
macronutrient composition of a meal has the potential to
modulate postprandial lipemia. Different concentrations
and type of carbohydrate consumed with a fat containing
meal have been shown to change the postprandial trigly-
ceride response to a meal. In a study with young males fed
high fat meals, addition of glucose to the meal delayed tri-
glyceride clearance [17]. It has also been demonstrated
that glucose consumed with a high fat meal supresses
postprandial triglyceride response in a dose dependent
manner and that starch does not affect postprandial
lipemia in young healthy subjects [54]. In contrast, a study
in obese subjects consuming beverages containing various
carbohydrate and protein concentrations, demonstrated
an increase in postprandial plasma triglyceride iAUC with
increasing carbohydrates and decreasing protein in the
beverage [26]. Furthermore, normal weight and over-
weight subjects fed fatty meals, presented higher post-
prandial triglyceride response when the diet contained
fructose compared to glucose [55].

Evidence suggests reduction in postprandial lipemia
when a fatty meal is consumed with protein and that
protein quantity and quality may also modulate post-
prandial lipemic responses [26, 56, 57]. Casein was
found to cause a less pronounced postprandial lipemia
(lower AUC) than whey protein in abdominally obese
men when consumed as part of a high fat meal [58]. In
contrast, in overweight and obese post-menopausal
women, casein supported a larger triglyceride AUC than
whey protein [56]. Additionally, whey protein led to
lower postprandial lipemia when compared to cod fish
protein and gluten in obese men and women [59]. In an-
other study, fish protein did not affect postprandial
lipemia compared to beef protein [40].

The fibre content of a meal has also been demon-
strated to influence postprandial lipemia. Addition of
partially hydrolysed guar gum to a high fat meal reduced
the serum postprandial triglyceride iAUC in heathy sub-
jects and tended to supress triglyceride peak concentra-
tion compared to a meal containing no fibre [60].

Food micronutrient composition

Polyphenols from berries have been shown to inhibit pan-
creatic lipase in vitro [61], thus potentially influencing
postprandial lipemia. Indeed, strawberry polyphenol ex-
tract as part of a high fat meal lowered postprandial
lipemia in hyperlipidemic subjects compared to a similar
meal without polyphenols [62]. In contrast, meals contain-
ing 2 to 4 servings of blueberry or 400 g dealcoholized red
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wine as part of a fatty meal did not affect postprandial
lipemia [63, 64]. Discrepancies may be due to different
polyphenol concentrations in the test meals as well as
differences in meal composition.

Food structure

Novel functional foods containing targeted dietary ingre-
dients can be designed to reduce postprandial lipemia to
minimise the risk of developing chronic diseases. The
nature of the food matrix is known to influence the rate
and extent of lipid release during digestion, therefore,
can be expected to affect postprandial lipemia. Indeed,
the increase in postprandial lipemia was much lower fol-
lowing consumption of a meal containing whole almond
seed macroparticles, compared to almond oil mixed with
defatted almond flour, suggesting that the cell wall en-
capsulating the almond lipids, plays an important role in
determining the lipemic response [65]. Similar results
have been observed in healthy male subjects fed either
whole walnut or walnut oil [66].

In type-2 diabetic subjects, ingestion of isoenergetic
meals including milk (liquid), butter (solid) or mozza-
rella cheese (semi-solid) showed a delay in the triglycer-
ide peak after ingestion of the butter-based meal,
possibly due to the presence of smaller fat globules in
milk and cheese, which were digested at a faster rate
than the fat in butter. The gastric emptying rate was
greater with the cheese-based meal than with the milk-
based meal [67]. In line with this study, healthy subjects
have also demonstrated a delay in triglyceride peak after
consumption of butter compared to milk [27]. Studies in
rats showed that the ingestion of skim milk with added
milk fat resulted in the faster appearance of plasma tri-
glyceride and a sharper triglyceride peak than the inges-
tion of homogenized or non-homogenized cream [68].
Thus, the matrix structure and the oil — water interface
have an impact on the physiological response after the
ingestion of milk fat. In humans, daily consumption of
butter led to higher fasting total and low density lipopro-
tein cholesterol than daily consumption of cheese [68]. In
vitro studies have demonstrated that the size and interface
composition of milk fat droplets modulate the rate of
hydrolysis of the fat droplet by pancreatic lipase, playing
an important role in digestion, absorption and conse-
quently in the magnitude of postprandial lipemia [69, 70].

Furthermore, the use of different emulsifiers in food
products as well as the size of the fat droplets has been
shown to affect postprandial lipemia. In healthy males,
oil finely emulsified in an oil-in-water system produced
a faster more pronounced postprandial lipemia com-
pared to a coarse oil-in-water emulsion [71]. Consump-
tion of food emulsions containing different emulsifiers
led to different postprandial triglyceride curves over 3 h;
subjects consuming an emulsion containing Tween 80
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presented higher postprandial lipemia than subjects
consuming emulsions containing sodium caseinate and
monoglyceride surfactant [25].

Life style factors

Physical activity

The effect of physical activity on postprandial lipemia
has been shown to vary with frequency, type and dur-
ation of exercise, and to be dependent on the compos-
ition of the meal consumed, energy consumed and the
time of consumption [72]. Exercise prior to consump-
tion of a fatty meal has been shown to increase post-
prandial triglyceride clearance and the degree of
reduction appears to be linked with the energy expended
[73-76] rather than the intensity of the exercise [72].
Data on the acute effect of exercise (up to 4 h prior to
meal consumption) on postprandial lipemia is mixed.
Some authors have demonstrated a reduction in post-
prandial triglyceride levels, while others have not ob-
served a significant effect [72, 77, 78]. In contrast,
exercise challenges performed 12 to 20 h prior to con-
suming a fatty meal consistently lower the postprandial
triglyceride response.

It has also been demonstrated that postprandial
lipemia increases with training cessation even for a
period as short as 6 days; therefore, long term exercise
training without recent training may not affect triglycer-
ide metabolism and postprandial lipemia [79]. Indeed,
lipoprotein lipase activity, suggested as the main enzyme
responsible for the exercise-induced effects on postpran-
dial lipemia, peaks between 4 to 18 h post exercise [72,
80, 81]. In addition, creating an energy deficit post exer-
cise also seems to be important for reducing postpran-
dial lipemia [72].

Smoking

Smokers have been shown to have a longer and more
pronounced postprandial triglyceride response in plasma
than non-smokers, due to a defective clearance of chylo-
microns and chylomicron remnants [82, 83]. However,
after smoking cessation, postprandial lipemia seems to
decrease and the reduction is particularly significant for
the lipoprotein fraction containing chylomicron rem-
nants [84].

Lipid-lowering drugs

Pharmacologic reduction of plasma low density lipopro-
tein (LDL) cholesterol has been associated with an in-
crease in the clearance rate of postprandial triglycerides in
humans [85-88], suggesting that the triglyceride kinetics
may be influenced by LDL cholesterol levels. In hyperlip-
idemic subjects, atorvastatin (statin) treatment has been
demonstrated to improve triglyceride clearance in re-
sponse to an oral fat challenge [86, 88] and chylomicron
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clearance in response to a chylomicron-like emulsion
intravenous test [87]. Atorvastatin has also been shown to
improve chylomicron metabolism by increasing chylo-
micron remnant catabolism in obese subjects [89]. Statins
reduce de-novo synthesis of cholesterol by inhibiting the
rate limiting enzymes, hydroxyl-methyl-glutaryl coenzyme
A (HMG-CoA) reductase, consequently reducing the syn-
thesis of VLDL and reducing circulating triglycerides to
some extent [90]. In diabetic patients treatment with
fibrates (gemfibrozil and ciprofibrate) has been shown to
improve postprandial triglyceride levels [91, 92] and endo-
thelial function [92]. In patients with metabolic syndrome,
fibrates (Bezafibrate) improved remnant like lipoprotein
clearance postprandially in addition to improving triglyc-
erides and endothelial function [93]. Fibrates activate Per-
oxisome proliferator-activated receptor-a (PPAR-a) in the
liver, increasing p-oxidation and lipoprotein lipase activity,
and decreasing triglyceride secretion, consequently in-
creasing clearance of VLDL and remnant lipoproteins
[90]. Additionally, diabetic patients on a combined treat-
ment with fenofibrate (fibrate) and simvastatin (statin)
presented lower postprandial triglyceride iAUC compared
with patients on a simvastatin only treatment [94].

Drugs used in the management of obesity may also
contribute to the management of postprandial lipemia
by inhibiting fat absorption, reducing overall food in-
take or improving fat distribution in viscerally obese
subjects. Orlistat inhibits intestinal fat absorption by
inhibiting intestinal lipases causing weight loss in
obese individuals [95]. Sibutramine suppresses appe-
tite and reduces caloric intake by acting centrally on
neuronal receptors as an inhibitor of noradrenalin
and serotonin, hormones involved in food intake [96].
Thiazolidinedione derivatives have also been used for
the management of obesity [97] and Metformin has
been used to improve insulin sensitivity, body weight,
plasma lipids and leptin [98, 99].

Alcohol

Alcohol consumption has been shown to transiently en-
hance postprandial lipemia [63, 100] by acutely inhibit-
ing lipoprotein lipase and causing a reduction in the
breakdown of chylomicrons and VLDL remnants [101].
Its consumption has also been shown to increase hepatic
synthesis of the large VLDL particles [102]. The acute ef-
fects of alcohol consumption on postprandial lipemia
may be ameliorated by the regular practice of physical
activity, but not by acute bouts of exercise. In a clinical
study, physically inactive men had slower postprandial
triglyceride clearance in response to a meal consumed
with an alcoholic drink compared with habitual runners,
who had their triglyceride clearance unchanged [103]. In
contrast, acute exercise did not alleviate the effect of
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acute alcohol consumption on the postprandial lipemia
of healthy moderately trained men and women [104].

Despite the acute effects of alcohol intake, case-
controlled and epidemiological studies with diverse pop-
ulations have established that a moderate intake of any
alcoholic drink (wine, liquor, or beer) reduces the risk of
cardiovascular disease [105-110]. This may be due to
the fact that lipoprotein lipase activity seems to adapt
during moderate (1-2 glasses) chronic alcohol intake
[102].

Biological factors

Nutrigenetics and nutrigenomics

Nutrigenetic and nutrigenomic studies have described
the effect of genetic factors on post-prandial lipemia.
Triglyceride metabolism is controlled by genes encoding
the proteins involved in the synthesis of triglyceride-rich
lipoproteins in the intestinal mucosa, their lipoprotein
lipase mediated hydrolysis and the hepatic capture of
chylomicron remnants via the interaction of the lipopro-
tein receptor with Apolipoprotein E and lipoprotein lip-
ase (LPL). The available evidence links a number of
candidate genes (APOA1/C3/A4/A5 cluster, ABCAL,
CETP, GCKR, HL, IL-6, LPL, PLIN, and TCF7L2) to the
modulation of postprandial triglyceride metabolism
[111]. This, in part, explains the dramatic inter-
individual variability observed in the postprandial lipe-
mic response. A large majority of the published studies
are limited to examining single-nucleotide polymor-
phisms (SNPs) of individual genes for their relation with
specific traits. More recently efforts have been made to
examine combinations of alleles that can provide better
information about the architecture of the genes under
consideration. This information is crucial and will pave
the way for success of personalised nutrition for longev-
ity and quality of life.

Gender

It has been demonstrated that male subjects have slower
postprandial triglyceride incorporation into plasma and
clearance compared to women [34, 112, 113] and that
the magnitude of postprandial triglyceridemia is greater
in men [114, 115]. Consistent with this concept, males
have been shown to exhibit a greater plasma triglyceride
response [113, 116], as well as increased postprandial
free fatty acid levels [117], compared with female sub-
jects. However, when the data were adjusted for visceral
adipose tissue mass, the gender difference in postpran-
dial plasma triglyceride response was eliminated, sug-
gesting that the well-known gender difference in body
fat distribution is also an important contributing factor.
Men have a tendency to preserve excess fat in the ab-
dominal (visceral) region, while women preferentially
store fat in the subcutaneous areas of the buttocks and
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thighs [118]. The volume of abdominal fat, but not sub-
cutaneous fat, has been inversely associated with sup-
pression of fatty acid release from adipocytes, and free
fatty acids are important sources of fatty acids for the as-
sembly of VLDL [119]. Consequently, women have a
more rapid clearance of fat resulting in lower postpran-
dial triglyceride response compared to men [118].

Ageing

Postprandial lipemia has been shown to vary according
to different age stages. In a clinical intervention, young
subjects (20—30 years) had the fastest postprandial drop
in triglyceride concentrations followed by middle aged
subjects (31-40 vyears), while subjects aged 41-50
showed the longest elevation in triglyceride levels during
the 6 h studied [120]. In other studies, the magnitude of
the postprandial lipemia was greater in older compared
to younger women [121] and triglyceride clearance was
delayed in older compared to younger pre-menopausal
women in response to an oral fat challenge [122]. In
addition, the link between aging, postprandial lipemia
and atherosclerosis has also been demonstrated in an-
other study [123]. The mechanism behind this effect is
uncertain. The reduction in the rate of gastric emptying,
rather than intestinal motility, has been proposed to be
responsible for exaggerated lipemia with increasing age.
Since older individuals have a longer gastric emptying
time, the absorption of fat can be expected to be slower,
explaining the later increase in triglyceride levels. How-
ever, Krasinski et al. [124] have ruled out the possibility
that the differences in lipemic behaviour observed in in-
dividuals under and above the age of 50 years are related
to changes in the digestive absorptive processes, as the
lipemic behaviour was similar with both intravenous in-
fusion and oral ingestion of fat. Therefore, further inves-
tigation of the postprandial mechanism is needed.
Nonetheless, the association of aging with postprandial
lipemia may partly explain the influence of age on
atherosclerosis.

Menopausal status

Postmenopausal women are known to have a more
atherogenic lipid profile in general than pre-menopausal
women, fact reflected in their postprandial lipemia. Post-
menopausal women have presented higher postprandial
triglyceride levels and delayed triglyceride clearance than
pre-menopausal women in response to an oral fat chal-
lenge [122]. In other studies, post-menopausal women
presented higher postprandial triglyceride levels com-
pared to pre-menopausal women [125] as well as a de-
layed chylomicron response [126]. In contrast, Nabeno
et al. [121] showed that the magnitude of the postpran-
dial lipemia was not influenced by the menopausal sta-
tus. The conflicting results observed among the
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interventions above may be due to differences in the fat
load of the meal consumed.

Pathological conditions

Insulin resistance and diabetes

Insulin resistance increases circulating postprandial
plasma triglycerides through a series of mechanisms. In-
sulin resistance in the adipose tissue stimulates increase
in hormone sensitive lipase, increasing lipolysis and con-
sequently, increasing the availability of non-esterified
fatty acids (NEFA) in the circulation. NEFA are then up-
taken by the liver and re-assembled in triglycerides, con-
sequently driving an increase in the concentration and
size of VLDL particles and an increased in the secretion
of these particles. The excess NEFA also down regulates
lipoprotein lipase (LPL) preventing the hydrolysis of tri-
glycerides within the VLDL particle. The reduction in
LPL activity also reduces the clearance of triglycerides
from chylomicrons assembled after the consumption of
a meal, impairing the clearance of chylomicrons and
their remnant. In addition, in the insulin resistant state,
secretion of Apolipoprotein B100 and Apolipoprotein
B48 is increased [127].

Increased postprandial lipemia is an inherent feature
of diabetic dyslipidaemia [128—130] in subjects with nor-
mal or elevated fasting plasma triglyceride levels. Type 2
diabetic males with prior myocardial infarction exhibited
higher postprandial lipemic response than those without
myocardial infarction, indicating that high responses
may be a marker for a high-risk population [21]. An ex-
aggeration of postprandial lipemia has also been re-
ported in people with metabolic syndrome, a pre-
disposition for the development of diabetes, compared
to healthy subjects [131]. Microalbuminuria is a com-
mon feature in patients with type 2 diabetes mellitus
and patients with this disease have been shown to ex-
hibit higher postprandial triglyceride levels than those
without microalbuminuria [132]. Furthermore, insulin
therapy in diabetic patients has been shown to reduce
the magnitude of postprandial lipemia after ingestion of
a standard fatty meal [133].

Blood pressure Hypertensive patients have been shown
to have higher postprandial lipemia, compared to age
and sex matched controls, following consumption of a
fatty meal. Since hypertension is linked with insulin re-
sistance, hyperinsulinemia in hypertensive patients may
increase the hepatic production of VLDL, resulting in
higher blood triglyceride levels following consumption
of a fatty meal. Indeed data collected from the Framing-
ham Heart Study demonstrated that postprandial trigly-
ceride levels are inversely associated with high density
lipoprotein cholesterol levels. Hypertensive males have
presented higher postprandial triglyceridemia and delayed
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triglyceride clearance compared to healthy males in re-
sponse to an oral fat challenge [131, 134]. A link between
hypertension, postprandial lipemia and atherosclerosis has
also been demonstrated in another study [123].

Obesity Obese subjects have been demonstrated to
present with higher postprandial triglyceridemia and
slower triglyceride clearance from plasma then healthy
normal weight subjects [30, 135, 136]. Although obese
subjects may present normal fasting lipemia, their lipid
metabolism is in general abnormal and, postprandially,
may lead to increased triglyceride rich lipoproteins in
circulation. Fat accumulation in the abdominal region
seems to be associated with increased postprandial
lipemia in men and women [137-139]. After an oral fat
challenge, postprandial triglyceride levels were elevated
in obese compared to normal weight women [137, 138],
and abdominally obese women (waist to hip ratio > 0.80)
presented higher postprandial triglyceridemia than other
obese women [138]. Viscerally obese men had a slower
chylomicron clearance compared to normal weight men.
The slower clearance rate of chylomicrons and plasma
triglycerides in these subjects may be either due to a re-
duction in low density lipoprotein receptor expression
or due to excess VLDL triglyceride, which may have an
increased secretion rate or a decreased clearance rate
[139, 140]. However, other mechanisms may also be
involved.

Discrepancies among previous postprandial
studies

Although a plethora of studies is available on fat chal-
lenges and the postprandial effects of different meals,
the lack of standardization among those studies pre-
vents an accurate comparison and estimation of the ef-
fects of single foods and specific fatty acids on
postprandial lipemia and generates discrepancies. Stud-
ies on fat or meal challenges differ in a number of pa-
rameters. They have assessed meals containing a wide
range of fat contents, from 10 g to over a 100 g of fat
in a single feed. They have analysed triglycerides or
retinyl-palmitate in a variety of sample types, including
whole blood, plasma, serum, chylomicrons and remnant
lipoprotein, over a wide time range from 2 to up to
12 h postprandially. Delivery methods and target popu-
lation are also variable. Often an unequal number of
males and females, as well as subjects within a broad age
range, have been recruited. In addition, in most of these
studies, subjects with a pathological condition have been
recruited instead of healthy normal weight subjects, in-
corporating extra variables to an already complex equa-
tion. Therefore, there is a need for the standardization of
postprandial studies to improve the comparison of the ef-
fects of different food products on postprandial lipemia.
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Future directions

Subjects with metabolic syndrome, obesity and hyper-
tension, among other disorders, may have normal fasting
blood lipids, despite presenting with elevated postpran-
dial lipemia. Considering that individuals are in the post-
prandial state for most of the day, a more effective
measure of abnormal lipemia needs to be developed.
Furthermore, a subject, independent of his/her health
status, should be able to choose meals that promote
lower lipemic responses postprandially, in order to re-
duce postprandial inflammation and the risk of develop-
ing or aggravating chronic disease.

Currently, the glycaemic index and the glycaemic load
are used to grade foods and meals as a determinant of
their healthiness. However, the glycaemic index can be
altered by addition of fat [141]. As a result a fat enriched
food produces a low glycaemic index, but may not ne-
cessarily be overall healthy, as it can increase postpran-
dial lipemia and consequently increase inflammatory
response [142, 143].

Ooi and colleagues [144] have suggested the develop-
ment of an index to measure the effect of different meals
on postprandial lipemia. They proposed this index
should be measured as the triglyceride’s iAUC in re-
sponse to a test meal divided by the triglyceride’s iAUC
in response to the standard meal multiplied by 100. Un-
like the glycaemic index, the lipemic index would poten-
tially be greater than 100% for some food products.
However, it can be argued that considering only the
triglyceride’s iAUC may be a very simplistic way of
measuring the effect of different food products on
postprandial lipemia. As discussed in this article, des-
pite not resulting in different postprandial triglyceride
iAUC, different foods may modulate triglyceride peak
time and magnitude differently; a fact that is masked
by adopting a single measure based on the iAUC.
The term lipemic index may also be misleading as it
is used in the clinical setting to define the quality of
the plasma or serum sample for analysis, being used
as a synonym of turbidity [145].

We propose the development of a new tool to aid the
selection of food products based on a smaller and steady
postprandial rise not only in blood glucose but also in
blood triglyceride levels. Foods with low glycaemic and
lipemic responses have the potential to improve satiety
and consequently reduce caloric intake for the preven-
tion of obesity and related cardio-metabolic diseases.
Developing a ranking criterion based on both glucose
and lipid responses may help consumers make healthier
choices and avoid health complications.

Conclusions
Postprandial lipemia, characterized by a rise in circulating
triglyceride containing lipoproteins after the consumption
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of a meal, is a dynamic, non-steady state condition to
which humans are exposed for most of their day. Evidence
accumulated over the years demonstrates that postpran-
dial lipemia may modulate endothelial function and
homeostatic variables, including blood coagulation factors,
platelet function and pro-inflammatory cytokine expres-
sion. Therefore, suggesting that postprandial lipemia
should be included in the assessment and treatment of
cardiovascular risk factors.

As discussed in this review, food structure and com-
position are important determinants of postprandial
lipemia and merit further examination to delineate the
role of different natural and processed foods to human
health and disease. Foods and meals that improve post-
prandial triglyceride concentrations are likely to play a
vital role in healthy human diets, warranting the need
for the development of a standard methodology to deter-
mine the extent and duration of postprandial lipemia. In
addition, the glucose metabolism is of equal importance
for the healthiness of the foods we consume and should
be considered in conjunction with the lipid metabolism
in the development of a novel index to determine the
healthiness of the foods.
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