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Pan‑cancer spatially resolved 
single‑cell analysis reveals the crosstalk 
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and tumor microenvironment
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Abstract 

Cancer-associated fibroblasts (CAFs) are a heterogeneous cell population that plays a crucial role in remodeling 
the tumor microenvironment (TME). Here, through the integrated analysis of spatial and single-cell transcriptom-
ics data across six common cancer types, we identified four distinct functional subgroups of CAFs and described 
their spatial distribution characteristics. Additionally, the analysis of single-cell RNA sequencing (scRNA-seq) data 
from three additional common cancer types and two newly generated scRNA-seq datasets of rare cancer types, 
namely epithelial-myoepithelial carcinoma (EMC) and mucoepidermoid carcinoma (MEC), expanded our understand-
ing of CAF heterogeneity. Cell–cell interaction analysis conducted within the spatial context highlighted the pivotal 
roles of matrix CAFs (mCAFs) in tumor angiogenesis and inflammatory CAFs (iCAFs) in shaping the immunosuppres-
sive microenvironment. In patients with breast cancer (BRCA) undergoing anti-PD-1 immunotherapy, iCAFs dem-
onstrated heightened capacity in facilitating cancer cell proliferation, promoting epithelial-mesenchymal transition 
(EMT), and contributing to the establishment of an immunosuppressive microenvironment. Furthermore, a scoring 
system based on iCAFs showed a significant correlation with immune therapy response in melanoma patients. Lastly, 
we provided a web interface (https://​chenx​isd.​shiny​apps.​io/​pancaf/) for the research community to investigate CAFs 
in the context of pan-cancer.
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Introduction
Tumors display extensive heterogeneity, with cancer cells 
engaging in reciprocal interactions with their microenvi-
ronment, forming a complex ecosystem [1]. Cancer-asso-
ciated fibroblasts (CAFs), as one of the most prominent 
and abundant cell populations in the tumor microenvi-
ronment (TME) [2], have garnered significant attention 
in recent years. CAF’s intricate interactions with stro-
mal components and immune cells play a crucial role in 
orchestrating TME reorganization, encompassing pro-
cesses such as angiogenesis, extracellular matrix (ECM) 
remodeling, and immune evasion [3–5]. At present, the 
crucial role of CAFs has been largely overlooked by most 
therapies, including immunotherapy and chemotherapy 
[3]. Our current understanding of the interplay between 
CAFs and components of TME is insufficient to support 
the development of reliable treatment strategies. Further 
research is needed to deepen our understanding of these 
interactions and pave the way for effective therapeutic 
interventions.

In recent years, the application of single-cell transcrip-
tomics has unraveled the heterogeneity of CAFs within 
many cancer types, such as bladder carcinoma (BC) [6], 
head and neck squamous cell carcinoma (HNSCC) [7], 
papillary thyroid carcinoma (PTC) [8], and lung cancer 
(LC) [9]. Furthermore, two recent unbiased studies based 
on single-cell RNA sequencing (scRNA-seq) explored the 
heterogeneity and plasticity of CAFs from a pan-cancer 
perspective and revealed the conservation of CAF pheno-
types across cancer types [10, 11]. Although scRNA-seq 
provides an unprecedented opportunity to systemati-
cally dissect the heterogeneity of CAFs, the loss of spatial 
information during tissue dissociation hinders the study 
of the crosstalk between CAFs and TME. Recently devel-
oped spatial transcriptomics (ST) can obtain whole-tran-
scriptome data within tissue sections, thereby preserving 
the spatial position information of cells [12]. Therefore, 
orthogonal integration of scRNA-seq data and ST data 
will help determine the spatial distribution characteris-
tics of CAFs and further dissect the cellular communica-
tion between CAFs and TME.

In this study, we have delineated the landscape of CAFs 
in six common cancer types and described the unique 
functional features of these subtypes. We also analyzed 

scRNA-seq data of three additional common tumors 
and two newly sequenced rare tumors to expand our 
understanding of CAF heterogeneity. A spatial single-
cell transcriptomic atlas spanning six tumors, including 
744,289 cells, generated by integrating scRNA-seq data 
and ST data was used to describe the spatial distribution 
characteristics of CAFs and to characterize the complex 
interactions between CAFs and TME. Notably, a score 
generated based on inflammatory CAFs (iCAFs) showed 
a significant correlation with the response of melanoma 
patients to immunotherapy. In summary, our integrated 
data resources provide novel insights and guidance for 
the development of therapeutic strategies targeting CAFs 
in TME.

Results
Construction of a pan‑cancer spatial single‑cell 
transcriptome atlas
To establish a spatial single-cell landscape in pan-can-
cer, we acquired scRNA-seq data from 69 samples of 
56 patients diagnosed with one of the six prevalent 
cancer types, along with ST data from 22 tissue slices 
of 22 patients (Fig.  1a and b; Table S1 and S2). Among 
them, the ST data of 10 tissue slices had corresponding 
scRNA-seq data from the same patient (Fig.  1c; Table 
S1 and S2). The data we collected included six types of 
cancer: BRCA, colorectal cancer (CRC), liver hepato-
cellular carcinoma (LIHC), ovarian cancer (OVCA), 
prostate adenocarcinoma (PRAD), and uterine corpus 
endometrial carcinoma (UCEC) (Fig.  1a; Table S1 and 
S2). After strict quality control and filtration, a total of 
163,919 cells in the scRNA-seq data and 59,529 spots in 
ST data were retained for downstream analysis (Fig.  1d 
and S1a). In the scRNA-seq dataset, the median num-
ber of unique molecular identifiers (UMIs) per cell was 
3955, and the median number of genes per cell was 1425 
(Figure S1b and c). For ST analysis, the median number 
of UMIs per spot was 11,139 and the median number of 
genes per spot was 3,863 (Figure S1d and e). To minimize 
the batch effect between different scRNA-seq datasets, 
we independently analyzed each dataset. Taking CRC as 
an example, we used graph-based clustering and identi-
fied seven major clusters based on typical markers of 
different cell types (Table S3), including epithelial cells, 

Fig. 1  A pan-cancer spatial single-cell transcriptome atlas. a Schematic depicting the study design. The cancer types included in this pan-cancer 
study were displayed in the first image on the left, created by Figdraw. b The number of samples in the pan-cancer analysis of scRNA-seq and ST. c 
Pie chart showing the proportion of ST sections that have corresponding scRNA-seq data from the same patient compared to those without such 
corresponding scRNA-seq data. d The number of cells in the pan-cancer analysis of scRNA-seq and ST. e Uniform Manifold Approximation 
and Projection (UMAP) plots showing the major cell types in CRC. f Bubble heatmap showing the expression of marker genes for the major cell 
types in CRC. g Spatial cell charting of CRC using CellTrek

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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fibroblasts, endothelial cells, T&NK, B cells, myeloid 
cells and mast cells (Fig.  1e and f ). CopyKAT was used 
to estimate the single-cell copy number variation (CNV) 
landscape of tumors, in order to distinguish malignant 
epithelium from non-malignant epithelium (Fig. 1e). The 
myeloid cells were further divided into monocytes, mac-
rophages and dendritic cells (Fig. 1e). The CD8 + T cells, 
CD4 + T cells, regulatory T cells (Treg cells) and natural 
killer cells (NK cells) were identified from the T&NK 
cluster (Fig. 1e). Similarly, cells from the other 5 types of 
cancer were clustered into roughly the same subgroups 
(Figure S2, S3, S4 and S5). Of note, we detected neutro-
phils in the scRNA-seq data from the inDrop platform, 
which were not detected in the scRNA-seq data from the 
10 × Genomics platform (Figure S2). Neutrophils are very 
fragile and have low RNA content [13], which may be the 
main reason for the capture failure.

CellTrek is a computational toolkit that enables direct 
mapping of individual cells back to their spatial coordi-
nates in tissue sections based on scRNA-seq and ST data 
[14]. Unlike ST deconvolution methods, this approach 
transferred ST coordinates to single cells, thereby achiev-
ing single-cell resolution [14]. We applied it to quality-
controlled scRNA-seq and ST data in pan-cancer to 
reconstruct spatial single-cell atlases. Even without cor-
responding scRNA-seq data from the same patient, ST 
datasets were still largely covered by scRNA-seq data-
sets based on the co-embedding results (Figure S6). Due 
to some cells being repeatedly mapped, we ultimately 
obtained a pan-cancer spatial single-cell transcriptomic 
atlas containing 744,289 cells (Fig. 1d and g).

CAF heterogeneity in pan‑cancer
To compare the similarity of the main cell lineages of dif-
ferent cancer types, we constructed a phylogenetic tree 
(Figure S7a). Compared with the biased distribution of 
epithelial cells, fibroblasts from different cancer types 
clustered together (Figure S7a), indicating that fibro-
blasts had similar transcriptional features in different 
cancer types. Interestingly, NK cells and B cells originat-
ing from UCEC demonstrated unique features (Figure 
S7a), implying that the TMEs across diverse cancer types 
could have potentially exerted distinct effects on immune 
cell phenotypes. We subsequently investigated the het-
erogeneity of fibroblasts in scRNA-seq datasets of the 6 
cancer types (Fig.  2a). The reclustering of the fibroblast 
cluster identified four CAF subtypes, as well as pericytes 
and smooth muscle cells (SMCs) (Fig.  2a). After apply-
ing Harmony for batch correction, all cells with local 
inverse Simpson’s Index (LISI) greater than 1 indicate 
that no obvious batch effects were observed (Figure S8). 
CFD + fibroblasts showed high expression of chemokines 
(CCL11, CXCL12, and CXCL14) (Fig.  2b; Table S4), 

similar to the previously reported iCAFs in various types 
of tumors such as BC [6] and PTC [8]. GO enrichment 
analysis of its marker genes showed their association with 
the response to mechanical stimulation, reactive oxy-
gen species, epithelial cell proliferation, immune system, 
and cell migration (Fig. 2c). POSTN + fibroblasts showed 
high expression levels of several ECM remodeling genes 
(MMP11, CTHRC1, COL1A1, COL1A2, COL3A1, 
COL10A1, and COL11A1) and enriched signatures of 
ECM (Fig. 2b and c; Table S4), which were consistent with 
the previously reported matrix CAFs (mCAFs) in cervi-
cal squamous cell carcinoma (CESC) [15]. Interestingly, a 
cluster of cells was related to the response to hypoxia and 
canonical glycolysis (Fig.  2c), resembling the reported 
metabolic CAFs (meCAFs) in pancreatic ductal adeno-
carcinoma (PDAC) [16]. Notably, we also found a cluster 
of cells that exhibited higher expression of a set of cell 
cycle-related genes (CENPF, NUSAP1, PTTG1, STMN1, 
TOP2A, and TUBA1B) (Fig.  2b; Table S4), which was 
consistent with proliferative CAFs (pCAFs) in a previ-
ous pan-cancer study of CAFs [10]. Immunofluorescence 
on tissue microarrays from BRCA patients further sub-
stantiated the existence of the four CAF subtypes (Fig-
ure S9). Next, we further investigated the heterogeneity 
of CAFs using the AUCell algorithm, based on the func-
tional features of CAFs summarized by Lavie et  al. [17] 
(Fig. 2d; Table S5). iCAFs exhibited the highest activity in 
immune-related functions, including complement activa-
tion, chemokine production, and inflammatory response 
(Fig. 2d). Additionally, the biological processes of angio-
genesis, wound healing, regulation of ECM organization 
and collagen biosynthetic process were all enriched in 
mCAFs (Fig. 2d). As expected, meCAFs exhibited a high 
level of glycolytic activity (Fig. 2d). Interestingly, in addi-
tion to the cell cycle, pCAFs were also involved in IFN − I 
production and muscle contraction (Fig. 2d).

Although iCAFs and mCAFs were the major CAFs 
celltypes across 6 cancer types, different subtypes 
of CAFs still exhibited significant cancer prefer-
ences (Fig.  2e and f ). iCAFs were enriched in BRCA 
and CRC, whereas meCAFs were enriched in LIHC 
and OVCA (Fig.  2f ). The other two subtypes, espe-
cially pCAFs, were enriched in OVCA (Fig.  2f ). To 
investigate the presence of these fibroblast subtypes 
in other common cancer types, we obtained and ana-
lyzed publicly available scRNA-seq data from non-
small cell lung cancer (NSCLC) [18] and melanoma 
[19] (Figure S10a and b). Moreover, we conducted 
scRNA-seq on tumor and adjacent non-tumor tis-
sues from a patient with HNSCC and integrated it 
with previously published scRNA-seq data of the same 
cancer type [7] (Figure S10c; Table S6). The findings 
indicated that both iCAFs and mCAFs were observed 
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Fig. 2  CAF heterogeneity in pan-cancer. a UMAP plots showing the integration of fibroblasts across six different cancer types by Harmony. 
b Differential expression analysis showing the upregulated genes for each fibroblast subtype. An adjusted p value < 0.05 is indicated in red, 
while an adjusted p value ≥ 0.05 is indicated in blue. c GO enrichment analysis of upregulated genes in each CAF subtype. d Heatmap showing 
pathway activities scored by AUCell in each CAF subtype. e Proportion of CAF subtypes across multiple cancer types. f Heatmap showing the ORs 
of CAF subtypes in each cancer type. g Scatter plot showing the RSSs in each CAF subtype. The top 5 regulons are highlighted. h SCAP analysis 
of metabolic pathways in meCAFs. i Slingshot trajectory analysis of CAFs. j GeneSwitches analysis of pathway activity changes in the transition 
pathway from pericytes to iCAFs
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in all three types of cancer (Figure S10a-c). Next, we 
performed scRNA-seq on three samples derived from 
two patients with two rare types of tumors that have 
not been previously studied by scRNA-seq, including 
one tumor tissue from epithelial-myoepithelial carci-
noma (EMC), one tumor tissue from mucoepidermoid 
carcinoma (MEC), and one adjacent non-tumor tissue 
from MEC (Figure S10d and e; Table S6). iCAFs and 
mCAFs were also both identified in these two types 
of tumors (Figure S10d and e). To investigate the key 
differences between fibroblasts derived from tumor 
tissue and adjacent non-tumor tissue, we conducted 
differential expression analysis. The results revealed 
a significant upregulation of multiple marker genes of 
mCAFs in fibroblasts derived from tumor tissues of 
HNSCC patients, as compared to fibroblasts derived 
from adjacent non-tumor tissues (Figure S10f ). Func-
tional enrichment analysis results indicated that the 
upregulated genes were related to the ECM, which was 
also observed in MEC (Figure S10g-i).

Via SCENIC analysis, we determined essential motifs 
within the four subtypes of CAFs. The regulatory pro-
tein CDX2 [20] associated with inflammation and the 
regulatory protein TCF12 [21] related to ECM remod-
eling were enriched in iCAFs and mCAFs, respectively 
(Fig.  2g; Table S7). Additionally, we observed that 
meCAFs were enriched for the KLF16 [22] (Fig.  2g; 
Table S7), which was a known regulator of metabo-
lism. Lastly, Cell-cycle-related regulons (MYBL2 and 
E2F2) were highly enriched in pCAF (Fig.  2g; Table 
S7). The metabolic correlation of meCAFs prompted 
us to perform SCPA analysis to study their metabolic 
pathway activity. As expected, glycolysis and pyruvate 
were enriched in the top metabolic pathway of meCAFs 
(Fig. 2h; Table S8). Previous studies have reported that 
CAFs provide energy to cacner cells through glycolysis 
in hypoxic TME [23, 24]. This reverse Warburg effect 
may be caused by meCAFs. In order to further investi-
gate metabolic reprogramming of CAFs, we conducted 
scMetabolism analysis and identified various metabolic 
rewiring mechanisms related to tumor growth in dif-
ferent CAF subgroups [24]. mCAFs exhibited higher 
activity in fatty acid biosynthesis, while the TCA cycle 
was enriched in pCAFs (Figure S11). Besides glycolysis, 
metabolism of alanine, aspartate, and glutamate was 
also enriched in meCAFs (Figure S11).

The complexity of CAF cellular characteristics can 
be attributed to their highly heterogeneous origins [17, 
25]. In addition to transformation from tissue-resident 
fibroblasts, pericytes are also an important source for 
the formation of CAFs [17, 25]. With Slingshot analysis, 
a potential transition pathway from pericytes to iCAFs 
was suggested (Fig. 2i). Compared to other subtypes of 

CAFs, iCAFs exhibit the lowest level of transcriptional 
homogeneity (Figure S7b), which may be attributed 
to their complex origins. Previous studies have indi-
cated that the transition from pericytes to fibroblasts 
is closely associated with cancer invasion and metas-
tasis [26]. GeneSwitches analysis identified multiple 
biological processes that were activated along the path-
way from pericytes to iCAFs, including wound healing, 
regulation of cell adhesion, ECM, angiogenesis, colla-
gen fibril organization, epithelial-mesenchymal transi-
tion (EMT), and inflammatory response (Fig. 2j). While 
our data suggests that CAFs derived from pericytes are 
iCAFs, further investigation is necessary to explore its 
possibility and underlying mechanisms.

Spatial distribution characteristics of CAFs
To determine the spatial distribution characteristics of 
CAFs, we added their cell subpopulation annotation 
information into the CellTrek object. As the cell ratio of 
meCAFs and pCAFs is very low, we first focused our anal-
ysis on iCAFs and mCAFs. Taking one tissue section each 
from OVCA (OVCA1) and CRC (CRC1) as examples, we 
observed a spatially exclusive phenomenon between the 
high-density areas of iCAFs and mCAFs (Fig. 3a-d), sug-
gesting that the activation state of CAFs is related to their 
location within the TME. To dissect the spatial expres-
sion dynamics from high-density areas of iCAFs to high-
density areas of mCAFs, we conducted spatial trajectory 
analysis in OVCA1 and CRC1. The results demonstrated 
a gradual change in the proportions of cells along the tra-
jectory, accompanied by a gradual increase in features 
such as collagen biosynthetic process, regulation of ECM 
organization, wound healing, and angiogenesis (Figure 
S12a-f ). In addition, our slingshot analysis revealed a 
potential transition path from iCAFs to mCAFs (Fig. 2i), 
which is consistent with previously reported lineage plas-
ticity among CAF subpopulations [17]. Overall, these 
results suggest that the state of CAFs could potentially be 
influenced by the specific TME.

Robust rank aggregation (RRA) is an algorithm that 
integrates ranks to obtain a comprehensive ranking list 
[27]. We computed the spatial k-distance between all cells 
and the subpopulations of fibroblasts in each tissue sec-
tion, sorted them from closest to farthest, and integrated 
them using the RRA algorithm to obtain a comprehen-
sive ranking of all cells. Upon analysis, the four sub-
types of CAFs exhibited the minimum spatial k-distance 
between them, whereas there were no notable differences 
in the ordering of immune cell subtypes (Fig.  3e-l). To 
further investigate the microenvironmental characteris-
tics surrounding different CAF subtypes, cells within the 
top 10% of spatial k-distance from the fibroblasts were 
defined as "CAF-proximal cells", with all others classified 
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as "CAF-distal cells" (Fig.  3m). Then, through paired 
t-tests, we compared the proportion of cells between 
CAF-proximal and CAF-distal cells. As anticipated, there 
was an enrichment of other types of CAF subtypes sur-
rounding each type of CAF subtype (Fig. 3m). Addition-
ally, a higher density of pericytes was observed in the 
vicinity of CAFs (Fig. 3m), which serve as an important 
source of CAFs. Endothelial cells exhibited an increased 
abundance in proximity to iCAFs and mCAFs (Fig. 3m). 
This observation may be explained by the angiogenic 
effect of mCAFs and the potential transformational rela-
tionship between iCAFs and mCAFs. Notably, the pro-
portion of epithelial cells decreased around all four CAF 
subtypes (Fig.  3m), implying that these subtypes are 
located farther away from the epithelial area. Moreover, 
a decrease in the proportion of certain immune cell sub-
types was observed in the vicinity of CAFs, including a 
reduction in neutrophils and Tregs proportions around 
iCAFs, a decrease in Tregs proportions near mCAFs, and 
a lower proportion of B cells near pCAFs (Fig. 3m).

Effect of CAFs on TME through paracrine signaling
Given the high angiogenic activity of mCAFs, we employed 
Spatalk to explore the interplay between mCAFs and endothe-
lial cells within the spatial context. Angiogenesis is a complex 
molecular process involving endothelial cell activation, prolif-
eration, and migration to form new blood vessels and vascu-
lature [28, 29]. Intriguingly, the ligands identified in mCAFs 
were found to play significant roles in various endothelial cell 
functions, including migration, proliferation, apoptosis, chem-
otaxis, differentiation, and development (Fig. 4a and S13). Our 
analysis further revealed a series of ligand-receptor interac-
tions (LRIs) associated with angiogenesis, such as VEGFA-
(FLT1 + KDR + NRP1 + ITGB1 + ITGA9), VEGFB-(FLT1 +  
NRP1), VEGFC-(FLT1 + KDR + ITGB1), PGF-(NRP1 + FLT1), 
and THBS1-(ITGA6 + ITGB1 + LRP5) [30, 31] (Fig.  4d and 
S13; Table S9). Collectively, these findings suggest that mCAFs 
exert their pro-angiogenic effects by modulating endothelial 
cell function through paracrine signaling.

In addition to their impact on angiogenesis within TME, 
CAFs also regulate immune cell responses to promote 
tumor growth and immune escape [17]. Ligands derived 
from iCAFs to macrophages were found to significantly 
enrich various macrophage functions, including differentia-
tion, cytokine production, chemotaxis, migration, and acti-
vation (Fig.  4b and S14). Considering the close association 
between M2 macrophage polarization and tumor progres-
sion, our investigation focused on the influence of iCAFs on 
M2 macrophage polarization. We collected relevant ligands 
based on previous findings [32] (Table S10) and identified a 
series of LRIs involved in this process, such as TGFB1- (CX
CR4 + ITGAV + TGFBR2 + TGFBR1 + ITGB5 + SDC2 + SM
AD3 + ITGB8), TGFB2-(TGFBR2 + TGFBR1 + ACVR1), 
TGFB3-(ITGB1 + TGFBR2 + ITGB5 + TGFBR1), CSF1-
(CSF1R + SIRPA), IL34-CSF1R, and IL10-(IL10RA + IL10RB) 
[32, 33] (Fig. 4e and S14; Table S9).

CD8 + T cells play a pivotal role in anti-tumor immu-
nity, yet the mechanisms underlying the interaction 
between iCAFs and CD8 + T cells remain elusive. Ligands 
from iCAFs that bind to CD8 + T cells were enriched in 
various T cell-related functions, including migration, 
activation, proliferation, chemotaxis, differentiation, 
costimulation, apoptotic process, homeostasis, cytokine 
production, establishment of T cell polarity, T cell medi-
ated immunity and cytotoxicity (Fig. 4c and S15). Nota-
bly, iCAFs may induce CD8 + T cells apoptosis and 
impair their anti-tumor functions by interacting with 
CD8 + T cells PTPRC receptors via Galectin-1 (LGALS1) 
[34, 35] (Fig.  4f and S15; Table S9). Additionally, iCAFs 
can suppress the activation and proliferation of CD8 + T 
cells through macrophage migration inhibitory factor 
(MIF)-CXCR4 interaction [36] (Fig.  4f and S  15; Table 
S9). Furthermore, iCAFs may secrete TGFB1 to inhibit 
the activation and proliferation of CD8 + T cells [37] 
(Fig. 4f and S15; Table S9). Apart from their interactions 
with CD8 + T cells and macrophages, iCAFs exhibited 
complex interplays with other immune cell populations, 
including B cells, dendritic cells, mast cells, neutrophils, 

Fig. 3  Spatial distribution characteristics of CAFs. a Spatial cell charting of CAFs in OVCA1 using CellTrek. b Density plots showing high-density 
regions of iCAFs and mCAFs in OVCA1. c Spatial cell charting of CAFs in CRC1 using CellTrek. d Density plots showing high-density regions of iCAFs 
and mCAFs in CRC1. e Heatmap showing the average k-distance from different cell types to iCAFs in each tissue tissue slice. The columns were 
scaled. f Integrated ranking of cell types based on proximity to iCAFs using RRA algorithm across 22 tissue slices. g Heatmap showing the average 
k-distance from different cell types to mCAFs in each tissue slice. The columns were scaled. h Integrated ranking of cell types based on proximity 
to mCAFs using RRA algorithm across 22 tissue slices. i Heatmap showing the average k-distance from different cell types to meCAFs in each 
tissue slice. The columns were scaled. j Integrated ranking of cell types based on proximity to meCAFs using RRA algorithm across 22 tissue 
slices. k Heatmap showing the average k-distance from different cell types to pCAFs in each tissue slice. The columns were scaled. l Integrated 
ranking of cell types based on proximity to pCAFs using RRA algorithm across 22 tissue slices. m Left: Circular plot showing the proportions 
of proximal and distal regions of CAFs. Right: heatmap showing the enrichment of various cell types in the proximal and distal regions for each CAF 
subpopulation. The paired t-test was used to compare the differences in cell proportions between the proximal and distal regions for each CAF 
subpopulation. Red color represents enrichment of a cell type in the proximal region of CAFs, while blue color represents enrichment of a cell type 
in the distal region of CAFs. Only p values < 0.05 are shown

(See figure on next page.)
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NK cells, and Tregs (Figure S16a-l; Table S9). These com-
prehensive findings highlight the critical role of iCAFs in 
shaping the immunosuppressive microenvironment.

Given the crucial role of LGALS1 in tumor immune 
evasion [38], our subsequent analysis focused on the 

LGALS1-PTPRC interaction, which was observed in ST 
tissue slices of various tumors (Fig. 4g). Immunofluores-
cence experiments on tissue microarrays of BRCA and 
LIHC also unveiled a multitude of instances wherein 
CFD-positive cells and CD8-positive cells exhibited 

Fig. 3  (See legend on previous page.)
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spatial proximity (Fig. 4h). By analyzing datasets derived 
from The Cancer Genome Atlas (TCGA) database, we 
observed a significant positive correlation between 
LGALS1 and PDCD1 in five tumor types, with the 
exception of UCEC (Figure S17a). Notably, we identified 
nuclear factor of activated T cells 1 and 2 (NFATC1 and 
NFATC2) in the intracellular signaling network triggered 
by LGALS1- PTPRC interaction (Figure S18a), which 
are considered as key transcription factors (TFs) lead-
ing to CD8 + T cells exhaustion [39, 40]. To investigate 
the association between NFATC1/2 and CD8 + T cells 
exhaustion, we analyzed CD8 + T cells from pan-cancer 
scRNA-seq data. CD8 + T cells were re-clustering into 
thirteen subpopulations, and Slingshot analysis identified 
six distinct lineages (Figure S18b and c). The C6 cluster, 
marked by high expression of naive markers including 
CCR7 and TCF7, was deemed as the trajectory starting 
point (Figure S18d). The C8 cluster was characterized 
by upregulation of T cell exhaustion markers (HAVCR2, 
TIGIT, LAG3, PDCD1, CXCL13, and LAYN) and identi-
fied as exhausted CD8 + T (Tex) cells (Figure S18d). Con-
firming our expectations, GeneSwitches analysis revealed 
the activation of NFATC2 following immune checkpoint 
gene induction in the T cell exhaustion trajectory (line-
age 1) (Figure S18e). Moreover, our analysis of the TCGA 
datasets also revealed a significant positive correlation 
between NFATC2 and PDCD1 across six distinct tumor 
types (Figure S17b). Collectively, these findings expand 
our understanding of the role of iCAFs in mediating 
CD8 + T cells exhaustion.

Anti‑PD1 treatment influences the communication 
between iCAFs and TME
To investigate the effect of anti-PD1 therapy on iCAFs, 
we analyzed publicly available scRNA-seq data from 31 
paired pre- and on-treatment samples of BRCA patients 
receiving pembrolizumab [41]. Interestingly, we obtained 
CAF subtyping results consistent with those in pan-
cancer after further subclustering of fibroblasts (Fig.  5a 
and b). We then stratified the samples based on T-cell 
clonal expansion and treatment time point and com-
pared the changes in cell proportions. Due to the absence 

of clonal expansion information for two patients, they 
were excluded from this analysis. During treatment, 
patients with clonal expansion had lower proportions of 
cancer cells compared to those without, potentially due 
to an increase number of T cells with cytotoxic activity 
(Fig. 5e). Moreover, the proportion of iCAFs was consist-
ently lower in patients with clonal expansion compared 
to those without, both pre- and on-treatment (Fig. 5c-e). 
Notably, for both clonal expansion and non-clonal expan-
sion patients, the proportion of iCAFs did not change 
during treatment compared to pre-treatment (Figure 
S19a and b).

While the proportion of iCAFs remained unchanged 
after anti-PD-1 treatment, it is possible that their tran-
scriptional profiles underwent changes. To explore this 
possibility, we conducted differential expression analysis. 
Interestingly, we found that Chitinase-3-Like-1 (CHI3L1) 
was significantly upregulated (Figure S19c), which is a 
known regulator promoting M2 macrophage polarization 
[42]. Consistently, AUCell analysis revealed an enhanced 
ability of iCAFs to promote M2 macrophage polarization 
during the treatment compared to before (Figure S19e). 
It is noteworthy that the differentially expressed genes 
(DEGs) of iCAFs between pre-treatment and on-treat-
ment were enriched in the TNFα signaling via NF-kB, 
epithelial cell proliferation, and EMT both before and 
during the treatment (Figure S19d). Similarly, the AUCell 
scores of epithelial cell proliferation and EMT in iCAFs 
were significantly increased during the treatment (Figure 
S19e). Additionally, the AUCell analysis results showed 
that anti-PD1 treatment also enhanced the complement 
activation feature of iCAFs (Figure S19e). Overall, these 
findings suggest that anti-PD1 treatment influences the 
communication between iCAFs and other cells, includ-
ing promoting epithelial cell proliferation, EMT, and M2 
macrophage polarization.

We next sought to determine the differences in com-
munication between iCAFs and immune cells before and 
during anti-PD-1 therapy. We further categorized mye-
loid cells into monocytes, macrophages, LAMP3 + den-
dritic cells (LAMP3 + DCs), classical type 1 dendritic cells 
(cDC1s), and classical type 2 dendritic cells (cDC2s), and 
T cells into CD4 + T cells, CD8 + T cells, and Tregs, and 

(See figure on next page.)
Fig. 4  Effect of CAFs on TME through paracrine signaling. a GO enrichmet of ligands from mCAFs to endothelial cells. b GO enrichmet of ligands 
from iCAFs to macrophages. c GO enrichmet of ligands from iCAFs to CD8 + T cells. d Integrated ranking of LRIs based on number of LRIs 
from mCAFs to endothelial cells using RRA algorithm across 22 tissue slices. e Integrated ranking of LRIs based on number of LRIs from iCAFs 
to macrophages using RRA algorithm across 22 tissue slices. f Integrated ranking of LRIs based on number of LRIs from iCAFs to CD8 + T cells using 
RRA algorithm across 22 tissue slices. g Spatial distribution of the LGALS1-PTPRC interaction on two spatial transcriptomics tissue slices (BRCA0 
and LIHC1). h Representative immunofluorescence images of CFD (red) and CD8 (green) in tissues from three patients with BRCA and three patients 
with LIHC. Scale bar represents 20 μm
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Fig. 4  (See legend on previous page.)
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conducted CellChat analysis between iCAFs and immune 
cells (Figure S19f-i). Notably, we found anti-PD1 treat-
ment enhanced iCAFs’ ability to promote the formation 
of an immunosuppressive microenvironment. Compared 
to pre-treatment, iCAFs secreted MIF and laminins dur-
ing treatment to suppress the activation, proliferation, 
and migration of CD8 + T cells [36, 43–45] (Fig.  5f and 
g). Although iCAFs downregulated TGFB3 during treat-
ment compared to pre-treatment, they may still promote 
monocyte survival and differentiation into tumor-asso-
ciated macrophages by overexpressing macrophage col-
ony-stimulating factor-1 (CSF-1) [46–48] (Fig. 5g and h). 
Through the CXCL12/CXCR4 axis, iCAFs may reduce 
CD8 + T cell infiltration, promote CD8 + T cell dysfunc-
tion, and increase the number of Tregs [49] (Fig. 5g).

iCAF score correlate with immunotherapy response
Given the complex interplay between iCAFs and immune 
cells in TME, we hypothesized that the gene expression 
features of iCAFs are associated with immune check-
point blockade (ICB) response. Using ssGSEA algo-
rithm, we constructed an iCAF score using the top ten 
marker genes of iCAFs (Table S3) and applied it to dif-
ferent melanoma immunotherapy cohorts. In all cohorts, 
patients with high iCAF scores displayed prolonged over-
all survival (OS) (Log-rank test P < 0.0001 for the Gide 
anti-PD-1 cohort; P = 0.00026 for the Gide anti-CTLA-4 
cohort and P = 0.001 for the Nathanson cohort; Fig.  6a) 
and progression-free survival (PFS) (Log-rank test 
P < 0.0001 for the Gide anti-PD-1 cohort and P < 0.0001 
for the Gide anti-CTLA-4 cohort; Fig.  6a). Next, we 
divided the melanoma patients into high and low iCAF 
score groups based on the median and compared the per-
centage of ICB responders between the two groups. The 
results showed that patients with high iCAF scores had 
higher percentages of responders to anti-PD-1 treatment 
(Fisher’s exact test P = 0.0169; Fig. 6b) and anti-CTLA-4 
treatment (Fisher’s exact test P = 0.04146; Fig. 6c). More-
over, consistent with these findings, both anti-PD-1 and 
anti-CTLA-4 responders had higher iCAF scores than 
non-responders (Figure S20a). These findings indicate 
that the iCAF score is a valuable tool in predicting patient 
survival and response to ICB therapy.

Tumor mutational burden (TMB) serves as a widely 
recognized biomarker for immunotherapy and is gen-
erally associated with patients’ response to ICB [50, 
51]. Therefore, we conducted a comprehensive analysis 
using data from TCGA database focusing on melanoma 
patients. Surprisingly, we found that melanoma patients 
with a high iCAF score exhibited significantly lower TMB 
compared to those with a low iCAF score (Figure S20b 
and c), suggesting the presence of additional mechanisms 
driving anti-tumor immune responses in high iCAF score 
melanoma patients. A previous study reported that TMB 
is not associated with the response to immunotherapy in 
melanoma patients [52]. Notably, apart from HYDIN and 
ADGRV1 mutations being more frequent in low iCAF 
score melanoma patients, there were no significant dif-
ferences in the prevalence of other common mutations 
between high and low iCAF score groups (Figure S20b). 
Interestingly, we observed that the burden of CNVs at 
the arm level showed no significant difference between 
high and low iCAF score patients (Figure S20d). How-
ever, when examining CNVs at the focal level, we found 
that high iCAF score patients exhibited a lower burden 
of gain and loss of CNVs (Figure S20d). This pattern 
closely resembles the immune-rich tumor phenotype 
previously reported in LIHC [53] and CRC [54]. Based 
on these intriguing findings, we focused our analysis on 
the immune landscape of melanoma patients and found 
several key features associated with high iCAF score mel-
anoma patients. Specifically, we observed higher expres-
sion of immune checkpoint genes (PDCD1, CTLA4, and 
LAG3) and a higher frequency of CNV amplifications 
in these patients (Fig. 6d and S20e). Notably, the major-
ity of immune modulators showed elevated expression in 
high iCAF score patients (Fig. 6d and S20e), implying the 
presence of more complex interactions within the TME 
of these patients. The immune scores calculated by the 
ESTIMATE algorithm and previously reported immune 
response scores, including immune score (Roh) [55], 
cytolytic activity (CYT) [56], tertiary lymphoid struc-
tures signature (TLS) [57], IFNy [58], expanded immune 
[58], and T cell inflamed [58] (Table S11), were also found 
to be higher in patients with high iCAF scores (Fig. 6e). 
Furthermore, immune cells and multiple inflammatory 

Fig. 5  Anti-PD1 treatment influences the communication between iCAFs and TME. a UMAP plot showing the fibroblasts subpopulations in BRCA 
immunotherapy cohort. b Heatmap showing the expression of marker genes in fibroblast subpopulations. c UMAP plots showing the temporal 
alterations of fibroblasts subpopulations. d Boxplot showing the differences in cell proportions between patients with and without clonal 
expansion before anti-PD1 treatment. Statistical analysis was performed using unpaired t-tests; *P < 0.05, **P < 0.01, ***P < 0.001. e Boxplot showing 
the differences in cell proportions between patients with and without clonal expansion on anti-PD1 treatment. Statistical analysis was performed 
using unpaired t-tests; *P < 0.05, **P < 0.01, ***P < 0.001. f Differential cell–cell interaction signaling pathway alterations in iCAFs during anti-PD-1 
treatment compared to pre-treatment. g Upregulated LRIs in iCAFs during anti-PD-1 treatment compared to pre-treatment. h Downregulated LRIs 
in iCAFs during anti-PD-1 treatment compared to pre-treatment

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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Fig. 6  iCAF score correlate with immunotherapy response. a Kaplan–Meier plots showing the prognostic value of iCAF score in the melanoma 
immunotherapy cohorts. P-values were calculated by log-rank test. b Percentage of anti − PD1 therapy response among melanoma patients 
with high and low iCAF scores. Statistical analysis was performed using Fisher’s exact test. c Percentage of anti − CTLA − 4 therapy response 
among melanoma patients with high and low iCAF scores. Statistical analysis was performed using Fisher’s exact test. d Heatmap showing immune 
modulators in melanoma patients with high and low iCAF scores. From left to right: mRNA expression (median-normalized expression levels 
of immune modulators); expression versus methylation (Spearman correlation between expression of immune modulators and DNA methylation 
beta-values); amplification frequency (difference in the proportion of immune modulators amplifications between patients with high or low iCAF 
scores and the proportion of immune modulators amplifications in all patients.); and the deletion frequency (as amplifications). e Boxplot showing 
the comparison of immune related scores in melanoma patients with high and low iCAF scores. Statistical analysis was performed using Wilcoxon 
rank-sum tests; *P < 0.05, **P < 0.01, ***P < 0.001
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pathways (JAK − STAT, NFkB, and TNFa) were enriched 
in high iCAF score patients (Figure S20f and g). These 
data suggest that the benefit of high iCAF score patients 
in tumor immunotherapy may rely on increased immune 
cell infiltration and the intricate interplay of immune 
modulators.

Discussion
We have collected scRNA-seq data and ST data from 
patients with six prevalent cancer types to conduct a 
comprehensive study on the biological characteris-
tics of CAFs in TME. While the proportions of distinct 
CAF subtypes varied among different cancer types, both 
iCAFs and mCAFs consistently emerged as the primary 
subtypes across all common cancer types. Interestingly, 
our observations extended to two rare cancer types, EMC 
and MEC, where the presence of iCAFs and mCAFs was 
also found.

It’s worth noting that we also made an intriguing dis-
covery regarding pCAFs, which exhibited heightened 
activity in IFN-I production. The role of IFN-I (Type 
I interferon) in cancer presents a dual-edged sword 
effect [59–63]. Acute exposure to high concentrations 
of IFN-I can lead to the growth arrest and apoptosis of 
cancer cells, whereas prolonged exposure to low con-
centrations of IFN-I may promote the survival of can-
cer cells [60]. Additionally, IFN-I plays a critical role 
in facilitating cDC1 cross-priming and CD8 + T cell 
reactivation [61, 63]. Therefore, a promising treatment 
strategy could involve combination immunotherapy tar-
geting pCAF.

As widely recognized, metabolic reprogramming 
serves as a crucial hallmark of cancer cells, facilitating 
the establishment of a tumor-promoting microenviron-
ment [64]. Recent studies have shed light on the impact 
of CAFs on cancer cell metabolism through their intrin-
sic metabolic reprogramming [24]. However, these stud-
ies often overlook the heterogeneity of CAFs, merely 
revealing the average metabolic characteristics across all 
subtypes. Employing a comprehensive pan-cancer single-
cell analysis, we found diverse metabolic reprogramming 
mechanisms within distinct CAF subpopulations. Spe-
cifically, mCAFs exhibited enrichment in fatty acid bio-
synthesis, pCAFs displayed enrichment in the TCA cycle, 
while meCAFs demonstrated metabolic enrichment in 
glycolysis, alanine, aspartate, and glutamate metabolism. 
Consequently, the development of therapeutic strategies 
targeting the metabolic reprogramming of CAFs should 
consider the distinct characteristics exhibited by various 
subtypes of CAFs.

Pericytes are vital mural cells that can undergo peri-
cyte–fibroblast transition (PFT) under the influence of 

changes in matrix stiffness and tumor-secreted factors 
[65, 66]. This phenotypic transition plays a crucial role 
in promoting tumor growth and metastasis [26]. In this 
study, we have uncovered a pericyte-iCAF transition 
pathway, suggesting that the initial fibroblasts derived 
from pericytes may be iCAFs. Along the transition 
pathway from pericytes to iCAFs, expression of genes 
associated with inflammatory response and ECM was 
significantly upregulated, indicating a potential involve-
ment of PFT in facilitating the formation of an immu-
nosuppressive microenvironment and ECM remodeling. 
Further exploration is warranted to unravel the func-
tional roles and underlying mechanisms of PFT in this 
context.

In the spatial analysis, the four subpopulations of 
fibroblasts demonstrated a relatively closer spatial 
proximity compared to other cell types. We found an 
enrichment of endothelial cells in close proximity to 
mCAFs, and their intercellular communication was 
found to promote angiogenesis within TME. while 
CD8 + T cells were not found to be enriched in close 
proximity to iCAFs, we observed numerous instances 
of iCAFs-CD8 + T cells co-localization in  situ across 
various tumor types, which was further confirmed by 
immunofluorescence. The complex interplay between 
iCAFs and immune cells, particularly macrophages 
and CD8 + T cells, facilitates the establishment of an 
immunosuppressive microenvironment. Notably, ana-
lyzing scRNA-seq data from BRCA patients receiving 
anti-PD-1 immunotherapy, we have identified that anti-
PD-1 immunotherapy enhances the capacity of iCAFs 
to promote the establishment of an immunosuppressive 
microenvironment. Additionally, there was a signifi-
cant correlation observed between the iCAF score con-
structed based on iCAF marker genes and the immune 
therapy response in melanoma patients. Therefore, the 
combination of targeted interventions against iCAFs 
with anti-PD-1 treatment holds promising potential as a 
valuable therapeutic approach.

Conclusion
In conclusion, our comprehensive analysis of pan-cancer 
spatial and single-cell data has unraveled the heterogene-
ity of CAFs, shedding light on their spatial distribution 
patterns and intricate cell communication with TME. 
To facilitate further exploration of CAF heterogeneity, 
we have developed an interactive website (https://​chenx​
isd.​shiny​apps.​io/​pancaf/) using the ShinyCell R package 
[67]. Our pan-cancer study not only enhances our under-
standing of CAF biological characteristics but also pro-
vides important insights for the development of targeted 
therapeutic approaches aimed at CAFs.

https://chenxisd.shinyapps.io/pancaf/
https://chenxisd.shinyapps.io/pancaf/
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Methods
Sample acquisition and processing
The study was approved by the Ethics Committee of Qilu 
Hospital of Shandong University (KYLL-2017–256) and 
conducted in accordance with the Declaration of Hel-
sinki. All subjects gave written informed consent before 
participating in the study. One sample of MEC, one 
sample of EMC, one sample of HNSCC and two non-
malignant samples (control group, one adjacent nor-
mal tissue from MEC and one adjacent normal tissue 
from HNSCC), were obtained from the Qilu Hospital of 
Shandong University, Jinan, China. The clinical informa-
tion for these samples is provided in Table S6. All sam-
ples were processed immediately after being obtained 
from oral cancer surgery according the standard proce-
dures. According to the manufacturer’s instructions, the 
Human Tumor Dissociation Kit (Miltenyi Biotec; Order 
no: 130–095-929) was used to obtain single cells from 
the tissues.

Single‑cell RNA sequencing
According to the manufacturer’s protocol, Chromium 
Single cell 3′ Reagent v3 kits were used to prepare bar-
coded scRNA-seq libraries. The cell concentration was 
adjusted to 700–1200 cells/μL. The gel beads, carrying 
barcode information, were combined with a mixture of 
cells and enzymes, and subsequently enveloped by oil 
droplets, forming gel beads in emulsions (GEMs). The 
gel beads within GEMs underwent dissolution, releas-
ing mRNA upon cell lysis. Reverse transcription was then 
performed to generate barcoded cDNA for sequencing. 
After disrupting the liquid oil layer, cDNA amplifica-
tion was carried out, followed by purification and qual-
ity inspection. Subsequently, the cDNA was digested into 
fragments of approximately 200–300  bp, and then sub-
jected to the traditional second-generation sequencing 
library construction process, which included the addition 
of sequencing adapter P5 and sequencing primer R1, fol-
lowed by PCR amplification to obtain the DNA library. 
Finally, the constructed library was subjected to high-
throughput sequencing using the Illumina NovaSeq 6000 
platform in a paired-end sequencing mode.

scRNA‑seq data and ST data processing
The newly generated raw scRNA-seq data were processed 
by CellRanger (v 3.1.0) to generate a UMI count matrix. 
The human genome (hg38) was used as a reference. Raw 
gene expression matrices were constructed into a Seurat 
object and imported into R software by Seurat R package 
[68]. Low-quality cells (> 40,000 UMI/cell, < 500 genes/
cell, > 5,000 genes/cell and > 20% mitochondrial genes) 
were excluded. Doublets were identified and removed by 
DoubletFinder R package [69]. The harmony R package 

[70] was utilized for batch effect correction. We utilized 
the local inverse Simpson’s Index (LISI) to evaluate batch 
effects [70]. We performed principal component analysis 
(PCA) to reduce the dimensionality of scRNA-seq data. 
Top 30 principal components (PCs) were selected for 
UMAP. The FindClusters function was used to identify 
cell clusters.

We applied the same processing pipeline to publicly 
available scRNA-seq datasets from the 10 × Genomics 
platform. For the public scRNA-seq datasets sourced 
from the inDrop platform, we performed quality con-
trol by filtering out cells with UMI counts greater than 
40,000, cells with gene counts less than 200, cells with 
gene counts exceeding 5000, and cells with mitochon-
drial gene count surpassing 30%.

We imported the publicly available ST dataset into Seu-
rat using the Load10X_Spatial function. Subsequently, we 
filtered out low-quality spots with gene counts below 500 
and mitochondrial gene count exceeding 30%.

Recognition of malignant and non‑malignant epithelial 
cells
The copykat R package [71] was used to identify malig-
nant and non-malignant epithelial cells with default 
parameters. The cells from TME were used as a normal 
reference.

CellTrek analysis
To acquire the spatial coordinates of the cells, we con-
ducted a combined analysis of the scRNA-seq data and 
ST data using the CellTrek R package [14] with its default 
parameters.

We utilized the run_kdist function from the CellTrek 
package to calculate the spatial k-distance between dif-
ferent cell types. The analysis followed the parameters: 
ref_type = "all", keep_nn = F, k = 10.

Comparison dendrograms
To conduct a phylogenetic analysis of the different cell 
subpopulations within the pan-cancer scRNA-seq data-
set, we utilized the BuildClusterTree function from the 
Seurat R package. To visualize the results, the ggtree R 
package [72] was applied.

Differential expression analysis and functional enrichment 
analysis
To identify DEGs in the scRNA-seq data, we utilized 
the "FindAllMarkers" or "FindMarkers" functions in 
Seurat. The thresholds were set as |log2FC|> 1 and 
adj.p.val < 0.05. Subsequently, we conducted functional 
enrichment analysis of the DEGs using the WebGestaltR 
R package [73]. For this analysis, we selected the "genome 
protein-coding" as the reference set.
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Cancer preferences analysis
To assess the cancer preferences of CAF subtypes, odds 
ratios (OR) were calculated using the computational 
method described by Zhang et al. [74]. This involved con-
structing a 2 by 2 contingency table for each combination 
of CAF subtypes i and cancer types j. The table included 
the number of cells from CAF subtypes i in cancer types 
j, the number of cells from CAF subtypes i in other can-
cer types, the number of cells from non-i CAF subtypes 
in cancer types j, and the number of cells from non-i CAF 
subtypes in other cancer types. Fisher’s exact test was 
then performed on the contingency table.

SCENIC analysis
To calculate the regulon activity scores (RAS) of CAFs, 
we used the pySCENIC Python package [75] for SCE-
NIC analysis. First, GRNBoost2 was used to infer the co-
expression modules between TFs and candidate target 
genes. Then, RcisTarget was used to analyze the genes 
in each co-expression module to identify the enriched 
motifs (a TF and its potential direct target genes were 
defined as a regulon). Finally, AUCell was used to evalu-
ate the activity of each regulon in each cell.

We measured the cell-type specificity of a regulon by cal-
culating the regulon specificity score (RSS) using the compu-
tational method described by Suo et al. [76]. First, we defined 
a probability distribution of RAS PR =

(

PR
1 , . . . ,P

R
n

)

 and 
normalized it so that 
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i = 1 . Second, we defined a 

probability distribution of cell types PC = PC
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measure the difference between the two probability distribu-
tions. Finally, RSS was calculated as: RSS(R,C) = 1−

√

JSD
(

PR ,PC
).

Gene set scoring
To score gene sets in the scRNA-seq data, we utilized the 
"AUCell" method from the irGSEA package. The gene set 
files for GO Biological Processes (GOBP), HALLMARK, 
and REACTOME were obtained from The Molecular Sig-
natures Database (MSigDB) (https://​www.​gsea-​msigdb.​
org/​gsea/​msigdb) using the msigdbr package (Table S5). 
The signature genes of M2 macrophage polarization were 
derived from the supplementary materials of a previously 
published study by Azizi et al. [77] (Table S5).

Single‑cell metabolic activity analysis
To evaluate the metabolic pathway activity of meCAFs, 
we utilized the SCPA R package [78] to analyze meCAFs 
in the pan-cancer single-cell dataset, using the metabolic 

pathway gene sets obtained from the supplementary 
materials of Bibby et al.’s study [78].

Furthermore, we employed the scMetabolism R pack-
age [79] with default parameters to quantify the meta-
bolic activity of four distinct subtypes of CAFs.

Trajectory analysis
The slingshot R package [80] was used for inferring cell 
lineages and pseudotime. It utilized a clustering-based 
minimum spanning tree (MST) to identify the lineage 
structure and applies simultaneous principal curves to fit 
branch curves to these lineages. The getCurves function 
was employed to obtain smoothed trajectory curves.

Based on the inferred pseudotime, we utilized the 
GeneSwitches R package [81] to identify gene expres-
sion events within specific trajectory. The binarize_exp 
function was employed to convert the single-cell gene 
expression matrix into a binary state, using the following 
parameters: binarize_cutoff = 0.05 and fix_cutoff = TRUE. 
Subsequently, a logistic regression model was fitted and 
the switching time was estimated using the find_switch_
logistic_fastglm function. Genes that satisfied the cri-
teria (zero_pct = 0.9, r2cutoff = 0.02) were selected as 
switch genes. To determine the switch pathways, genes 
were initially filtered based on the following parameters: 
zero_pct = 0.9 and r2cutoff = 0.1. Finally, the find_switch_
pathway function (sig_FDR = 0.05, pathways = msigdb_h_
c2_c5) was employed, utilizing a hypergeometric test, to 
extract the switch pathways.

Transcriptional homogeneity analysis
In order to estimate the heterogeneity of different CAFs 
subpopulations, we performed transcriptional homogene-
ity analysis on CAFs in the pan-cancer scRNA-seq data-
set, adopting the computational approach described by 
Marjanovic et  al. [82]. Specifically, using the top 100 
marker genes of each cluster found by the FindAllMarkers 
function of the Seurat R package, we discretized expres-
sion per gene into 10 bins. Then, we subsampled 100 cells 
for each tumor sample 100 times and calculated the 
median value of the pairwise normalized mutual informa-
tion (NMI). NMI between each pair of cells x and y was 
calculated according to the following 3 steps: (1) mutual 
information (MI) I(X;Y ) =

∑

x

∑

yp(x, y)log
p(x,y)

p(x)p(y)
 ; (2) 

entropy of each cell H(X) =
∑

x p(x)log(p(x)) ; (3) 
NMI(X ,Y ) = I(X;Y )√

H(X)H(Y )

Spatial trajectory analysis
To investigate the dynamic biological processes occur-
ring between high-density regions of iCAFs and mCAFs 
within the spatial context, we utilized the SPATA2 R 
package. Firstly, we transformed the Seurat object into 

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
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a Spata object using the transformSeuratToSpata func-
tion. Then, employing the createTrajectories function, 
we generated a spatial trajectory starting from the high-
density region of iCAFs and ending at the high-density 
region of mCAFs. The plotTrajectoryFeaturesDiscrete 
function was used to visualize the changes in cell propor-
tions along the trajectory. Additionally, the plotTrajecto-
ryGeneSets function was utilized to depict the variations 
in gene sets along the trajectory.

Cell–cell interaction analysis
To infer cell–cell interaction within the spatial context, 
we utilized the SpaTalk R package [83]. Firstly, we cre-
ated a SpaTalk object using the createSpaTalk function. 
Subsequently, the dec_cci function was applied with 
default parameters to identify ligand-receptor pairs 
involved in the interaction between CAFs and TME. 
The ligand-receptor pairs for each tissue slice were 
ranked based on their occurrence frequency, and the 
results from all tissue slices were integrated using the 
RRA algorithm [27]. To visualize the inferred intracel-
lular signaling pathways, we employed the plot_path-
2gene function.

We conducted comparative analysis of cell commu-
nication between iCAFs and immune cells in a cohort 
of BRCA patients receiving anti-PD-1 immunotherapy 
using the CellChat R package [84]. The netAnalysis_sign-
alingChanges_scatter function and netVisual_bubble 
function were utilized to visualize the changes in signal-
ing pathways and ligand-receptor pairs from pre-treat-
ment to on-treatment in BRCA patients.

Melanoma immunotherapy dataset collection
We collected the expression matrix and clinical infor-
mation of the GSE91061 dataset [85] (referred to as 
the Riaz cohort) from the Gene Expression Omnibus 
(GEO) database (http://​www.​ncbi.​nlm.​nih.​gov/​geo/). 
FPKM normalized gene expression data was converted 
into log2 (TPM + 1) data. Furthermore, we obtained the 
expression matrix and clinical information of the Gide 
cohort [86] and Nathanson cohort [87] from the Tumor 
Immune Dysfunction and Exclusion (TIDE) database 
(http://​tide.​dfci.​harva​rd.​edu/) [88]. We performed 
batch effect correction using the "ComBat" function in 
the SVA R package.

TCGA RNA‑seq data processing
RNA-seq data and clinical profiles of BRCA, CRC, 
LIHC, OVCA, PRAD, UCEC, and skin cutaneous mela-
noma (SKCM) from the TCGA database were down-
loaded from GDC API. Count data was converted into 
log2 (TPM + 1) data.

Survival analysis
Kaplan–Meier survival analyses were performed with 
survival R package and survminer R package. The cut-
off value of continuous variables in the survival data was 
determined by the surv_cutpoint function of survminer 
R package. P-values were calculated by log-rank test.

Immune score
The estimate R package [89] was utilized to calculate 
the Immune_score (estimate). The Immune_score (Roh) 
was determined as the geometric mean of gene expres-
sion levels of cytolytic markers, HLA molecules, IFN-γ 
pathway genes, chemokines, and adhesion molecules 
[55]. Cytolytic activity (CYT) was calculated as the geo-
metric mean of GZMA and PRF1 [56]. Tertiary lym-
phoid structures (TLS) were determined based on the 
mean expression of TLS-signature genes [57]. IFNy and 
expanded immune scores were obtained by averaging 
the gene expression levels of the included genes for the 
IFN-γ (6-gene) and expanded immune (18-gene) signa-
tures, respectively [58]. Lastly, the Tcell inflamed score 
was calculated as the weighted sum of Tcell inflamed sig-
nature genes after housekeeping normalization [58]. The 
detailed information is provided in Table S11.

Mutation, CNV, and DNA methylation analysis
We utilized the TCGAbiolinks R package [90] to down-
load somatic mutation data and CNV data from the 
TCGA database for melanoma patients. The maftools R 
package [91] was employed for analyzing and visualiz-
ing the somatic mutation data. The TMB was calculated 
using the tmb function. Fisher’s exact test was conducted 
to identify mutation genes with differential frequencies 
between groups with high and low iCAF scores. For the 
CNV data, the GISTIC2.0 [92] analysis module avail-
able on the GenePattern (https://​cloud.​genep​attern.​org) 
[93] was used to detect significantly amplified or deleted 
genomic regions. The burden of copy number alterations 
was quantified by counting the total number of genes 
exhibiting copy number gains or losses at both the focal 
and arm levels. The DNA methylation data and CNV 
data for melanoma patients, obtained from the UCSC 
Xena database (https://​xenab​rowser.​net/​datap​ages/), 
were employed for the analysis of immune modulators.

Estimation of immune cell infiltration levels
We obtained gene signatures of 28 tumor-infiltrating 
lymphocytes (TILs) from the TISIDB database (http://​
cis.​hku.​hk/​TISIDB) [94]. Subsequently, we employed 
the ssGSEA algorithm from the GSVA R package [95] 

http://www.ncbi.nlm.nih.gov/geo/
http://tide.dfci.harvard.edu/
https://cloud.genepattern.org
https://xenabrowser.net/datapages/
http://cis.hku.hk/TISIDB
http://cis.hku.hk/TISIDB
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to estimate the immune cell enrichment scores for each 
tumor sample.

PROGENy analysis
The progeny R package [96] was utilized to infer the 
activity of 14 cancer-related pathways using default 
parameters.

Immunofluorescence staining
The tissue microarrays for BRCA and LIHC were pur-
chased from Shanghai Qutdo Biotech Company (Shang-
hai, China). For the immunofluorescence staining aimed 
at validating the existence of CAF subtypes, we followed 
the protocol outlined below. Immunofluorescence stain-
ing was performed using the Quadruple-Fluorescence 
immunohistochemical mouse/rabbit kit (Immunoway) 
to detect the expression of specific markers. The micro-
array was placed on a slide warmer and baked at 60  °C 
for 60  min to ensure adhesion. A two-in-one dewaxing 
and antigen retrieval reagent was added to a retrieval 
box and heated to boiling. Subsequently, the microar-
ray was immersed in the boiling dewaxing and antigen 
retrieval reagent, ensuring complete submersion of the 
tissue. They were heated at medium flame for 30  min. 
The retrieval box was then removed from the heat source 
and allowed to naturally cool to room temperature. Fol-
lowing this, the microarray was transferred to a beaker 
containing distilled water and rinsed 5–6 times. Excess 
moisture around the tissue was blotted using filter paper. 
the microarray was then incubated with peroxidase-
blocking buffer at room temperature for 15 min, followed 
by washing with PBS three times for 2  min each. Next, 
primary antibodies, including CENPF (Rabbit, 1:200, 
Immunoway), HILPDA (Rabbit, 1:200, Bioss), MMP-11 
(Rabbit, 1:200, Immunoway), and CFD (Rabbit, 1:200, 
Immunoway), were diluted and applied to the microar-
ray, ensuring complete coverage. Incubation was carried 
out at 37  °C for 1–2 h (or overnight at 4  °C in a humid 
chamber), followed by three washes with PBS for 2 min 
each. After blotting the excess moisture, the microar-
ray was incubated with an HRP-conjugated anti-rabbit/
mouse IgG secondary antibody at room temperature for 
30 min. The sections were washed again with PBS three 
times for 2 min each. For fluorescence labeling, Tyramide 
working solution was added and incubated for 10  min. 
Subsequently, the sections were washed with PBS three 
times for 2  min each. the microarray was placed in a 
retrieval box, and an antibody stripping solution was 
added. Microwave heating was performed at high power 
for 3  min and at medium–low power for 15  min. After 
natural cooling, the sections were washed with PBS 
three times for 2  min each. Finally, DAPI staining solu-
tion was added and mounting medium was applied to 

cover the microarray, ensuring contact without trapping 
air bubbles. Subsequently, the sections were scanned and 
imaged using a digital slide scanner microscope.

For the immunofluorescence staining aimed at vali-
dating the spatial proximity of CFD-positive cells and 
CD8-positive cells, we followed the protocol outlined 
below. The microarray was placed on a slide warmer 
at 60  °C for 30  min. Subsequently, it was sequentially 
immersed in xylene (first and second), followed by vari-
ous concentrations of ethanol and water, each for 5 min. 
Antigen retrieval was performed using trypsin at 37  °C 
for 20 min. The microarray was then washed three times 
with PBS buffer for 5  min each. Endogenous peroxi-
dase activity was blocked by incubating the microarray 
with a peroxidase blocking agent at room temperature 
for 10  min, followed by three washes with PBS buffer. 
To block non-specific binding, goat serum was applied 
to the microarray at 37  °C for 15  min, after which the 
excess serum was removed. Primary antibodies (CD8 Ms 
1:100, CFD Rb1:100) were added and left overnight at 
4  °C. The microarray was then washed three times with 
PBS buffer, and secondary antibodies (Alexa Fluor 488@
Ms, Alexa Fluor 594@Rb) were applied. The microarray 
was incubated at 37  °C for 30  min, and all subsequent 
steps were performed in a light-protected environment. 
After three washes with PBS buffer, DAPI staining solu-
tion was added, followed by three additional washes with 
PBS buffer. Finally, the microarray was mounted using 
a tissue mounting medium containing an anti-fading 
agent, ensuring the absence of bubbles. The imaging of 
the microarray slices was performed using a digital slide 
scanner microscope, capturing the desired observations.
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