
Luan et al. Molecular Cancer            (2024) 23:2  
https://doi.org/10.1186/s12943-023-01904-w

REVIEW Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Molecular Cancer

Therapeutic challenges in peripheral T‑cell 
lymphoma
Yunpeng Luan1,2*, Xiang Li1†, Yunqi Luan3†, Junyu Luo1, Qinzuo Dong1, Shili Ye2, Yuejin Li4, Yanmei Li2, Lu Jia2, 
Jun Yang1 and Dong‑Hua Yang5* 

Abstract 

Peripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of hematological malignancies. Compared 
to our knowledge of B-cell tumors, our understanding of T-cell leukemia and lymphoma remains less advanced, 
and a significant number of patients are diagnosed with advanced stages of the disease. Unfortunately, the develop‑
ment of drug resistance in tumors leads to relapsed or refractory peripheral T-Cell Lymphomas (r/r PTCL), resulting 
in highly unsatisfactory treatment outcomes for these patients. This review provides an overview of potential mecha‑
nisms contributing to PTCL treatment resistance, encompassing aspects such as tumor heterogeneity, tumor micro‑
environment, and abnormal signaling pathways in PTCL development. The existing drugs aimed at overcoming PTCL 
resistance and their potential resistance mechanisms are also discussed. Furthermore, a summary of ongoing clinical 
trials related to PTCL is presented, with the aim of aiding clinicians in making informed treatment decisions.
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Introduction
Peripheral T-cell lymphoma (PTCL) is a rare but hetero-
geneous group of hematological malignancies. This group 
of mature T-cell non-Hodgkin’s lymphomas (NHL) is an 
aggressive disease associated with poor prognosis. PTCL 
accounts for 5–10% of all non-Hodgkin’s lymphomas [1]. 
Our understandings on T-cell leukemia and lymphoma 
lag behind that of B-cell tumors, and a large proportion of 
patients have advanced disease at diagnosis. The history 
of our understanding and choices of PTCL is summa-
rized in Fig.  1. The World Health Organization (WHO) 
categorizes PTCL into approximately 30 different types. 
Broadly speaking, nodal, extranodal, and leukemic PTCL 
typically manifest as aggressive diseases, with a five-year 
survival rate of about 30%. On the other hand, cutaneous 
PTCL tends to present as a more slow-growing disease 
[2]. The WHO classification of haematolymphoid tumors 
(WHO-HAEM5) presents new molecular and histo-
pathological findings that facilitate the diagnostic classi-
fication of this type of tumor [3].
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The incorporation of CD20-based combination chemo-
therapy has improved the long-term survival rate of dif-
fuse large B-cell lymphoma, now reaching an impressive 
range of 60- 70%. However, regimens that have been 
successfully used in many aggressive B-cell lymphomas 
(i.e., anthracycline-based multiagent regimens, includ-
ing CHOP) are not as effective in T-cell lymphomas [6, 
7]. Approximately 70% of patients with PTCL develop 
relapsed or refractory disease after the first-line therapy. 
Attempts to improve outcomes by "adding" or "substi-
tuting" anthracyclines have consistently failed, and most 
patients with T-cell lymphoma will die from lymphoma- 
or treatment-related complications within a few years 
after diagnosis [8]. Undoubtedly, addressing most T-cell 
lymphomas has proven to be a difficult and unmet medi-
cal challenge. This article thoroughly examines the sig-
nificant impact of tumor heterogeneity and the tumor 
microenvironment (TME) on treatment resistance in 
PTCL. Additionally, it presents an up-to-date analysis 
of the molecular mechanisms contributing to treatment 
resistance in PTCL. Finally, potential strategies to both 
prevent and overcome treatment resistance in PTCL are 
discussed.

Sources of treatment resistance in PTCL
The occurrence of relapsed or refractory disease in 
PTCL is highly prevalent due to the emergence of drug 

resistance during treatment. Despite the availability of 
various treatment options, none have been universally 
curative, and eventually, drug resistance may develop in 
response to available treatments [9]. Although these two 
phenomena can coexist, intrinsic treatment resistance is 
often distinguished from acquired resistance. Specifically, 
intrinsic resistance arises from the disease itself and eas-
ily leads to treatment refractoriness, whereas acquired 
resistance arises from the acquisition of resistance-medi-
ated features through mutation or non-mutation during 
treatment and often leads to disease relapse [10, 11]. In 
PTCL, treatment resistance often arises from a cancer 
ecosystem composed of multiple sources, including the 
heterogeneous cancer cells themselves and their sur-
rounding tumor microenvironment (TME).

Heterogeneity of tumors
PTCL represents a remarkably heterogeneous group of 
diseases, characterized by the absence of distinct molec-
ular markers and morphological features [12]. T-cell lym-
phomas consist of a variety of rare diseases that can be 
classified as indolent or aggressive and account for 12% of 
all NHL. In 2016, the World Health Organization (WHO) 
released a revised classification of T cell/NK cell lym-
phoma, categorizing it into two main groups: precursor 
T cell tumors and mature T cell tumors. The mature sub-
group was further sub-divided into leukemic, intranodal, 

Fig. 1  The history of our understanding and therapeutic choice of PTCL [4, 5]
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extranodal, and cutaneous types. Additionally, lymphoma 
can be further classified into indolent (slow-growing) 
disease and aggressive forms [2]. Indolent lymphomas 
are characterized by a long disease course and are usu-
ally resistant to standard chemotherapy, whereas aggres-
sive lymphomas usually have an acute presentation with 
B symptoms(such as weight loss, night sweats, and fever) 
and rapid progression. Cutaneous T-cell lymphoma 
(CTCL) is considered indolent, whereas peripheral 
mature lymphoma (PTCL), including other types, is con-
sidered aggressive. PTCL-nos (not otherwise specified) 
is the most common PTCL, followed by anaplastic large 
cell lymphoma (ALCL) and angioimmunoblastic T-cell 
lymphoma (AITL) [13, 14] (Fig.  2). The 2022 update of 
the WHO classification of lymphoid neoplasms of blood 
(WHO-HAEM5) includes new insights into pathogenesis 
and molecular genetics as well as new concepts underly-
ing the classification [3].

T lymphoblastic leukemia/lymphoma (T-ALL/LBL) 
can present as lymphoma, often accompanied by rapid 
enlargement of mediastinal lymph nodes and pleural 
effusion, and can also be accompanied by leukemia of 
blood and/or bone marrow [15, 16]. In T-ALL /LBL, the 
most common genetic alteration in 50 to 70% of patients 
is NOTCH1 activating mutations. NOTCH1 signaling 
is required to induce maturation of immature lymphoid 
precursor cells into T cells, and through NOTCH1 activa-
tion, MYC is activated [17, 18]. In addition to NOTCH1 
activation, TAL1 activation is another common driver of 
tumorigenesis, occurring in 25% to 35% of T-ALL/LBL 
cases [19]. CDKN2A/B gene deletion occurs in up to 
70% of T-ALL/LBL patients [17]. NUP214 fusion, PTEN 
and WT1 deletion or mutation, PHF6 deletion and other 
genetic changes can occur in some T-ALL/LBL patients 
[20–22]. In contrast, early T-cell precursor lymphoblas-
tic leukemia (ETP-ALL) harbors mutations commonly 
found in myeloid tumors, including alterations in FLT3, 

DNMT3A, NRAS, KRAS, IDH1, or IDH2, all of which 
are genetically rare in classical T-ALL/LBL [23].

Although all or even most cases of systemic 
EBV + T-cell lymphoma (sEBV + TNHL) do not have spe-
cific chromosomal abnormalities, there are some com-
mon features: cases with alterations usually have complex 
karyotypes (3 or more chromosomal alterations), and 
nearly 40% of cases in the literature have add(9)(p24) 
[24]. In addition, variants in chromosomes 1, 7, 11, 17, 20, 
21, and X are present in more than 20% of reported cases, 
whereas DDX3X, BCOR/BCORL2, and TET2 are present 
in 20% of chronic active EBV disease [25, 26]. Chromo-
somal alterations associated with CAEBV in HV-LPD 
patients include 6q deletion or 6p gain. These molecular 
and chromosomal abnormalities are also seen in extran-
odal nasal-type NK/ T-cell lymphoma. A study of pri-
mary EBV-positive T/ NK-cell lymphoma showed that 
approximately 20% of the cases had recurrent copy-num-
ber aberrations, including deletions of chr14q11.2(100%), 
chr3q26.1(67%), and chr22q11.23(33%) [27, 28].

Extra-nodal NK/T-cell lymphoma (ENKTL) can 
be divided into three different subtypes with differ-
ent molecular characteristics and treatment outcomes 
(3-year OS rates were 79.1%, 91.7% and 38.5%, respec-
tively) [29]: TSIM (tumor-suppressor/immune-modu-
lator) subtype is associated with JAK/ STAT pathway 
activation, NK-cell origin, TP53 mutations, genomic 
instability (including 6q21 deletion and 9p24.1 and/or 
17q21.2 amplifications), and PD-L1/2 overexpression 
[30]; HEA (HDAC9-EP300-ARID1A) subtype is associ-
ated with epigenetic changes through HDAC9, EP300 
and ARID1A mutations, NF-KB activation, T-cell ori-
gin, and T-cell receptor signaling activation; Finally, MB 
(MGA-BRDT)subtype is associated with MYC overex-
pression and poor prognosis [29, 31].

ATXN1 or CIC alterations are present in 53% of adult 
T-cell leukemia/lymphoma (ATLL) cases, and CCR4 
(C–C chemokine receptor 4) mutations are common, 
and the majority of ATLL patients exhibit CCR4 over-
expression, which is associated with skin involvement 
and worse prognosis [32]. 9p24 amplification with PDL1 
amplification occurs in 10 to 20% of cases, and TP53 
mutations occur in 16% of cases, both of which are asso-
ciated with a poor prognosis [33].

The most common translocation in anaplastic large 
cell lymphoma(ALCL) is t(2; 5) (p23; q35), NPM1::ALK 
is found in approximately 85% of ALK + ALCL [12]. The 
prognosis of ALK + ALCL is better than that of ALK-
ALCL, and the 5-year overall survival rate is 70–90% 
[34]. Alk-negative ALCL cases have considerable genetic 
heterogeneity, and DUSP22 gene rearrangement is found 
in approximately 30% of systemic ALK-negative ALCL 
patients [35]. Certain studies have proposed that dusp22 

Fig. 2  Incidence of different Peripheral T-cell lymphoma subtypes 
according to IPTCLP [7]
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rearrangement in ALK-negative ALCL demonstrates 
a favorable outcome, similar to that of ALK-positive 
disease. However, other studies have indicated a more 
aggressive disease course compared to ALK-positive dis-
ease [35, 36]. TP63 rearrangement occurs in about 8% 
of Alk-negative ALCL cases and is associated with poor 
prognosis, with a 5-year overall survival rate of only 17%, 
which is lower than that of PTCL-NOS [37]. PTCL-NOS 
is a T-cell lymphoma that does not meet any of the spe-
cific subtype criteria. This tumor is also the most com-
mon type of T-cell lymphoma, accounting for 25–30% 
of all cases [38]. The prognosis of PTCL-NOS relies on 
its genetic heterogeneity, leading to its classification 
based on gene expression profiles: one with high expres-
sion of GATA3 (PTCLGATA3) and the other with high 
expression of TBX21 (PTCL-tbx1) [39]. PTCL-GATA3 
is linked to PI3K/mTOR pathway activation, exhibiting a 
more aberrant genome, and thus, associated with a poor 
prognosis, with a 5-year overall survival rate of 19%. In 
contrast, PTCL-TBX21 is characterized by NFKB path-
way activation, fewer genomic abnormalities, and a more 
favorable prognosis, with a 5-year overall survival rate of 
38% [40]. PTCL-NOS cases with TP53/CDKN2A altera-
tions show considerable chromosomal instability and a 
poor overall survival rate, exhibiting an inverse correla-
tion with TFH marker expression. The majority of PTCL-
NOS cases have a homozygous deletion of CDKN2A, 
which appears to be linked to an unfavorable prognosis 
[25].

In the latest WHO classification, Tfh (T follicular 
helper) PTCL encompasses AITL with Tfh phenotype, 
follicular PTCL, and nodal PTCL, which are tumors with 
similar clinical presentation, gene expression, DNA copy 
number, abnormalities, and mutational profiles [2]. 3, 5, 
21, and X chromosome gain/trisomy are the most com-
mon cytogenetic abnormalities in AITL. Other visible 
chromosomal alterations include increases in 11q13, 19, 
or 22q and loss of 13q10. Mutations in genes observed 
in AITL overlap for the most part with those observed 
in medullary tumors [22].TET2 mutations are seen in 
47% ~ 83% of AITL cases, and DNMT3A alterations are 
seen in 26% ~ 38% of cases. These genes are involved 
in epigenetic regulation, and their mutations lead to 
5-hydroxymethylcytosine loss through a common mech-
anism in PTCL. There are also IDH2 mutations seen in 
20–45% of AITL, and RHOA p.G17V mutations are seen 
in 70% of AITL [41–43]. The fact that RHOA and IDH2 
mutations are confined to tumor cells suggests that they 
may be the second strike in a multistep oncogenic pro-
cess [44]. These mutations are also present in Tfh-type 
PTCL, with the exception of the IDH2R172 mutation, 
which is strongly associated with AITL labeling and cor-
relates with specific pathological manifestations, and the 

SYK fusion, which is more frequently detected in follicu-
lar PTCL [45, 46].

Tumor microenvironment
Lymphoma occurrence is not solely driven by tumor-
autonomous processes; rather, it requires the intricate 
interaction of the tumor microenvironment (TME). The 
TME encompasses tumor cells, immune cells, stromal 
cells, blood vessels, and the extracellular matrix sur-
rounding the tumor. Interactions between stroma cells 
and tumor cells within the TME, along with the secretion 
of soluble factors, have been identified as contributors to 
treatment resistance in various cancer types [47, 48]. As 
PTCL is relatively rare, our understanding of the PTCL 
TME is still in its early stages, with most knowledge 
derived from B-cell NHL experiences.

Programmed cell death ligand I (PD-L1) expression 
was more pronounced in the TME of PTCL, seen in 73% 
of CTCL cases and 39% of other PTCL cases. PD-L1 is 
also highly expressed in malignant cells such as nasal 
NK/ T cell lymphoma (NKTCL) and extranasal NKTCL. 
Almost all EBV-associated lymphomas are associated 
with high PD-L1 expression [27]. Serum PD-L1 level is 
associated with the prognosis of ENKTCL. For example, 
Nagato and colleagues reported that elevated levels of 
PD-L1 in tumor cells is correlated with elevated levels of 
PD-L1 in serum and worse OS, which is associated with 
immune escape [47]. As previously described, GATA3 
expression in PTCL-NOS is associated with a poor prog-
nosis [39] and is characterized by type 2 helper t cell 
(Th2) -related cytokines, including interleukin (IL)-4, 
IL-5, IL-10, and IL-13 [48], which promote macrophage 
polarization to alternative M2-type macrophages [49]. 
M2 macrophages promote angiogenesis by secreting 
pro-angiogenic cytokines such as VEGF. In addition, they 
secrete IL-10 and transforming growth factors, which up-
regulate the expression of PD-L1 on macrophages in an 
autocrine manner. Binding of PD-L1 to PD-1 expressed 
on T cells results in suppression of T cell function and, 
consequently, immunosuppression [50, 51]. Clinic patho-
logical correlation studies have provided evidence for the 
prognostic significance of tumor-associated macrophages 
in T-cell lymphoma [52]. Among 64  T-cell lymphomas, 
high tumor-associated macrophage content was associ-
ated with poor prognosis in multivariate analysis (high 
macrophage content vs low macrophage content, overall 
survival, OS: 28.1% vs 44.3%) [53]. The degree of mac-
rophage infiltration is also inversely correlated with sur-
vival, with multiple studies showing that a high content 
of CD163-positive macrophages is associated with low 
survival [54, 55].

The infiltration of other non-neoplastic T cells in T-cell 
lymphomas may also regulate TME. Regulatory T cells 
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(Tregs) are a subset of CD4-positive T cells that inhibit 
immune responses and maintain immune tolerance. 
Tregs are characterized by high levels of CD25 and fork-
head transcription factor FOXP3 [56, 57]. Tregs in the 
lymphoma microenvironment may suppress immune-
mediated antitumor responses, thereby enhancing tumor 
cell survival. However, Tregs may also down-regulate the 
inflammatory response in the microenvironment and 
promote tumor progression, thereby inhibiting tumor 
cell proliferation. The opposite regulatory effects of Tregs 
on tumor cells may explain the apparently contradictory 
prognostic effects of Tregs on different types of T-cell 
lymphomas. The number of Tregs remained an inde-
pendent prognostic biomarker in multivariate analysis, 
and a large number of Tregs infiltration was associated 
with higher survival [58, 59].

Multiple drug resistance
Drug resistance is a common and difficult obstacle in the 
treatment of mature T/ NK-cell lymphoma, and multi-
drug resistance (MDR) phenotype is considered to be 
one of its mechanisms [60]. MDR refers to the acquired 
cross-resistance to a variety of structurally and func-
tionally unrelated drugs. MDR is often associated with 
increased expression of drug efflux transporters of the 
ATP-binding cassette (ABC) protein family [61, 62]. The 
ABC transporter superfamily contains 48 ABC trans-
porters, which are divided into seven subfamilies based 
on sequence homology and protein organization. Accu-
mulating evidence suggests that ABC transporters play 
a key role in the physiological transport and export of 
drugs and toxic substances, which can export a vari-
ety of chemotherapeutic agents outside of cells [63]. T/ 
NK-cell lymphoma cases showed a high frequency of 
MDR protein expression [64]. In earlier reports, poor 
response to chemotherapy in ATL patients was partly 
due to high expression of P-gp or MDR1. In one study, 
the expression of P-glycoprotein (P-gp), multidrug resist-
ance-related protein 1 (MRP-1), breast cancer resistance 
protein (BCRP), and lung resistance protein (LRP) in 45 
cases of mature NK/ T-cell lymphoma was examined by 
immunohistochemistry. The positive rates of P-gp, MRP-
1, BCRP and LRP were 31% (13/42), 74% (31/42), 78% 
(32/41) and 59%(26/44), respectively [65]. Jung et  al., in 
a study of drug resistance in T—and NK-cell lymphomas, 
reported a statistically significant association with treat-
ment failure and overall survival [66]. Yamaguchi et  al. 
also reported high P-gp expression in their study of nasal 
NK-cell lymphoma patients and suggested that the poor 
prognosis of these patients may be related to P-gp expres-
sion [67]. Egashira et al. reported that P-gp expression in 
CD56-positive NK-cell tumors was associated with poor 
prognosis [68].

It has been confirmed that in B-cell lymphoma, the five 
drugs containing R-CHOP do not show synergistic effect, 
but cross-resistance is very low, indicating that the effi-
cacy of RCHOP is produced by the combination of non-
overlapping active drugs, and the reason for the poor 
efficacy of CHOP against ENKTL is the expression of the 
multidrug efflux pump P-glycoprotein /MDR1 [69].The 
high expression of P-glycoprotein in PTCL lymphoma 
cells, doxorubicin, vincristine, and prednisone, which 
are substrates of Pgp, easily induces intrinsic resistance 
to drugs due to the upregulation of P-gp expression [70]. 
ABCC4 and ABCG4 were significantly up-regulated in 
human NK/T cell lymphoma YTS and SNK-6 cells com-
pared with normal NK cells [71]. Overall, it is impor-
tant to highlight the role of ABCC4 in drug resistance. 
Based on gene expression regulation technology, over-
expression of ABCC4 and ABCG4 can induce epirubicin 
(EPI) and cisplatin (DDP) resistance in human NK/ T 
cell lymphoma YTS cells and reduce cell apoptosis [72]. 
Meanwhile,IL-6, IL-10, and IL13 mediate ABCC4 resist-
ance in T-cell lymphoma [64, 73, 74].

Signaling pathways in PTCL
The mechanism of drug resistance of lymphoma is 
closely related to the signaling pathways of lymphoma 
cells. Recent genetic analyses of PTCL have improved 
our understanding of the pathogenesis of this malig-
nancy. The activation mutation of NF-κB, Notch, JAK/ 
STAT3, RHOA and PI3K/AKT signaling pathways play 
an important role in the pathogenesis of PTCL [29, 75]. 
The expression of JAK/STAT pathway genes is upregu-
lated in ENKTL, and mutations in JAK3, STAT3, and 
STAT5B lead to constitutive activation of the JAK/
STAT pathway, which occurs on the transcription fac-
tor jak3 in about 35% of cases, resulting in severe 
immunodeficiency characterized by a lack of T and NK 
cells [76, 77]. DDX3X, the RNA helicase gene, which 
mutated in 20% of PTCL, resulting in cell cycle arrest 
and loss of transcriptional activation of the nuclear fac-
tor κB (NF-κB) and mitogen-activated protein kinase 
(MAPK) pathways. Clinically, the presence of DDX3X 
mutation indicates a poor prognosis [78, 79]. PTPRK 
is known to dephosphorylate phosphorylated stat3, 
resulting in its inactivation. Loss of PTPRK and low 
expression of PTPRK due to aberrant promoter hyper-
methylation can cause constitutive activation of STAT3, 
leading to proliferation and development of PTCL. 
Downregulation of PTPRK is associated with advanced 
disease and poor outcomes in patients treated with the 
steroids, methotrexate, ifosfamide, L-asparaginase, and 
etoposide (SMILE) regimen [80]. NF-κB is involved in 
pro-proliferative signal transduction in a variety of lym-
phoid malignancies [75, 81]. Although the mechanism 
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needs to be further investigated, GEP studies suggest 
increased expression of NF-κB-related genes in PTCL 
and that NF-κb inhibitors induce apoptosis in PTCL 
cells [82], findings that support the hypothesis that this 
pathway plays an important role in PTCL. In addition, 
NF-κB is involved in the pathogenesis of hemophagocy-
tosis, which is the main cause of death in PTCL patients 
[83].(Fig.  3). In addition, increasing data suggest that 
viral components are involved in multidrug chemother-
apy resistance in lymphoma cells, and several mecha-
nisms may be associated with oncogenic viral-mediated 
chemotherapy resistance, which is caused by changes 
in disease signaling pathways [84]. Under latent EBV 
infection, intracellular ROS production increases P-gp 
expression via the STAT1 pathway, and ROS scavenger 
NecroX-5 down-regulates ROS, effectively attenuat-
ing P-gp-associated chemotherapy resistance in EBV-
positive NK/ T-cell lymphoma. LMP1 and/or other 
viral components are also involved in P-gp-dependent 
chemoresistance [28, 85].

Epigenetics in PTCL
Epigenetics is the stable clonal inheritance of expres-
sion states that cannot be explained by DNA variants. 
Gene expression is typically maintained through DNA 
methylation and post-translational methylation, acetyla-
tion, phosphorylation, and ubiquitination of histone and 
non-histone proteins [86]. Mutations in genes encod-
ing proteins involved in epigenetic regulation are seen 
in various malignancies including PTCL, particularly in 
those expressing follicular helper T cell (TFH) differen-
tiation markers, such as angioimmunoblastic T-cell lym-
phoma (AITL) and some PTCL-NOS [87]. Disruption of 
DNA methylation and histone modifications has become 
a hallmark of these diseases and the basis for epigeneti-
cally targeted therapies [88]. As the understanding of 
epigenetic complexity continues to deepen, it has been 
found that mutations in these epigenetic regulators have 
a global impact on lymphoma development and drug 
sensitivity, and the ability to silence multiple genes at the 
same time through the regulation of a large number of 
genes leads to polygenic drug resistance [89, 90].

Fig. 3  Part of the pathways, such as NF-κB, JAK/ STAT3 and PI3K/AKT signaling pathways in the pathogenesis of PTCL
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MicroRNAs in PTCL
MicroRNA is a type of RNA with length of 19 to 22 
nucleotides, which is involved in important biological 
processes such as development, proliferation, differentia-
tion and apoptosis [91]. Recent studies have shown that 
the differentiation of various T cell subsets is regulated by 
multiple miRNAs targeting different signaling pathway 
proteins/molecules, resulting in initiation or inhibition/
termination of differentiation [92, 93]. Different microR-
NAs are uniquely expressed in lymphoid T cells and play 
a role in the development and differentiation of various 
subtypes by targeting their target genes. Aberrant expres-
sion of miRNAs may be involved in T-cell leukemia and 
lymphopoiegenesis and may function as tumor suppres-
sor genes such as miR-451, miR-31, miR-150, and miR-
29a or oncogenes such as miR-222, miR-223, miR-17–92, 
and miR-155. In T-cell leukemia and lymphoma, micro-
RNA can be used as novel biomarkers for prognosis and 
diagnosis, or as indicators of disease severity [94, 95].

The increased expression of miR-122 is associated with 
poor prognosis in advanced mycosis fungoides (MF). 
The up-regulation of miR-21, miR-486 and miR-214 is 
involved in promoting SzS cell survival and is involved 
in the apoptotic resistance of CTCL cell lines, and may 
even become incurable CTCL [96]. The expression lev-
els of miR-21 and miR-155 in NK cell lymphoma cell 
lines were significantly higher than those in normal 
NK cells [97]. Plasma miR-221 level may have diagnos-
tic and prognostic significance in extranodal NK/ T cell 
lymphoma (ENKTCL) [98]. In fact, there is an indirect 
relationship between miR-221 expression and overall 
survival after treatment of this lymphoma. Evaluation 
of miR-146a expression in NKTL tissues showed that 
patients with low levels of miR-146a expression were 
associated with chemotherapy resistance and poor prog-
nosis. This miRNA acts as a tumor suppressor and there-
fore can be used for prognosis of PTCL. Evaluation of the 
expression level of miR-16 in paraffin-embedded lymph 
node samples of T lymphoblastic lymphoma/leukemia 
(T-LBL/ALL) patients showed that the overall survival 
of patients with high levels of miR-16 was higher than 
that of patients with low levels of miR-16, and it can be 
used as a prognostic marker for T LBL/ALL108 patients 
[99]. Elevated exosomal miR-4454, miR-21-5p, and miR-
320e levels were associated with poor overall survival. 
Elevated levels were also found in patients who relapsed 
after treatment. These three miRNAs were overexpressed 
in PTCL cell lines resistant to etoposide [100].

Approved and emerging therapies for R/R PTCL
The exploration of treatment for PTCL is very active, and 
the development of treatments has been driven primarily 

by advances in the understanding of the biology of the 
disease.

CD30 monoclonal antibody agents
CD30 receptors are expressed in Hodgkin’s disease, 
T-cell lymphoma subsets, and activated T cells [101]. In 
376 PTCL patient samples, CD30 was expressed in 58% 
of PTCL-NOS, 63% of AITL, and almost 100% of ALCL. 
Similar to the therapeutic effect of CD20 monoclonal 
antibodies in B-cell lymphomas, there is an increas-
ing interest in targeting CD30 as a potential therapeutic 
option for PTCL [102]. Brentuximab Vedotin (BV) is an 
antibody–drug conjugate in which an anti-CD30 mono-
clonal antibody is coupled to the tubulin toxin mono-
methyl lauristatin E (MMAE) [103]. Once bound to the 
CD30 receptor, it is internalized and causes disruption 
of microtubule polymerization and cell death. BV-CHP 
has shown clinical benefit in ALCL, making it the pre-
ferred option for the treatment of this disease, and it is 
strongly considered for other CD30 + PTCL [8]. In a large 
prospective phase II study and another large phase III 
randomized study (ECHELON-2), BV combined with 
other chemotherapy agents showed good therapeutic 
effect, and BV also achieved good efficacy in relapsed 
and refractory PTCL as a single agent [104–106]. At 
ASH 2022, the updated 5-year ECHELON-2 clinical trial 
showed that compared to CHOP, first-line treatment of 
PTCL patients with A + CHP continued to provide clini-
cally meaningful improvements in PFS and OS with a 
manageable safety profile, with 5-year PFS rates at a 
median follow-up of 47.6 months in the A + CHP group 
and CHOP group of 51.4% and 43.0%, with 5-year over-
all survival rates of 70.1% and 61.0% and a 28% reduc-
tion in the risk of death (HR = 0.72; 95% CI: 0.53–0.99), 
respectively. Among patients treated with vibutuximab 
after relapse, the objective remission rate was 59% for re-
treatment with BV after A + CHP and 50% for re-treat-
ment with vibutuximab after CHOP. In ECHELON-2, 
patients over 65 years of age who received a + CHP had 
significantly improved outcomes. An ongoing phase 2 
trial is providing additional data on BV retreatment in 
patients with classical Hodgkin’s lymphoma, sALCL, 
or other cd30-positive PTCL (NCT03947255) [107]. 
Although BV has high activity in R/R HL, most patients 
eventually develop BV resistance. It was reported that 
antigen downregulation is a potential resistance mecha-
nism to any antigen-targeted therapy [108], however, 
it seemed CD30 loss does not appear to be a common 
event in BV-refractory HL. The investigators found that 
CD30 expression was maintained in tumor samples from 
patients with BV-refractory HL, as well as in two inde-
pendent BV-resistant cell lines, both of which were found 
to have upregulation of the multidrug resistance gene 
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MDR1, suggesting that BV resistance may be mediated 
in part by increased MDR1 activity rather than CD30 
loss [109]. Upregulation of NF-κB activity is responsible 
for increased MDR1 expression in drug resistant clones 
[110]. The addition of MDR1 inhibitors to BV treatment 
may be a potential treatment option for PTCL [109, 111].

Pralatrexate
Pralatrexate(PDX), a new antifolate agent that is more 
potent than methotrexate, is active against T-cell lym-
phomas. Pralatrexate is a highly selective antifolate drug 
with high affinity for reduced folate carrier (RFC). RFC 
is a protein that regulates natural folate uptake and, in 
tumor cells, is required for purine and pyrimidine biosyn-
thesis [112]. Pralatrexate is the first drug to be approved 
for patients with relapsed/refractory PTCL based on 
the PROPEL study. The PROPEL trial study popula-
tion included patients with all aggressive TCL subtypes, 
including challenging disease that was partially excluded 
by other studies, including blastic NTKCL, transformed 
MF and HTLV-1 ATLL, responses were observed for 
PTCL in all subtypes. The ORR was 29%(investigator-
assessed 39%), with 18% of patients achieving PR and 
11% achieving CR or unconfirmed CR (CRu) [113]. After 
pralatrexate’s approval, a phase II trial explored alternat-
ing CEOP(cyclophosphamide, etoposide, vincristine, 
and prednisone) with first-line therapy (each cycle con-
sisted of CEOP (A) with Pralatrexate (B) 30  mg/m2 IV 
days 15, 22 and 29). However, this study failed to show 
better results with CHOP than with historical data [114]. 
During the use of pralatrexate, the overall response rate 
(ORR) of treated patients was about 30%, which is not 
ideal for the treatment of T-cell lymphoma. In addition 
to intrinsic resistance, pralatrexate has cross-resistance 
with other conventional cytotoxic chemotherapy drugs, 
and it accumulates over time [113]. Moreover, toxicity of 
this agent can be significant, the most common grade 3/4 
adverse events were thrombocytopenia (32%), mucositis 
(22%), neutropenia (22%), and anemia (18%) [113, 115], 
thus we need more research to improve the quality of life 
of these patients with acceptable comfort indices. The 
combination appears to overcome the inherent resistance 
to pratrexin to some extent, and the resistance mecha-
nism of PDX is related to the reduced cellular uptake of 
PDX and/or the overexpression of DNMT3B. Epigenetic 
alterations are also thought to play a role in resistance 
mechanisms. DAC combined with PDX has a synergistic 
effect, which is expected to improve the clinical efficacy 
[116]. In addition, pratrexin also has significant syner-
gistic effects with histone deacetylase inhibitors (such 
as romidispin [117]) and proteasome inhibitors (such as 
bortezomib [118]).

PD‑1/PD‑L1
Programmed death receptor 1 (PD-1) recognizes ligands 
such as PD-L1 on tumor cells to evade host immune 
responses. Inhibition of the programmed cell death 
ligand 1 (PD-L1) pathway has emerged as a promis-
ing strategy for the treatment of tumors [119]. PD-L1 
expression ranged from 39 to 100% in NKTCL [30, 120, 
121]. Nivolumab is a humanized immunoglobulin G4 
monoclonal antibody that targets the programmed death 
(PD)-1 receptor on T cells and has shown marked anti-
tumor activity, improving survival in a number of solid 
tumors and hematologic malignancies, including Hodg-
kin’s lymphoma [122, 123]. In a phase Ib study that 
included R/R hematologic malignancies, the ORR was 
40% in patients with PTCL, but no CR was observed 
[119]. Although Pembrolizumab has been used to treat 
various subtypes of NHL, there are limited real-world 
data on the efficacy of Pembrolizumab in patients with 
NKTCL. Several studies published some clinical trial 
data, but the sample sizes were small, and some studies 
showed that PD-1 inhibition with pembrolizumab was 
a favorable strategy for the treatment of refractory or 
relapsed NKTCL [124–126]. In addition, PD-L1 muta-
tions and a diverse baseline T-cell receptor (TCR) rep-
ertoire have been shown to be potential biomarkers for 
better selection of NKTCL patients for anti-PD-1 therapy 
[14]. NKTCL patients can undergo PD-L1 mutation and 
TCR sequence analysis before receiving immune check-
point inhibitor therapy to avoid excessive financial bur-
den and reduce adverse events [127].

Histone deacetylase inhibitors
Histone deacetylation inhibitors are a class of drugs 
that can acetylate histone proteins, thereby regulat-
ing gene transcription, leading to cell cycle arrest, dif-
ferentiation and apoptosis [128]. Histone deacetylase 
inhibitors (HDACis) have long been shown to have anti-
tumor activity, and the mechanism is related to acetyla-
tion of histones and other proteins involved in tumor 
suppression, apoptosis, and cell cycle regulation [129]. 
Romidepsin, a cyclic peptide originally isolated from 
Chromobacterium violaceum, is a pan-HDAC inhibi-
tor with potent inhibitory activity against selected class 
1 HDAC isoforms, such as HDAC-1, -2, and -3, and is a 
selective and potent bicyclic histone deacetylase inhibi-
tor. First approved by the FDA in 2009 for the treatment 
of patients with relapsed cutaneous T-cell lymphoma 
[130], Romidepsin was subsequently approved for the 
treatment of patients with relapsed/refractory PTCL 
based on two independent phase 2 clinical trials [131, 
132]. The Ro-CHOP Phase III trial was designed to com-
pare the efficacy and safety of standard CHOP versus 
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Romidepsin-CHOP regimens for patients with first-line 
PTCL.As of December 13, 2019, with a median follow-
up of 27.5 months, the Ro-CHOP combination regimen 
did not improve PFS, remission rates, or OS, nor did it 
increase the incidence of grade ≥ 3 treatment-related 
TEAEs in patients with PTCL compared to CHOP treat-
ment. The 6-month, 1-year, and 2-year PFS rates were 
67.4%, 67.4%, 67.3%, and 43.2%, respectively, in the Ro-
CHOP group, 49.8% and 43.2% in the Ro-CHOP group 
and 65.9%, 44.3% and 36.3% in the CHOP group, respec-
tively; the 1-year and 2-year OS rates were 78.2% and 
63.6% in the Ro-CHOP group and 77.5% and 63.4% in the 
CHOP group, respectively. However, the high incidence 
of TEAE in Ro-CHOP treatment limited the intensity of 
the regimen measured in CHOP. Overall, Ro-CHOP did 
not demonstrate a satisfactory benefit in patients with 
previously untreated PTCL [133]. Based on this study, 
on May 6, 2022, the FDA formally announced that it 
was withdrawing approval of romidepsin for the indica-
tion of PTCL, but that it was still approved for the treat-
ment of cutaneous T-cell lymphoma in patients who have 
received at least one systemic therapy.

Belinostat, a pan-class 1 and class 2 hydroxamic acid-
based HDAC inhibitor, is currently approved for patients 
with relapsed or refractory PTCL who have received at 
least one line of previous therapy [134].

Chidamide is another HDACi that has shown mono-
therapy activity in R/R PTCL [135]. Despite the prom-
ising anti-lymphoma activity of histone deacetylase 
(HDAC) inhibitors, drug resistance is an important clini-
cal problem. Belinostat-resistant cells showed significant 
cross-resistance to other HDAC inhibitors, including 
romidepsin, panobinostat, and vorinostat. Consistent 
with the insensitivity to HDAC inhibitors, resistant cells 
failed to induce an increase in acetylated histones. Resist-
ance of tumor cells to HDAC inhibitors may involve both 
"intrinsic" and "acquired" mechanisms. Aberrant expres-
sion and modification of signaling molecules lead to the 
inherent resistance of cancer cells to HDAC inhibitors 
[128, 136, 137].

Inhibitors of the PI3K/Akt/mTOR pathway
In T lymphocytes, activation of the phosphatidylinosi-
tol 3-kinase (PI3K)/Akt/ mammalian target of rapamy-
cin (mTOR) pathway in response to exogenous stimuli 
is known to drive cell survival and clonal prolifera-
tion, and PI3K activation is tightly controlled by sig-
nals transduced through the TCR complex [138, 139]. 
Thus, in the presence of stable TCR signaling, costim-
ulatory signaling driven primarily by the PI3K/Akt/
mTOR pathway leads to complete T-cell proliferation 
activation, making inhibition of this pathway and/or 
TCR signaling a reasonable approach for PTCL therapy 

[140, 141]. Duvelisib (IPI-145) is an oral inhibitor of 
the PI3K isoforms PI3Kδ and PI3Kγ, which are thought 
to be required for full TCR signaling. In an open-
label phase 1 study, 16 patients with R/R PTCL and 19 
patients with CTCL were treated with duvelisib, with 
an ORR of 50%, a CR rate of 19%, and a median PFS 
of 8.3 months [140]. Copanlisib (bay80-6946), a PI3Kα 
and δ inhibitor, is active in B-cell lymphomas and is 
FDA approved for the treatment of follicular (B-cell) 
lymphomas. The activity of copanlisib in T-cell lym-
phomas is currently being further investigated [142]. 
Aurora A kinase (AAK) has also recently been shown 
to play a key function in cell entry into mitosis, and its 
overexpression has been linked to the development of 
a number of tumors [143]. This prompted us to explore 
AAK inhibition as a potential therapeutic strategy for a 
variety of cancers, including PTCL. Alisertib is a selec-
tive AAK inhibitor that has shown promising activ-
ity in preclinical models of T—and B-cell lymphomas 
and in  vivo lymphoma models [144, 145]. Despite 
promising early activity, enrollment was stopped early 
because of poor odds of superior PFS compared with 
other agents. The findings, although less encouraging, 
cannot completely rule out a future role for Alisertib 
combination therapy.

Other drugs
In addition to the above FDA- approved drugs, R/R 
PTCL can also be treated from other angles. Bendamus-
tine, CCR4 inhibitors [146], ALK inhibitors [147], DNA 
methyltransferase (DNMT) inhibitors [8], CD138 mon-
oclonal antibody, CD52 monoclonal antibody [148], 
antiviral drugs, immunomodulators, EZH2 and EZH1 
dual inhibitors [149], are drugs that have achieved very 
encouraging clinical trials in relapsed and refractory 
PTCL. Furthermore, there is significant emphasis on 
conducting clinical trials targeting relapsed or refrac-
tory T-Cell Lymphomas. In this context, we present a 
list of ongoing r/r PTCL clinical trials, which encom-
pass novel combinations of established drugs along with 
newly developed drugs that are not yet available in the 
market (refer to Table 1).

Conclusion
To date, most PTCL subtypes are aggressive and chem-
otherapy-resistant, and their prognosis remains poor. 
Multiple mechanisms, such as tumor heterogeneity, 
tumor microenvironment, and signaling pathways, con-
tribute to PTCL resistance. Over the past few years, 
considerable efforts have been made to identify novel 
molecular targets and deregulated molecules in the 
oncogenic pathway. Many ongoing clinical trials are 
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exploring other targeted drugs, novel cell therapies, and 
immunotherapies. As precision medicine catches up 
with this disease, we are likely to see new treatments 
that can overcome tumor resistance and thus improve 
the treatment efficacy of PTCL.
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