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Abstract

The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising
avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic,
epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, pav-
ing the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review
article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based
cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer
treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis
research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will sum-
marize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment
in iPSC research to unlock the full potential of these cells.
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Introduction

Induced pluripotent stem cells (iPSCs) are a ground-
breaking discovery in the field of stem cell research [1].
iPSCs are generated by reprogramming adult cells, such
as skin cells or blood cells, back into a pluripotent state,
similar to embryonic stem cells [2, 3]. This reprogram-
ming is achieved by introducing a set of specific genes
into the adult cells, which reactivates their dormant
pluripotent capabilities [4, 5]. Once reprogrammed,
iPSCs have the remarkable ability to differentiate into
any type of cell in the body, including cells of the nervous
system, heart, liver, and more [6—9] This versatility makes
iPSCs a powerful tool in regenerative medicine, as they
hold the potential to replace damaged or diseased tissues
and organs [10]. In addition to their regenerative capa-
bilities, iPSCs have also emerged as a valuable resource
in cancer research. Cancer is a complex and multifaceted
disease, characterized by the uncontrolled growth and
proliferation of cells [11]. It is driven by genetic muta-
tions and alterations in the epigenetic regulation of genes
[12]. iPSCs offer a unique model for studying tumorigen-
esis, as they can be generated from adult cells that carry
specific cancer-associated mutations. By studying these
iPSCs, researchers can gain insights into the molecu-
lar changes that occur during the early stages of cancer
development and progression. One of the key advantages
of using iPSCs in cancer research is the ability to create
disease-specific cell lines [13]. By reprogramming cells
from cancer patients, iPSCs can be generated that carry
the same genetic mutations found in the patient’s tumor
cells. These iPSC-derived cells provide an invaluable tool
for studying the molecular mechanisms underlying can-
cer development and progression [14]. Researchers can
compare these iPSC-derived cancer cells with healthy
iPSC-derived cells to identify the specific genetic and epi-
genetic changes associated with the disease. This knowl-
edge can then be used to develop targeted therapies that
specifically address the underlying molecular defects
in individual patients [15]. Furthermore, iPSCs offer a
platform for drug screening and testing in the context
of cancer therapy. Traditional cancer drug development
often relies on animal models or immortalized cancer cell
lines, which may not accurately reflect the complexity of
human cancer. iPSCs can be differentiated into various
cell types that represent different stages of cancer devel-
opment, allowing researchers to test the efficacy and
toxicity of potential drugs in a more relevant cellular con-
text. This personalized approach to drug screening holds
great promise for improving the success rate of cancer
treatments and reducing the side effects associated with
conventional therapies [16]. The purpose of this review
article is to provide a comprehensive overview of iPSCs
in the context of tumorigenesis and therapy. We will
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discuss the current state of iPSC research, including the
challenges and limitations associated with iPSC-based
cancer therapy. Ethical and social implications of iPSC
research will also be explored. Additionally, we will com-
pare iPSCs with other types of stem cells, such as embry-
onic stem cells (ESCs) and adult stem cells, in terms
of their potential for cancer treatment. We will delve
into the various applications of iPSCs in tumorigenesis
research, including their use in modeling cancer develop-
ment, understanding molecular changes, and facilitating
early detection of cancer. The review will also highlight
successful case studies where iPSCs have been utilized to
gain insights into tumorigenesis and develop novel thera-
peutic approaches. Ultimately, we aim to emphasize the
importance of continued investment in iPSC research to
fully unlock the promising potential of these cells in the
field of cancer research and therapy.

The science behind iPSCs

Ghosh, Nehme, and Barrett emphasize the critical need
for greater genetic diversity within human pluripotent
stem cell models. Despite the expansion of repositories
and studies in this field, a noticeable lack of genetic diver-
sity persists. The authors underscore the significance of
including diverse ancestral backgrounds in these models,
highlighting that such inclusion is essential not only for
promoting equity but also for expediting advancements in
biological research and discovery [17]. The study, depicted
in Fig. 1, analyzed the current landscape of genetic diver-
sity in hPSC banks and human genomic studies. The find-
ings revealed a significant underrepresentation of
individuals with non-European and non-Asian ancestries
in both repositories. This lack of diversity limits the gener-
alizability of research findings and hinders our under-
standing of the impact of genetic variation on disease and
treatment outcomes. The study emphasizes the impor-
tance of incorporating iPSCs into research initiatives, as
illustrated in Fig. 1. By collecting material for iPSC repro-
gramming alongside genomic and phenotypic data, a
direct link between genetic information and cellular
resources can be established. This approach ensures that
the genetic diversity of hPSC models is enhanced, enabling
more accurate disease modeling and personalized medi-
cine approaches. The iPSCs have emerged as a ground-
breaking technology in the field of stem cell research [18]
are generated by reprogramming adult somatic cells, such
as skin cells or blood cells, into a pluripotent state similar
to ESCs [19]. This reprogramming is achieved by introduc-
ing a set of defined transcription factors, known as the
Yamanaka factors, into the adult cells. The Yamanaka fac-
tors include Oct3/4, Sox2, Klf4, and c-Myc, which are
capable of reprogramming the cells’ gene expression pat-
terns, allowing them to regain pluripotency [20]. The first
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Fig. 1 1 The genetic diversity present in genomic research and stem cell repositories. a) Advances in human genomics and stem cell research

in the past two decades have allowed for the exploration of how genetic variation influences diseases through scalable in vitro models. b)

Most participants in genome-wide association studies have European ancestry. To address this limitation, initiatives such as the Trans-Omics

for Precision Medicine (TOPMed) program and the All of Us Research program aim to include more diverse populations. Ancestry information

or self-reported race/ethnicity data from each study is grouped into super populations. c) Various global efforts have been launched to prioritize
the inclusion of underrepresented participants in human genomic research. d) The majority of pluripotent stem cell lines in large-scale collections
come from donors of European ancestry. The number of cell lines in each collection is specified above each bar. The data is sourced from public
repositories and peer-reviewed studies. ) Additional smaller-scale collections from different organizations and institutions are also included,

such as the National Stem Cell Bank of Korea, RIKEN BRC, the CiRA Foundation, and REPROCELL. The number of cell lines from independent
donors in each collection is indicated above each bar. Data from these collections is categorized into supergroups. f) The breakdown

of cell lines with reported race or ethnicity data, represented as percentages within each super population, is shown using data obtained

and processed with the support of the human pluripotent stem cell registry (www.hpscreg.eu). 2 Two aspects: the reporting of stem cell diversity
and recommendations for expanding it. On the left side, the figure presents examples of how individuals of European and Asian ancestries are
currently reported in various human pluripotent stem cell (hPSC) banks, including CIRM (USA), WiCell (USA), Coriell (USA), SKiP (Japan), and HipSci
(UK). The colors blue and green represent individuals of European and Asian ancestries, respectively. On the right side, the figure shows examples
of how individuals of European and Asian ancestries are reported in human genomic studies. Specifically mentioned studies are Bergstrom et al.
2020 (Human Genome Diversity Project), Karczewski et al. 2020 (gnomAD), and Smedley et al. 2021 (100,000 Genomes Pilot). In panel b, the figure
provides key recommendations aimed at expanding hPSC diversity. Unfortunately, the details of these recommendations are not mentioned

in the description. The map used in the figure is adapted from Templates by Yourfreetemplates.com. Reprinted from [17] with permission

from the Springer Nature

generation of iPSCs emerged when Dr. Shinya Yamanaka
and his team introduced the groundbreaking 4-factor pro-
tocol. This protocol involved the introduction of four key
transcription factors—Oct4, Sox2, Klf4, and c-Myc—into
somatic cells, effectively reprogramming them into iPSCs.
Yamanaka’s discovery represented a pivotal moment in
regenerative medicine, as it provided a relatively simple
and reproducible method for generating iPSCs. These cells
possessed the ability to differentiate into various cell types,
making them invaluable for disease modeling, drug
screening, and potential therapeutic applications [20].
Subsequent generations of iPSC reprogramming protocols
aimed to improve safety and efficiency. The second

generation involved the replacement of c-Myc, a poten-
tially oncogenic factor, with alternative genes, such as
Nanog or Lin28. This modification reduced the risk of
tumorigenicity associated with c-Myc. Third-generation
protocols focused on enhancing the efficiency of repro-
gramming, often incorporating small molecules and
microRNAs to accelerate the process and improve the
quality of iPSCs generated. These advancements brought
iPSC technology closer to clinical applications by minimiz-
ing genetic abnormalities and increasing the yield of pluri-
potent cells [18]. The Yamanaka 4-factor protocol stands
as a landmark achievement that laid the foundation for
iPSC research, enabling scientists to harness the potential
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of these cells for various biomedical applications. As iPSC
technology continues to evolve, it holds immense promise
for personalized medicine, disease modeling, and regener-
ative therapies, offering hope for a future where patient-
specific treatments are commonplace [19]. In a recent
study, some researchers provided a groundbreaking
approach to reprogram human somatic cells into chemi-
cally induced pluripotent stem cells (CiPSCs) was pre-
sented [21]. The study aimed to address the safety concerns
associated with traditional methods of reprogramming,
such as the use of viral vectors or ectopic expression of
potential oncogenes. The researchers developed a fully
defined and precisely staged chemically induced repro-
gramming protocol using small molecules. Lange et al.
illustrates the process of chemically induced reprogram-
ming, highlighting the key steps involved in transforming
human somatic cells into human CiPSCs (Fig. 2). This
method offers a potential solution to the challenges faced
in clinical translation of iPSCs and opens up new possibili-
ties for regenerative medicine. By generating pluripotent
cells through a chemically induced approach, researchers
can overcome ethical concerns and create personalized
therapies for a wide range of diseases and conditions. The
ability to generate iPSCs has revolutionized the field of
regenerative medicine and opened up new possibilities for
disease modeling, drug discovery, and personalized medi-
cine [22]. iPSCs have the remarkable potential to differen-
tiate into any cell type in the human body, making them an
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invaluable tool for studying human development, disease
mechanisms, and therapeutic interventions [23]. One of
the most significant advantages of iPSCs is their capacity
to serve as a model for tumorigenesis [24]. Cancer is a
complex disease characterized by the accumulation of
genetic and epigenetic alterations that disrupt normal cel-
lular processes. iPSCs can be reprogrammed from patient-
derived cancer cells, allowing researchers to investigate the
molecular changes and genetic abnormalities associated
with cancer development [14]. By studying iPSCs derived
from cancer patients, scientists can gain insights into the
early events that initiate cancer and the subsequent pro-
cesses that drive its progression [11]. Additionally, iPSCs
offer a platform for drug screening and the development of
personalized cancer therapies [25]. Patient-specific iPSCs
can be differentiated into various cell types, including can-
cer cells, which can be used to test the efficacy and toxicity
of different drugs [14]. This approach allows for the identi-
fication of personalized treatment options based on the
specific genetic and molecular characteristics of an indi-
vidual’s cancer [26]. By tailoring therapies to a patient’s
unique genomic profile, iPSC-based approaches hold great
promise for improving treatment outcomes and minimiz-
ing adverse effects. Despite their tremendous potential,
there are several challenges associated with iPSC-based
cancer therapy [27]. One of the major concerns is the tum-
origenic properties of iPSCs themselves. iPSCs have the
capacity to form tumors called teratomas when injected

| Stage | " Stage Il y Stage Il " Stage IV {
/CHIR99021  CHIR99021 | CHIR99021 CHIR99021 Autologous failored
1616452 616452 ! 616452 PD0325901 cell therapy?
'TTNPB ! Y27632 SB590885
) . 1Y27632 Y27632 i o WP2
Restricted potential 5225869 éEgSGQ | Unlocked plastic state  tranyicypromine Y27632
i i T t-yvalproic acid ;S
: JINKINg i Regenerative competency?!  pzNep Genomic integrity? ; oy
i S-azacytidine | s s/t o EPZ004777 +Chemically induced | ™ ~i55cs S (LYY
1 tranylcypromine! | Somatic cells/tissues? genotoxicity? iPSCs | W
. +--=" |*Reboot of regeneration-like | |UNC0379 ‘A e Drug development
i rogram in vivo? cotmulahenle %
! P! " 04 mutations?
{ * Transdifferentiation? A // %
! ;
i XEN-like stage =
4 N 2 Y 4
Fibroblasts < — g- SN
Adipocytes S (ol )
Other somatic cells? £ Basic research
‘ o = ) Disease modeling
£
15
U Chemically induced reprogramming u>

Fig. 2 The process of chemically induced reprogramming of human somatic cells into human chemically induced pluripotent stem cells
(hCiPSC). The researchers, Guan et al,, have developed a well-defined reprogramming protocol consisting of four stages (stage | to stage IV)

that utilizes only small molecules. By disrupting the identity and modifying the epigenetics of the somatic cells, the cells are transformed

into a flexible XEN-like state with unlocked potential. To facilitate this dedifferentiation and enhance cell plasticity, it was crucial to downregulate
pro-inflammatory pathways, which was achieved with the c-Jun N-terminal kinase inhibitor (JNKIN8). The acquisition of cell plasticity in the XEN-like
stage enables further reprogramming into stable hCiPSCs. These hCiPSCs have various applications in basic research, such as investigating
reprogramming pathways or screening for druggable targets that determine cell fate, which could lead to new therapeutic options. Additionally,
the reprogramming process is compliant with Good Manufacturing Practice (GMP) standards and cost-effective, which makes it more feasible

to translate iPSCs into personalized autologous cell therapies. Reprinted from [21] with permission from the Springer Nature
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into living organisms. Teratomas consist of a mixture of
different cell types derived from the three germ layers,
highlighting the pluripotent nature of iPSCs [28]. To over-
come this obstacle, researchers are actively exploring
methods to improve the differentiation efficiency of iPSCs,
ensuring that they fully mature into the desired cell type
before transplantation. Another challenge is the efficient
and safe delivery of iPSC-derived therapeutic cells to the
tumor site [29]. Effective targeting and integration of iPSC-
derived cells into the tumor microenvironment are critical
for successful treatment outcomes [29]. Additionally, the
potential immunogenicity of iPSCs and the risk of immune
rejection need to be carefully considered when developing
iPSC-based cancer therapies [30]. Ethical and legal consid-
erations also come into play when working with iPSCs.
The generation of iPSCs involves the use of human
embryos or the reprogramming of adult cells, which raises
ethical concerns and regulatory issues [31]. It is important
to ensure that iPSC research is conducted ethically, with
proper informed consent and adherence to established
guidelines [32]. Comparative analysis with other stem cell
types is crucial for evaluating the potential of iPSCs in can-
cer treatment (Table 1). While ESCs are considered the
gold standard for pluripotent stem cells, their use is lim-
ited due to ethical concerns and immune rejection risks
[33]. Adult stem cells, such as mesenchymal stem cells
(MSC:s), offer advantages in terms of immune compatibil-
ity but have limited differentiation potential [34]. iPSCs
bridge this gap by providing a virtually unlimited source of
patient-specific pluripotent stem cells with reduced
immune rejection risks. In recent years, significant pro-
gress has been made in harnessing the potential of iPSCs
for tumorigenesis research [22, 23]. Several successful case
studies have demonstrated the utility of iPSCs in under-
standing the molecular mechanisms underlying cancer
development and progression [35]. For instance, iPSCs
derived from patients with specific types of cancer, such as
leukemia or breast cancer, have been used to recapitulate
the disease phenotype in a laboratory setting [15]. By stud-
ying these iPSC-derived cancer cells, researchers have
gained valuable insights into the genetic and epigenetic
alterations that contribute to tumor formation and pro-
gression. Moreover, iPSCs have been employed in cancer
early detection strategies [36]. The ability to reprogram
cancer cells into iPSCs allows for the identification of early
molecular changes that occur during tumorigenesis [37].
By comparing iPSCs derived from healthy individuals with
those derived from cancer patients, researchers can iden-
tify specific biomarkers or gene expression patterns that
indicate the presence of cancer [38]. This knowledge could
potentially revolutionize cancer diagnostics, enabling early
detection and intervention when the disease is most treat-
able. In addition to cancer modeling and early detection,
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iPSCs hold promise in the development of precision medi-
cine approaches for cancer treatment [36]. By generating
iPSCs from patients with different types of cancer,
researchers can create a diverse library of cancer cell lines
that reflect the heterogeneity of the disease. Table 2 pro-
vides an overview of different iPSC lines. This resource can
be used to test the effectiveness of various treatment
options on individualized iPSC-derived cancer cells, allow-
ing for the identification of targeted therapies tailored to a
patient’s unique genetic profile. iPSC-based precision
medicine has the potential to enhance treatment outcomes
by improving the specificity and efficacy of cancer thera-
pies while minimizing unnecessary side effects [26]. Look-
ing ahead, the future of iPSCs in tumorigenesis research is
filled with exciting possibilities. Advances in gene editing
technologies, such as CRISPR-Cas9, combined with iPSCs,
offer unprecedented opportunities for understanding the
functional consequences of specific genetic alterations in
cancer [39]. By precisely modifying the genome of iPSCs,
researchers can investigate the effects of specific mutations
or gene dysregulation on cancer development and pro-
gression. This knowledge can inform the development of
targeted therapies that directly address the underlying
genetic drivers of cancer [40]. Furthermore, ongoing
efforts to improve the safety and efficiency of iPSC genera-
tion and differentiation techniques are crucial for their
successful translation into clinical applications. Research-
ers are exploring novel reprogramming methods, such as
the use of non-integrating viral vectors or small molecules,
to enhance the efficiency and safety of iPSC generation
[41]. Additionally, strategies to enhance the differentiation
of iPSCs into specific cell types relevant to cancer therapy
are being investigated, including the development of
defined culture conditions and the use of signaling mole-
cules or growth [29].

How iPSCs are derived

The iPSCs are derived through a groundbreaking tech-
nique that reprograms adult cells, enabling them to regain
the pluripotent state similar to ESCs [73]. This discovery,
made by Shinya Yamanaka in 2006, opened up new ave-
nues in regenerative medicine, disease modeling, and
drug discovery. Understanding how iPSCs are derived is
essential to appreciate their potential and the implications
for various fields of research and therapy [23]. The process
of iPSC derivation involves the introduction of specific
reprogramming factors into somatic cells, which are dif-
ferentiated adult cells. These reprogramming factors can
reset the cellular state, erasing the specialized characteris-
tics of the somatic cells and reverting them back to a
pluripotent state [74]. The most commonly used repro-
gramming factors are Oct4 (octamer-binding transcrip-
tion factor 4), Sox2 (sex-determining region Y-box 2), KIf4
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(Kruppel-like factor 4), and c-Myc (avian myelocytomato-
sis viral oncogene homolog) [20]. These factors work
together to induce the expression of genes associated with
pluripotency, while simultaneously repressing genes
involved in cellular differentiation. The first step in iPSC
derivation involves obtaining somatic cells from an indi-
vidual [75]. These cells can be sourced from various tis-
sues, including skin fibroblasts, blood cells, or even
urine-derived cells. The choice of cell type depends on the
research goals and the ease of accessibility [19]. Once the
somatic cells are isolated, they are cultured in a laboratory
setting and prepared for reprogramming. The reprogram-
ming process typically involves the use of viral vectors or
non-integrating methods to introduce the reprogram-
ming factors into the somatic cells. Viral vectors, such as
retroviruses or lentiviruses, have been widely used in the
past. These vectors deliver the reprogramming factors
into the somatic cells’ DNA, integrating the reprogram-
ming genes into the host [76]. However, this method
poses the risk of insertional mutagenesis and unwanted
genetic changes. To address these concerns, researchers
have developed non-integrating methods, such as the use
of episomal plasmids, mRNA, proteins, or small mole-
cules, which do not integrate into the host genome [77].
After the introduction of the reprogramming factors, the
somatic cells undergo a transformation process. Over
time, the cells gradually lose their original characteristics
and acquire pluripotent features. The reprogramming fac-
tors initiate changes in gene expression patterns, leading
to the reactivation of pluripotency-associated genes and
the suppression of somatic cell-specific genes. This trans-
formation can be visually observed, as the cells transition
from a flat, adherent morphology to a distinct colony-like
structure resembling ESCs [40]. The reprogramming pro-
cess typically takes a few weeks, during which the cells are
subjected to specific culture conditions to support their
transition. These conditions often include the use of cul-
ture media supplemented with growth factors and small
molecules that enhance the reprogramming efficiency
[35]. The media composition and culture conditions vary
depending on the specific protocols and the desired out-
come of iPSC derivation. Once the iPSC colonies have
formed, they are isolated and expanded for further char-
acterization and experimentation. These iPSCs exhibit
key characteristics of ESCs, such as self-renewal capacity
and the ability to differentiate into cells of all three germ
layers: ectoderm, endoderm, and mesoderm. iPSCs can be
maintained in culture for prolonged periods, allowing for
the generation of large quantities of cells for downstream
applications [78]. The quality of derived iPSCs is crucial,
as it affects their usability in various research and thera-
peutic applications. iPSCs must undergo rigorous charac-
terization to ensure their pluripotent state and genomic
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integrity. Techniques such as immunostaining, gene
expression analysis, and karyotyping are employed to
confirm the expression of pluripotency markers and to
assess the absence of genetic abnormalities or chromo-
somal aberrations. Immunostaining involves the use of
specific antibodies to detect the presence of pluripotency
markers, such as Oct4, Nanog, SSEA-4, and Tra-1-60, in
iPSC [79]. Positive staining for these markers indicates
that the cells have successfully acquired pluripotency and
resemble ESCs. Additionally, gene expression analysis,
such as reverse transcription-polymerase chain reaction
(RT-PCR) or RNA sequencing, is performed to confirm
the activation of pluripotency-associated genes and the
silencing of somatic cell-specific genes [80]. Karyotyping,
on the other hand, is a technique used to examine the
chromosomal composition of iPSCs. It helps identify any
chromosomal abnormalities or genetic mutations that
may have occurred during the reprogramming process.
This step is essential to ensure the genomic stability of
iPSCs and to avoid potential issues related to aberrant
chromosomal rearrangements [81]. After thorough char-
acterization, the derived iPSCs can be used for a wide
range of applications. They serve as a valuable tool for dis-
ease modeling, allowing researchers to study the underly-
ing mechanisms of various diseases by generating
patient-specific iPSCs. These iPSCs can be differentiated
into specific cell types affected by the disease, providing a
platform for understanding disease progression and
developing personalized therapeutic strategies. Moreover,
iPSCs hold great promise for drug discovery and screen-
ing [82]. In the field of regenerative medicine, iPSCs offer
the potential for personalized cell-based therapies. By
reprogramming a patient’s own somatic cells, iPSCs can
be generated with the same genetic makeup as the indi-
vidual, reducing the risk of immune rejection. These
iPSCs can be differentiated into the desired cell types and
used for transplantation, aiming to replace damaged or
diseased tissues and organs [1, 7]. In a recent study con-
ducted by Ezashi et al. (2009), the researchers successfully
derived iPSCs from pig somatic cells, addressing the chal-
lenges associated with generating embryonic stem cells
(ESCs) from ungulates [83]. Ezashi et al. employed lentivi-
ral transduction of four human genes (hOCT4, hSOX2,
hKLF4, and hc-MYC) commonly used for iPSC genera-
tion in mice and humans [83]. The iPSCs were derived
from porcine fetal fibroblasts and cultured on irradiated
mouse embryonic fibroblasts (MEFs) in a medium supple-
mented with knockout serum replacement and FGF2. Fig-
ure 3 of the study illustrates the process of generating
piPSC colonies from plated fibroblasts (PFF), showcasing
the successful reprogramming of porcine somatic cells.
Furthermore, gene expression analysis conducted on the
piPSCs is depicted in Fig. 3, confirming their pluripotent
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nature. Immunofluorescence staining results of piPSC
colonies cultured on MEF can be seen in Fig. 3, providing
visual evidence of their characteristics. Figure 3 compares
the telomerase activity in different cell lines, demonstrat-
ing the high telomerase activity exhibited by the derived
piPSCs, indicative of their cellular immortality. Moreover,
the role of iPSCs in the study is particularly highlighted in
Fig. 3, which shows the differentiation of pluripotent
iPSCs into embryoid bodies (EB), representing the poten-
tial of these cells to give rise to various tissue types. Addi-
tionally, Fig. 3 presents a histological cross-section of a
solid tumor surgically removed from the peritoneum of a
hairless mouse, showcasing the in vivo potential and ver-
satility of the piPSCs. Overall, this recent study success-
fully generated piPSCs from porcine somatic cells,
shedding light on their potential applications in regenera-
tive medicine, tissue engineering, and preclinical studies.

(See figure on next page.)
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The derivation of iPSCs involves the reprogramming of
adult somatic cells to regain their pluripotent state.
Through the introduction of specific reprogramming fac-
tors, somatic cells undergo a transformation process, los-
ing their specialized characteristics and acquiring
pluripotent features. The reprogramming process can be
achieved using viral vectors or non-integrating methods
[76]. The derived iPSCs must undergo rigorous characteri-
zation to confirm their pluripotency and genomic integrity.
iPSCs hold immense potential in various fields, including
disease modeling, drug discovery, and regenerative medi-
cine, offering opportunities for personalized therapies and
advancing our understanding of human development and
disease [1, 7]. Continued research in iPSC technology will
undoubtedly unveil further advancements and applications,
paving the way for innovative approaches in biomedical
research and clinical practice [23].

Fig. 3 1 The process of generating piPSC colonies from PFF (pluripotent stem cells derived from preimplantation embryos). (A) The first

image is a phase contrast image of PFF. (B) The second image shows granulated piPSC colonies similar to mouse and human iPSC that begin

to appear approximately three weeks after viral infection. (C) The third image represents a representative piPSC colony after multiple passages,
resembling hESC (human embryonic stem cells), shown at a lower magnification. (D) The fourth image is a higher magnification of the same

piPSC colony shown in (C). (E) The piPSC colonies express alkaline phosphatase (AP), as depicted in the image. (F) The image shows nuclear
localization of OCT4 (green) and surface SSEAT (red) in the piPSC colonies. (G) Some piPSC colonies have a tendency to undergo spontaneous
differentiation, as indicated by the area (arrow) on the right side of the colony. The differentiated cells exhibit cobblestone morphology

with a relatively low nucleus to cytoplasm ratio. 2 The results of gene expression analysis conducted on piPSC (porcine-induced pluripotent

stem cells) compared to PFF (porcine fetal fibroblast) and H9 hESC (human embryonic stem cells). The analysis involved different techniques,

as described in the following paragraphs. In panel A, the researchers used RT-PCR (Reverse Transcription Polymerase Chain Reaction) to examine
the expression of specific pluripotency genes in piPSC, PFF, and H9 hESC. The primers used were designed to target porcine genes rather than their
human counterparts. However, it was observed that the primers for pc-MYC and pKLF4 also showed some level of cross-reactivity. Panel B displays
the results of hierarchical clustering analysis performed on microarray data from three piPSC lines (IC1, ID4, and 1D6) and two PFF cells (1 and 2).
The clustering was based on Pearson-centered single-linkage rule, and it aimed to identify patterns of gene expression similarity or dissimilarity
among the samples. The analysis included all genes (totaling 8,015) that exhibited a fold-change of at least 1.3 in their normalized expression
between piPSC and PFF, with a significance level (P value) of 0.05 or lower. The values indicated next to the branches represent Pearson distances,
which indicate the degree of dissimilarity between the gene expression profiles. In panel C, the fold differences (Log2) in gene expression

between piPSC and PFF are presented. The black bars on the right-hand side of the axis represent genes that were up-regulated (showed increased
expression) in piPSC compared to PFF, while the gray bars on the left side represent down-regulated (showed decreased expression) genes. The
significance of the differences was assessed using P values, with *'indicating a significance level of 0.05 or lower and **indicating a significance
level of 0.01 or lower. 3 The results of immunofluorescence staining carried out on piPSC colonies cultured on MEF, focusing on pluripotent
markers. The upper panels (A, B, and C) depict the immunofluorescence staining of OCT4, NANOG, and SOX2 respectively. The lower panels (A-C)
confirm the specific localization of these markers to the nuclei, as indicated by the blue staining with DAPI. 4 The measurement of telomerase
activity in different types of cells. The telomerase activities of several piPSC lines (IC1 passage 10, ID4 passage 10, ID6 passage 10, IlIB2 passage
3,and IB3 passage 8) are compared to their parental cells, including EGFP-PFF passage 10, MEF passage 4, and H9 hESC passage 41. The assay

was conducted using triplicate samples, each containing 0.2 ug of total cell protein, and the TRAPESE-RT Telomerase Detection Kit (Chemicon)

was utilized. The telomerase activity is represented by the value in amole, which indicates the number of extended primers containing telomeric
repeats. 5 The process of differentiating piPSC (pluripotent induced pluripotent stem cells) into embryoid bodies (EB). In Part A, Day 0 shows piPSC
cells plated on MEF (mouse embryonic fibroblasts). Day 1 shows an image of the resulting EB obtained on the next day, while Day 5 displays

an image after 5 days of differentiation. Finally, Day 9 exhibits cells treated with 5% FBS (fetal bovine serum) for a duration of 9 days. Part B presents
the results of real-time RT-PCR analysis, which measures the relative concentrations of transcript molecules of pluripotent and lineage-specific
genes in various cell lines. These cell lines include piPSC lines (IC1, ID4, and 1D6), PFF (pluripotent fetal fibroblasts), and piPSC that were differentiated
into EB using BMP4, FBS, or retinoic acid (RA) as differentiation agents. The y-axis represents the fold change relative to the expression of GAPDH
(glyceraldehyde 3-phosphate dehydrogenase), which is a reference gene commonly used in gene expression studies. 6 A microscopic image

of a tumor taken from the peritoneum of a hairless mouse. The tumor, which was surgically removed, was formed by injecting cells from the piPSC
line ID6 under the skin of the mouse. The tumor exhibited a high level of differentiation and consisted of various types of tissues. These tissues
included neural epithelium (ectoderm) on the left side, striated muscle (mesoderm) in the middle, and epithelium with a brush border (endoderm)
on the right side. The magnification used for all three tissues is the same. An inset on the right side provides a closer view of the brush border,
indicated by a red arrow, and the scale bar in the image corresponds to 5 um. Reprinted from [83] with permission from the PNAS
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Characteristics of iPSCs and their potential in regenerative

medicine

Characteristics of iPSCs

The iPSCs possess several key characteristics that make
them highly valuable in regenerative medicine and dis-
ease research [1, 7]. The iPSCs possess several key char-
acteristics that are highly relevant to the characterization
of neural stem/progenitor cells (NS/PCs) derived from
human iPSCs. Firstly, iPSCs share the defining feature
of pluripotency, meaning they have the potential to dif-
ferentiate into cells of all three germ layers, including
neural cells [70]. This property allows for the generation
of NS/PCs from iPSCs, serving as a valuable model sys-
tem for studying neural development and disease. Sec-
ondly, iPSCs can be derived from adult somatic cells,
such as skin cells, through reprogramming techniques,
avoiding the ethical concerns associated with embryonic
stem cells [1, 7]. This enables the generation of patient-
specific iPSC lines, allowing for personalized medicine
approaches and the study of neurological disorders using
patient-derived cells. Additionally, iPSCs exhibit self-
renewal capacity, allowing them to proliferate indefi-
nitely in culture, thereby providing a sustainable source
of NS/PCs for experimentation and potential therapeutic
applications. Lastly, iPSCs can be genetically modified to
introduce specific mutations or gene editing techniques,
facilitating the investigation of genetic factors underly-
ing neural development and diseases [70]. Isoda et al.,
the research focuses on understanding the tumorigenic
potential of neural stem/progenitor cells derived from
human induced pluripotent stem cells (hiPSC-NS/PCs),
which are considered a promising source for cell-based
therapies. The study establishes single cell-derived NS/
PC clones (scNS/PCs) from hiPSC-NS/PCs that pro-
duced undesired grafts after transplantation. Through
bioassays, the researchers identified unique subsets of
scNS/PCs with a transcriptome signature resembling
mesenchymal lineages. These scNS/PCs expressed both
neural and mesenchymal markers and possessed osteo-
genic differentiation capacity. Significantly, removing
CD73+CD105 +cells from the parental hiPSC-NS/PC
population was found to enhance the quality of hiPSC-
NS/PCs and mitigate their tumorigenic potential. This
research highlights the presence of unexpected cell
populations within NS/PCs, shedding light on the tum-
origenicity concerns associated with hiPSC-NS/PCs in
the context of regenerative medicine [84]. Figure 4 pro-
vided a characterization of NS/PCs derived from hiP-
SCs, highlighting the importance of hiPSCs as a source
for generating these neural cells. The study utilized a
single cell-based approach, as depicted in Fig. 4, to ana-
lyze the variations within hiPSC-NS/PCs. This com-
prehensive analysis allowed the researchers to identify
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distinct subsets of scNS/PCs with a transcriptome sig-
nature indicative of mesenchymal lineages. Figure 4
demonstrated the presence of cells displaying mesoder-
mal properties in grafts derived from hiPSC-NS/PCs,
underscoring the importance of understanding the het-
erogeneity within the NS/PC population. Furthermore,
Fig. 4 showcased the osteogenic differentiation capacity
of NCC-like scNS/PCs, suggesting their potential to dif-
ferentiate into bone-forming cells. To identify specific
cell surface markers associated with osteogenic capacity,
the researchers employed a strategy illustrated in Fig. 4.
This allowed for the identification and purification of
desired cell populations within hiPSC-NS/PCs, which is
crucial for maintaining their quality and safety. Figure 4
presented a comparative analysis of the transcriptome
signature of iPSC-NS/PCs, bona fide NCCs, and MSCs.
This analysis shed light on the unique characteristics of
iPSC-NS/PCs and their resemblance to both neural and
mesenchymal lineages. Lastly, Fig. 4 demonstrated the
process of purifying NS/PCs using CD15 as a marker to
ensure the quality of the cell population. Overall, this
recent study highlighted the mesenchymal properties
observed in specific subsets of hiPSC-NS/PCs and their
potential contribution to tumorigenicity. The findings
emphasize the importance of understanding and charac-
terizing the different cell populations within hiPSC-NS/
PCs to enhance their safety and efficacy for future regen-
erative medicine applications. The study showcased the
valuable role of iPSCs in generating NS/PCs and pro-
vided insights into their transcriptome signature, osteo-
genic differentiation capacity, and purification methods
using specific cell surface markers.

Pluripotency Pluripotency is a defining characteristic
of iPSCs that has revolutionized the field of regenerative
medicine. Pluripotent cells have the remarkable ability
to differentiate into cells of all three germ layers: ecto-
derm, endoderm, and mesoderm. This unique property
allows iPSCs to give rise to various cell types found in
the human body, making them highly valuable for thera-
peutic applications, disease modeling, and tissue engi-
neering [85]. In this article, we will explore the concept
of pluripotency, its significance in iPSC research, and the
potential it holds for advancing regenerative medicine.
Pluripotency refers to the developmental potential of a
cell to give rise to multiple cell lineages. It is character-
ized by the capacity to differentiate into cells of all three
germ layers, which are the precursors of different tis-
sues and organs in the body. Pluripotent cells are similar
to the inner cell mass of the blastocyst, a stage of early
embryonic development [85, 86]. In a recent study con-
ducted by Bogliotti et al. (2023), the researchers focused
on the efficient derivation of stable pluripotent bovine
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Fig. 4 1 The characterization of neural stem/progenitor cells (NS/PCs) derived from human induced pluripotent stem cells (hiPSCs). In panel (a),
the process of generating NS/PCs from feeder-free cultured hiPSCs is depicted, accompanied by representative images of cells at each stage

of differentiation. The scale bar in the image is 200 um. Panels (b) and (c) show representative immunocytochemical images (b) and quantification
() of hiPSC-NS/PCs using specific antibodies against SOX1, SOX2, and NESTIN. The inset in panel (b) displays Hoechst nuclear staining of the same
sample, and the scale bar is 50 um. Panel (d) presents representative images of cell surface markers PSA-NCAM and CD133 on hiPSC-NS/PCs. The
differentiation capacity of hiPSC-NS/PCs is demonstrated in panel (e) with representative images of neuronal differentiation for each cell line.
Neuronal markers, including MAP2ab (green), NeuN (red), and Blll-tubulin (purple), are expressed after 14 days of differentiation. The scale bar in the
image is 100 um. Panel (f) shows histological evaluation of hiPSC-NS/PCs after transplantation into immunodeficient mice. Representative tissue
sections of the striatum are displayed, and graft survival is assessed using the marker STEM121, which indicates human cytoplasm. The
differentiation capacity of hiPSC-NS/PCs in the graft is evaluated using antibodies against Ki67, NESTIN, and human-specific GFAP (STEM123). Insets
in the panel provide a closer look at the Ki67 signal in specific regions. The scale bars in the images are 500 um. Panel (g) quantifies the number

of Ki67 + cells among human-specific Lamin A+C+ cells at the indicated time point. Panels (h) and (i) demonstrate neuronal differentiation

of hiPSC-NS/PCs after transplantation, as indicated by the expression of the neuronal marker nELAVL in HNA +grafts. The insets in panel (h) show
Hoechst nuclear staining of the same sample, and the scale bar is 20 um. Quantification of neuronal differentiation is shown in panel (i). Statistical
values are provided as means + standard deviation, and asterisks indicate statistical significance (NS/PC-A, n=3; NS/PC-B, n=3; EB-NS/PC, n=4,
**p<0.01). 2 The examination of the variability within hiPSC-NS/PCs (human induced pluripotent stem cell-derived neural stem/progenitor cells)
using a single-cell-based method. a) The diagram illustrates the process of fluorescence-activated cell sorting (FACS) of NS/PC-B, followed by cell
expansion for subsequent biological analyses. b) The figure displays a correlation analysis between gene expression profiles of single-cell-derived
NS/PCs (scNS/PCs) obtained through microarray analysis and gene expression in NS/PCs, neural crest cells (NCCs), and MSCs from publicly available
datasets. The clustering of these profiles is also presented, with the color indicating the significance of correlation (z-value). ¢) Principal component
analysis of scNS/PCs is shown. NS/PC-like scNS/PCs are represented by red dots, NCC-like scNS/PCs by blue dots, and unclassified scNS/PCs
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Fig. 4 (continued)

(intermediate scNS/PCs) by light green dots. d) A comparison of gene expression related to neural (NES, SOX2, and ZBTB16) and mesodermal (SOX9
and PDGFR) lineages is demonstrated in NS/PC-like (blue), intermediate (light green), and NCC-like (red) scNS/PCs. e) The figure presents a gene
ontology (GO) analysis of differentially expressed genes in NS/PC-like scNS/PCs compared to NCC-like scNS/PCs. 3 The presence of cells displaying
mesodermal characteristics in grafts derived from human-induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs). In
panel (a), the grafts in the striatum were examined histologically using antibodies against SOX1 and SOX9, and the arrows highlight cells that are
positive for SOX1 and SOX9 among the HNA-positive cells. The scale bar represents a length of 25 um. Panel (b) provides a quantification

of the SOX1-SOX9 positive cells in the grafts, with the mean values and standard deviations indicated [NS/PC-A (3M) n=3; NS/PC-B (3M) n=3; NS/
PC-B (6M) n=4, *p<0.05]. In panel (c), representative images show the expression of AP2a in the NS/PC-derived grafts in the striatum, with the inset
demonstrating Hoechst nuclear staining of the same field. Panel (d) quantifies the frequency of AP2a-positive cells in the grafts, with mean values
and standard deviations provided [NS/PC-A (3M) n=4; NS/PC-B (3M, 6M) n=4, **p <0.01]. Panel (e) displays representative images of Vimentin

and SNAIT expression in STEM121-positive grafts six months after transplantation into an injured spinal cord. The scale bar represents a length

of 100 um. Panel (f) presents a bone-like structure derived from the grafts in the injured spinal cord region. Immunohistochemical staining of Ki67
(upper panel) and H&E staining (lower panel) of serial sections corresponding to the area shown in (e) is shown. The inset provides a higher
magnification of the boxed field. The scale bar represents a length of 100 um. 4 The osteogenic differentiation capacity of neural stem/progenitor
cells (NS/PCs) that have characteristics resembling neural crest cells (NCCs). Panel (a) provides detailed information about the cluster numbers
within NS/PCs and NCC-like NS/PCs, with the selected cells for further analysis highlighted in red. Panel (b) shows a principal component analysis
(PCA) plot of the transcriptome in the NS/PCs, with additional information about the selected NS/PCs highlighted in blue (NS/PC-like) and red
(NCC-like). Panel (c) presents representative images of the selected NS/PCs, with a scale bar of 100 um for size reference. Panel (d) displays the results
of immunocytochemical analysis of the NS/PC-like and NCC-like NS/PCs using antibodies against SOX1 (green), SOX9 (red), and NESTIN (purple). The
inset in this panel shows Hoechst nuclear staining of the same field, with a scale bar of 50 um. Panel (e) provides quantification data based

on the immunocytochemical analysis shown in panel (d). Finally, panel (f) shows the results of Alizarin red S staining after osteogenic differentiation
of the NS/PC-like and NCC-like NS/PCs. The scale bar in this panel is 100 pm. 5 The process of identifying specific cell surface markers to determine
populations that possess the ability to generate bone tissue. In part (a), a screening was conducted on a subset of hiPSC-NS/PCs (human-induced
pluripotent stem cell-derived neural stem/progenitor cells) using the BD Lyoplate screening panel. The results from flow cytometry categorized

the antibodies into three groups. Part (b) shows the flow cytometric analysis of cell surface markers for pluripotent stem cells (PSCs), NS/PCs,

and MSCs on NS/PC-B cells. Part (c) validates the cell surface marker screening using NS/PC-like and NCC-like scNS/PCs (single-cell-derived NS/PCs
and neural crest cell-like NS/PCs). Flow cytometric analysis displays the frequencies of cells expressing the antigens. Part (d) provides

a representative image of coexpression analysis between NS/PC markers and NCC markers on NS/PC-like and NCC-like scNS/PCs. In part (e),

the expression of NCC markers on various types of iPSC-NS/PCs is evaluated, along with representative images of Alizarin red S staining

after inducing osteogenic differentiation. Part (f) involves sorting NS/PC-B cells based on CD15, CD73, and CD105 expression. The sorted cells are
then subjected to further evaluation. Part (g) quantifies the sorted fractions based on SOX1 and SOX9 expression. Part (h) examines the sorted cells
for their ability to differentiate into bone cells using Alizarin red S staining. Finally, part (i) presents a proposed model for the cellular heterogeneity
of hiPSC-NS/PCs. 6 The transcriptome characteristics of iPSC-NS/PCs in comparison to authentic NCCs and MSCs. In panel (a), a heatmap
demonstrates the expression levels of genes associated with NS/PCs (SOX1 and NES) and genes associated with NCCs (SOX9, SOX10, AP2q,

and FOXD3) in parental NS/PCs, scNS/PCs, hiPSC-NCCs, and MSCs. Panel (b) displays a heatmap that shows the correlation in gene expression
between parental NS/PCs and scNS/PCs with gene expression data from previously published datasets of PSA-NCAM +and PSA-NCAM- NS/PCs. The
color scale represents the z-value, indicating the significance of the correlation. In panel (c), a principal component analysis is presented, comparing
scNS/PCs with referenced cells such as hiPSC-NCCs, WBM, and MSCs. 7 The process of ensuring the quality of neural stem/progenitor cells (NS/PCs)
through purification using CD15. In panel (a), a diagram shows the transplantation of NS/PCs derived from NS/PC-B, either sorted with an anti-CD15
antibody [sorting (+)] or without it [sorting (-)], into the striatum of immunodeficient mice. After 10 weeks, immunohistochemical analysis

was conducted to evaluate the differentiation capacity of the transplanted NS/PCs. Representative images (b) and corresponding quantification (c)
demonstrate the expression of AP2a in HNA + grafts as an indicator of differentiation capacity. The insets in panel (b) display Hoechst nuclear
staining of the same area. Quantitative data is presented in the right panel. The scale bar represents 50 um. Mean values + standard deviation (n=3,
*p <0.05) are provided. Similarly, representative images (d) and quantification (e) show the expression of nELAVL in HNA +grafts to assess

the differentiation capacity of the transplanted NS/PCs. The insets in panel (d) display Hoechst nuclear staining of the same area. Reprinted from [84]
with permission from the Springer Nature

embryonic stem cells (bESCs) from bovine blastocysts.
In a recent study conducted by Bogliotti et al. (2023), the
primary focus was on achieving the efficient generation of
robust pluripotent bovine embryonic stem cells (bESCs)
from bovine blastocysts. The primary objective of their
research was to tackle the challenge of establishing stable
lines of bESCs, which hold great importance for a wide
range of applications in genomics, genome engineering,
and disease modeling. To optimize the derivation pro-
cess, the research team employed a culture system that
incorporated fibroblast growth factor 2 (FGF2) and an
inhibitor of the Wnt-signaling pathway. Remarkably, they

successfully produced pluripotent bESCs with consistent
characteristics in terms of morphology, transcriptome,
karyotype, population-doubling rate, expression of pluri-
potency marker genes, and epigenetic features. Notably,
the study underscored the pivotal role of iPSCs within its
context. Furthermore, the researchers emphasized the
potential applications of the obtained bESCs, particu-
larly in genomic selection, and the figures presented in
the research yielded valuable insights [87]. Figure 5 illus-
trated the process and characterization of CTFR-bESCs,
highlighting the significance of cystic fibrosis transmem-
brane conductance regulator (CTFR) in bESC derivation.
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Figure 5 depicted the distribution of histone methyla-
tion patterns in CTFR-bESCs, emphasizing the epige-
netic features of these cells. Figure 5 presented molecu-
lar characteristics of CTFR-bESCs, shedding light on
their genetic and transcriptional profiles. Finally, Fig. 5
showcased the various potential applications of CTFR-
bESCs, specifically their role in genomic selection. Col-
lectively, this recent study provides valuable insights into
the efficient derivation of stable bESCs and highlights the
significant role of iPSCs, as well as the potential applica-
tions of CTFR-bESCs in genomic selection. ESCs derived
from the inner cell mass are naturally pluripotent. How-
ever, the groundbreaking discovery by Shinya Yamanaka
in 2006 demonstrated that adult somatic cells can also
be reprogrammed to a pluripotent state, resulting in the
generation of iPSCs [88]. The induction of pluripotency
involves reprogramming adult somatic cells back to an
embryonic-like state. This process requires the intro-
duction of specific transcription factors, known as the

(See figure on next page.)
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Yamanaka factors, into the somatic cells. These factors
include Oct4, Sox2, Klf4, and c-Myc. The Yamanaka fac-
tors work together to activate pluripotency-associated
genes and silence lineage-specific genes, effectively reset-
ting the cell to a pluripotent state [89]. The discovery of
iPSCs opened up new avenues for regenerative medi-
cine, as it bypassed the ethical concerns associated with
the use of human embryos and offered the potential for
personalized cell therapies [7]. Pluripotency is a crucial
characteristic of iPSCs that distinguishes them from
other cell types. It provides researchers with an abundant
and ethically sound source of pluripotent cells for various
applications. iPSCs can be derived from patient-specific
somatic cells, allowing for the generation of autologous
pluripotent cells. This personalized approach overcomes
the challenges of immune rejection often faced in trans-
plantation therapies. Moreover, the pluripotent nature
of iPSCs enables their differentiation into specific cell
types relevant to regenerative medicine [1, 90]. Through

Fig. 5 1 The process and characterization of CTFR-bESCs. In panel A, bright-field images and AP staining are shown, illustrating the typical colony
morphologies of CTFR-bESCs. It is important to note that the feeder layer in the images is negative for AP staining. The passages shown are P3
(passage 3) and P24 (passage 24). The scale bars in the images represent a length of 50 um. Panel B displays immunofluorescence (IF) staining

for various markers, including SOX2, POU5F1, GATA6, and CDX2. The top row shows bovine blastocysts at a magnification of 20 x objective,

while the middle and bottom rows show CTFR-bESCs. Panel C presents the results of expression analysis for markers specific to different lineages:
ICM (inner cell mass), TE (trophectoderm), and PE (primitive endoderm). The analysis was performed using RNA-seq, and the samples include two
independent CTFR-bESC lines (P10), two independent pools of whole blastocysts (10 each), and two lines of bovine fibroblasts. The color scale
indicates expression levels, ranging from red (high expression) to green (low/no expression). In panel D, representative images exhibit H&E staining
of histological sections obtained from teratomas generated by CTFR-bESCs. These teratomas contain tissues from all three germ lineages: ectoderm,
endoderm, and mesoderm. The magnification used for these images is 10x. 2 The pattern of histone methylation in CTFR-induced pluripotent
stem cells (CTFR-bESCs). In part (A), the transcriptional status of genes containing H3K4me3, H3K27me3, or bivalent domains is depicted. Genes
with an RPKM (Reads Per Kilobase Million) value of 0.4 or higher are considered expressed, while genes with an RPKM value below 0.4 are
considered nonexpressed. The bar plot inside the figure shows the average RPKM values + SEM (Standard Error of the Mean) for expressed genes,
while the x-axis displays the average RPKM values + SEM for all genes (both expressed and nonexpressed). In part (B), the functional characteristics
of genes containing H3K4me3, H3K27me3, or bivalent domains are presented. The figure displays the top 10 Gene Ontology (GO) terms associated
with these genes. The bar plot represents the negative logarithm (base 10) of the P-value for selected GO terms related to biological processes,

as determined by DAVID (Database for Annotation, Visualization, and Integrated Discovery). In part (C), a snapshot of the genome browser

is provided, showing specific genes associated with H3K4me3, H3K27me3, or bivalent domains. The genes are listed for each category, such

as TGFBR1, FGF8, SALL4, TRIM8, SBDS, and TAF8 for H3K4me3; OOEP, REC8, SLITRK4, LRRC4B, ARRX, and CSNB1 for H3K27me3; and WNT2, WNT7A,

MATN2, CHL1, MSX2, and ETV4 for bivalent domains. These genes are associated with three distinct GO terms. The start of each gene is indicated

by a black arrow in the genome browser snapshot. 3 The molecular characteristics of CTFR-bESCs, indicating their state of primed pluripotency. In
panel A, the expression levels of specific markers for naive and primed pluripotency were analyzed using RNA-seq, and the results are represented
using red (expressed genes with RPKM > 0.4) and green (nonexpressed genes with RPKM < 0.4) color-coding. The data shown are the means of two
independent biological replicates. Panel B provides snapshots from a genome browser displaying the histone methylation profiles of markers
associated with primed and naive pluripotency in CTFR-bESCs. Panel C displays genome browser snapshots of H3K4me3 and H3K27me3 marks

on key pluripotency genes (POU5F1, SOX2, NANOG, SALL4) in CTFR-bESCs. 4 The potential applications of CTFR-bESCs (Chimeric Trained Functional
RNA-blastocyst-derived Embryonic Stem Cells) in genomic selection. In part A, the efficiency of deriving CTFR-bESCs is evaluated using different
plating methods (whole blastocyst, mechanical isolation of inner cell mass [ICM], and immunosurgery-derived ICM) and various embryo sources

(in vitro maturation [IVM]-in vitro fertilization [IVF], ovum pick-up [OPUI-IVF, somatic cell nuclear transfer [SCNT], and Holstein and Jersey breeds).
The derivation efficiency is measured by calculating the percentage of blastocysts that successfully produce a stable CTFR-bESC line at the third
passage (P3) in relation to the total number of embryos seeded using each method. Part B presents a schematic diagram illustrating the strategy

of utilizing CTFR-bESCs for genomic selection. This approach aims to produce animals with superior genetic value through a highly efficient process
involving CTFR-bESC derivation and somatic cell nuclear transfer (NT). The diagram demonstrates the potential of using CTFR-bESCs to select
desirable genetic traits and generate animals with enhanced genetic characteristics. Part C highlights that CTFR-bESCs generated from different
sources can serve as nuclear donors for cloning. This suggests that CTFR-bESCs derived from various embryo sources can be utilized in the cloning
process to produce genetically identical copies of an organism. Reprinted from with [87] permission from the PNAS
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controlled differentiation protocols, iPSCs can be
directed to become cardiomyocytes, neurons, hepato-
cytes, or any other desired cell type. This ability opens up
possibilities for tissue engineering, where iPSC-derived
cells can be used to replace damaged or dysfunctional
cells in various organs [23]. A recent study conducted
by Eguchi et al. (2023) investigated the study delved into
the impact of telomere shortening in cardiomyocytes
affected by Duchenne muscular dystrophy (DMD). Fur-
thermore, the research explored the feasibility of pre-
serving telomeres as a potential therapeutic approach for
addressing this condition [91]. The researchers utilized
iPSCs derived from DMD patients to generate cardio-
myocytes. In Fig. 6, the authors illustrated the differen-
tiation process of iPSCs lacking the dystrophin gene
into cardiomyocytes. The study compared DMD iPSC-
derived cardiomyocytes (DMD iPSC-CMs) to control
cells on day 30 of differentiation, as shown in Fig. 6. The
DMD iPSC-CMs exhibited reduced cell size, nuclear size,

(See figure on next page.)
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and sarcomere density compared to the control cells. To
address telomere attrition, the researchers focused on the
telomeric repeat-binding factor 2 (TRF2), a key compo-
nent of the shelterin complex. In Fig. 6, the study sum-
marized the effects of TRF2 overexpression on prevent-
ing telomere attrition in DMD iPSC-CMs. The results
showed that TRF2 expression rescued the deficiencies in
cell size and sarcomere density. To assess telomere length,
the researchers employed a bioengineered platform for
calcium imaging and performed Southern blots of tel-
omere restriction fragments. The study also investigated
the impact of TRF2 on the DNA damage response and
cell survival, as depicted in Fig. 6. The findings indicated
that preventing telomere attrition through TRF2 overex-
pression ameliorated the activation of the DNA damage
response and reduced premature cell death. Importantly,
Fig. 6 demonstrated the effects of TRF2 on various cel-
lular characteristics, including cell morphology, telomere
length, activation of DNA damage response, and cell

Fig. 6 1 The process of generating cardiomyocytes from iPSCs lacking the dystrophin gene. The figure consists of two parts. In Part A, a diagram
depicts the dystrophin gene and the specific mutations found in the cell lines. The UC1015.6 line has a CRISPR-induced mutation that leads

to the production of a truncated dystrophin protein without the N terminus. The DMD19 and DMD16 lines are derived from patients and possess
nonsense mutations. In Part B, immunostaining is performed on day 30 iPSC-derived cardiomyocytes (iPSC-CMs) to visualize the presence of cTnT
(cardiac troponin T) and dystrophin. The UC lines are stained using the MANEX1A antibody, which detects the N terminus of dystrophin. On

the other hand, the DMD19 and DMD16 lines are stained using the ab15277 antibody, which recognizes the C terminus of dystrophin. Nuclei are
marked in blue using DAPI. The scale bar represents a length of 100 um. 2 The observed deficiencies in cell size, nuclear size, and sarcomere density
of DMD iPSC-CMs (induced pluripotent stem cell-derived cardiomyocytes) on the 30th day of the differentiation process. The figure includes images
of immunostaining for cTnT (cardiac troponin T) and DAPI (4;6-diamidino-2-phenylindole) staining for nuclei, comparing UC3.4 and UC1015.6
iPSC-CMs (A), DMD19 iso and DMD19 iPSC-CMs (B), and DMD16 iso and DMD16 iPSC-CMs (C). The scale bar in the images represents a length of 50
pm. Additionally, the figure presents the cell area measurements for UC3.4 and UC1015.6 iPSC-CMs (Figure D), DMD19 iso and DMD19 iPSC-CMs
(Figure E), and DMD16 iso and DMD16 iPSC-CMs (F). The nuclear size measurements are provided for UC3.4 and UC1015.6 iPSC-CMs (Figure G),
DMD19 iso and DMD19 iPSC-CMs (Figure H), and DMD16 iso and DMD16 iPSC-CMs (). Furthermore, the figure displays the sarcomere density,
quantified by the cTnT signal relative to the cell area, for UC3.4 and UC1015.6 iPSC-CMs (J), DMD19 iso and DMD19 iPSC-CMs (K), and DMD16

iso and DMD16 iPSC-CMs (L). The data were collected from three differentiation experiments, involving a total of 97 to 205 cells. 3 The effect

of TRF2 overexpression on rescuing telomere attrition. The shelterin complex, consisting of six subunits, includes TRF1 and TRF2, which directly
bind to telomere sequences. To investigate the impact of TRF2, cardiomyocytes were differentiated from iPSCs and transduced with either an
empty retroviral vector without an open reading frame (ev) or TRF2 on day 10. Assays were conducted on day 30 of differentiation. Southern blot
analysis was performed on telomere restriction fragments of iPSC-derived cardiomyocytes from UC, DMD19, and DMD16. The signal distribution

of telomere lengths from the Southern blots is represented in arbitrary units (AU) for UC iPSC-CMs, DMD19 iPSC-CMs, and DMD16 iPSC-CMs. 4 The
impact of TRF2 on the DNA damage response and cell survival. The experiment involved transducing cells with either ev (control) or TRF2 on day
10 and assessing them on day 30. The figure presents several Western blot analyses and survival percentages for different cell types. (A) TRF2 levels
were analyzed using Western blot, with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a loading control. TRF2 signal was normalized

to the GAPDH signal and measured in arbitrary units (AU). The expected sizes for TRF2 and GAPDH are 65 kDa and 35 kDa, respectively. (B) Western
blot analysis of P53 levels normalized to the GAPDH signal in AU. The expected size for P53 is 50 kDa. (C) Western blot analysis of gH2AX levels
normalized to the GAPDH signal in AU. The expected size for gH2AX is 17 kDa. (D) Western blot analysis of CHK2 phosphorylated at threonine 68
(phosphor-CHK2) and total CHK2. The signals were normalized to the GAPDH signal in AU. The expected size for phosphor-CHK2 is 62 kDa. (E), (F),
and (G) show the percentage of cells that survived on day 40 compared to day 30 of differentiation for UC iPSC-CMs, DMD19 iPSC-CMs, and DMD16
iPSC-CMs, respectively. Survival percentages were determined based on three to five differentiation experiments, with cell numbers ranging

from 375 to 12,036 on day 30. 5 The effects of TRF2 on various cellular characteristics, including cell size, nuclear size, and sarcomere density. The
experiment involved transducing cells with either the control vector (ev) or TRF2 on day 10 and assessing them on day 30. The images (A), (B),

and (C) show immunostaining for cTnT and DAPI staining for nuclei in UC iPSC-CMs, DMD19 iPSC-CMs, and DMD16 iPSC-CMs, respectively. The scale
bar represents a length of 20 um. The area of cells in (D), (E), and (F) represents UC iPSC-CMs, DMD19 iPSC-CMs, and DMD16 iPSC-CMs, respectively.
The nuclear size in (G), (H), and (I) corresponds to UC iPSC-CMs, DMD19 iPSC-CMs, and DMD16 iPSC-CMs, respectively. The sarcomere density,
indicated by the cTnT signal over the cell area, is depicted in (J), (K), and (L) for UC iPSC-CMs, DMD19 iPSC-CMs, and DMD16 iPSC-CMs, respectively.
The cells were evaluated based on three differentiation experiments, with a total of 90 to 230 cells analyzed. Reprinted from [91] with permission
from the PNAS
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viability. Overall, these findings highlight the crucial role
of iPSCs in studying disease mechanisms and therapeu-
tic interventions, and suggest that preserving telomere
length through TRF2 may hold promise for treating
DMD-associated cardiac failure.

Self-renewal Self-renewal is a fundamental property of
stem cells that enables them to proliferate and maintain
their undifferentiated state [15]. This property is critical
for the regenerative potential of stem cells as it ensures
a constant supply of cells for tissue repair and regenera-
tion [38]. Self-renewal is a complex process that involves
the regulation of multiple signaling pathways and gene
networks. Understanding the mechanisms underlying
self-renewal is essential for harnessing the therapeutic
potential of stem cells. Self-renewal refers to the ability
of stem cells to divide symmetrically or asymmetrically to
produce daughter cells that retain their stem cell identity
[92]. This process ensures a continuous supply of undif-
ferentiated cells that can differentiate into specialized
cell types. The balance between self-renewal and differ-
entiation is tightly regulated to maintain tissue homeo-
stasis and prevent the depletion of stem cell pools. Self-
renewal is a fundamental characteristic of stem cells that
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underpins their regenerative potential [93]. The ability
of stem cells to continuously proliferate while maintain-
ing their undifferentiated state is crucial for tissue repair,
transplantation, and disease modeling. The self-renewal
capacity of stem cells, combined with their differentia-
tion potential, makes them valuable tools for regenera-
tive medicine, personalized therapies, and drug discovery
[94]. Despite the challenges and complexities associated
with self-renewal, ongoing research is steadily advanc-
ing our understanding of stem cell biology and paving the
way for innovative applications in regenerative medicine.
With further advancements in the field, the harnessing of
self-renewal in stem cells holds great promise for revolu-
tionizing healthcare and improving the treatment options
available for a wide range of diseases and injuries [95].

Self-renewal in ESCs ESCs are derived from the inner
cell mass of blastocysts and are characterized by their
pluripotency and unlimited self-renewal capacity. The
self-renewal of ESCs is controlled by multiple signaling
pathways, including the Wnt, FGF, and TGF-beta path-
ways, which interact with transcription factors such as
Oct4, Sox2, and Nanog. These factors form a regulatory
network that maintains the pluripotent state of ESCs and
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suppresses differentiation cues [96]. Adult stem cells, also
known as somatic stem cells, are found in various tissues
throughout the body and are responsible for tissue repair
and regeneration. Adult stem cells have a more restricted
differentiation potential than ESCs and are typically com-
mitted to a specific lineage. The self-renewal of adult
stem cells is regulated by both intrinsic and extrinsic
factors, including growth factors, cytokines, and niche
microenvironments. One of the key intrinsic factors that
regulate self-renewal in adult stem cells is the transcrip-
tion factor Sox2 [97]. Sox2 is required for the mainte-
nance of neural stem cells, hematopoietic stem cells, and
mesenchymal stem cells. In addition, the Notch signaling
pathway has been shown to play a critical role in the self-
renewal of adult stem cells in various tissues, including
the intestinal epithelium and the skin [19].

Challenges in self-renewal While self-renewal is a crit-
ical property of stem cells, it can also lead to the accu-
mulation of genetic and epigenetic changes that increase
the risk of cancer and other diseases. The regulation of
self-renewal is therefore a delicate balance that must be
tightly controlled to prevent the over proliferation of
stem cells. Another challenge in self-renewal is the loss
of potency that can occur during long-term culture. As
stem cells divide and differentiate, they may lose their
ability to generate certain cell types or become more
prone to differentiation into specific lineages. This loss of
potency can limit the therapeutic potential of stem cells
and must be addressed through rigorous quality control
measures and optimization of culture conditions [25].

Applications of self-renewal in regenerative medi-
cine The self-renewal capacity of stem cells is critical
for the development of regenerative therapies that aim
to replace damaged or diseased tissues. By harnessing
the regenerative potential of stem cells, researchers hope
to develop new treatments for a wide range of diseases,
including cardiovascular disease, diabetes, and neurode-
generative disorders. One of the most promising appli-
cations of self-renewal is in tissue engineering [19]. By
combining stem cells with biomaterials and growth fac-
tors, researchers aim to generate functional tissues and
organs that can be transplanted into patients. The abil-
ity of stem cells to self-renew ensures a sufficient supply
of cells for tissue engineering, allowing for the creation
of large-scale, complex tissues. For example, MSCs have
shown promising self-renewal capacity and can differ-
entiate into various cell types, making them valuable for
engineering bone, cartilage, and other connective tis-
sues [98]. In addition to tissue engineering, self-renewal
plays a crucial role in the field of regenerative medicine
by enabling the expansion of stem cell populations for
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therapeutic purposes. For instance, hematopoietic stem
cells (HSCs) have the ability to self-renew and differen-
tiate into different blood cell types. HSC transplanta-
tion has been successfully used to treat various blood
disorders, such as leukemia and aplastic anemia, where
the self-renewal capacity of HSCs ensures a sustained
production of healthy blood cells. The concept of self-
renewal is also integral to the development of personal-
ized medicine [99]. By isolating patient-specific stem cells
and inducing their self-renewal, it is possible to generate
a renewable source of cells for transplantation back into
the same individual. This approach minimizes the risk of
rejection and graft-versus-host disease, making autolo-
gous stem cell transplantation a promising option for
personalized therapies. Furthermore, the self-renewal
potential of stem cells holds significant implications for
drug discovery and toxicology studies. Stem cells, includ-
ing iPSCs, can be used to generate disease-specific or
genetically modified cell lines that recapitulate the char-
acteristics of certain diseases or specific patient popula-
tions [19]. This allows for the screening of potential drug
candidates and evaluation of their efficacy and safety
profiles, thereby facilitating the development of more tar-
geted and personalized therapeutics [22].

Genetic stability

In the field of regenerative medicine, the genetic sta-
bility of iPSCs is a crucial aspect to consider. iPSCs,
derived by reprogramming adult somatic cells, hold
great promise for tissue engineering, disease modeling,
and therapeutic applications. However, it is essential to
ensure that the reprogramming process and subsequent
culture conditions do not introduce genetic abnor-
malities or mutations that could compromise the safety
and efficacy of iPSC-based therapies [1, 7]. This article
explores the significance of genetic stability in iPSCs
and the strategies employed to ensure the reliability of
these cells for regenerative medicine purposes. Genetic
stability refers to the preservation of the genetic infor-
mation of iPSCs throughout the reprogramming pro-
cess and subsequent cell culture. Any alterations or
mutations in the genomic DNA of iPSCs can have
profound implications for their clinical use. Genetic
instability can lead to unintended consequences, such
as aberrant differentiation potential, compromised
functionality, or even the development of tumorigenic
properties. Therefore, it is crucial to ensure the genetic
integrity of iPSCs to maximize their potential in regen-
erative medicine [59].

Reprogramming methods 'The choice of reprogramming
methods can significantly influence the genetic stability
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of iPSCs. Various techniques, such as viral integration,
non-integrating methods, and episomal vectors, have
been used to deliver the reprogramming factors. Viral
integration, although efficient, carries the risk of inser-
tional mutagenesis. Non-integrating methods, such as
mRNA or protein-based delivery, minimize the risk of
genetic alterations. Researchers have focused on devel-
oping safer reprogramming approaches to enhance the
genetic stability of iPSCs [100].

Quality control measures Rigorous quality control
measures are essential to assess the genetic stability of
iPSCs. Whole-genome sequencing (WGS) and karyotyp-
ing are commonly employed techniques to analyze the
entire genome and detect any chromosomal abnormali-
ties or genetic mutations. WGS allows for the identifica-
tion of single nucleotide variants (SN'Vs), insertions, dele-
tions, copy number variations (CNVs), and structural
variations (SVs). Karyotyping, on the other hand, enables
the examination of chromosome number and structure.
These analyses help identify any genetic variations and
ensure the genetic stability of iPSCs [101].

Epigenetic  reprogramming Epigenetic modifications
play a vital role in cellular identity and function. During
the reprogramming process, the epigenetic landscape of
somatic cells is reset to an embryonic-like state. How-
ever, incomplete or aberrant epigenetic reprogramming
can lead to genetic instability in iPSCs. Techniques such
as DNA methylation profiling and histone modification
analysis are used to assess the epigenetic status of iPSCs.
Proper epigenetic reprogramming is crucial to maintain
the genetic stability and pluripotency of iPSCs [102].

Long-term  culturing conditions Maintaining iPSCs
in culture for extended periods can increase the risk of
genetic instability. Factors such as culture media com-
position, substrate coating, and passaging methods can
influence the genetic stability of iPSCs. It is important to
optimize culture conditions to minimize the accumula-
tion of genetic alterations over time. Researchers are con-
tinually exploring novel culture systems, such as feeder-
free culture or defined media formulations, to enhance
the genetic stability of iPSCs during long-term culturing
[103].

Clonal expansion and characterization Clonal expan-
sion of iPSCs involves isolating and expanding individual
iPSC colonies to ensure clonality and genetic homoge-
neity. This step helps identify and eliminate any geneti-
cally unstable iPSC lines. Furthermore, characterization
of iPSCs at the molecular and functional level is essen-
tial to assess their genetic stability. Techniques such as
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immunocytochemistry, flow cytometry, and gene expres-
sion analysis can be employed to evaluate the pluripo-
tency markers and differentiation potential of iPSCs.
Additionally, functional assays can be performed to con-
firm their ability to differentiate into various cell line-
ages. Comprehensive characterization ensures that only
genetically stable and functionally competent iPSC lines
are selected for downstream applications [104].

Genome editing tools Advances in genome editing tech-
nologies, such as CRISPR-Cas9, provide valuable tools
to correct genetic abnormalities or introduce specific
genetic modifications in iPSCs. This approach can be
used to repair genetic mutations or eliminate unwanted
genomic variations. Genome editing serves as a power-
ful strategy to enhance the genetic stability of iPSCs and
ensure their suitability for regenerative medicine appli-
cations [105]. Recent studies have provided valuable
insights into the epitranscriptomic control of pluripotent
stem cell fate. In a groundbreaking investigation con-
ducted the researchers delved into the influence of RNA
modifications on the destiny determination of iPSCs
[106]. Utilizing advanced high-throughput sequencing
techniques, they discerned dynamic alterations in RNA
modifications throughout the reprogramming process,
where somatic cells were transformed into iPSCs. Their
findings highlighted the critical importance of specific
epitranscriptomic modifications, such as N6-methyl-
adenosine (m6A) and N1-methyladenosine (mlA), in
both acquiring and sustaining pluripotency. Further-
more, the researchers demonstrated that the manipula-
tion of enzymes responsible for RNA modifications could
enhance the efficiency of iPSC generation and steer the
differentiation potential of iPSCs towards particular lin-
eages. These results underscore the pivotal role of the
epitranscriptome in governing iPSC fate and accentu-
ate the potential utilization of epitranscriptomic modi-
fications as targets for enhancing iPSC-based therapies.
Additionally, Fig. 7 illustrates these findings, while Fig. 7
visually represents the diverse effects of various epitran-
scriptomic modifications on pluripotent stem cell char-
acteristics, highlighting the intricate regulatory functions
of RNA modifications in shaping the fate of pluripotent
stem cells.

Immune compatibility

Regenerative medicine is a rapidly evolving field that
aims to restore, replace, or regenerate damaged tissues
and organs. One of the key challenges in this field is to
develop therapeutic strategies that can avoid immune
rejection and improve the long-term survival of trans-
planted cells and tissues. iPSCs have emerged as a
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promising tool in this regard, as they offer the potential
to generate patient-specific cells that are immunologically
compatible with the host [30]. While iPSCs offer great
potential for immune compatibility in regenerative medi-
cine, there are still challenges that need to be addressed.
One major concern is the potential for immune rejection
of iPSC-derived cells due to residual expression of immu-
nogenic antigens or incomplete reprogramming. It is cru-
cial to thoroughly characterize iPSC lines to ensure their
safety and immunological compatibility before clinical
application [25]. Another challenge is the long-term sur-
vival and functionality of iPSC-derived cells in the host
environment. Even if immune rejection is minimized, the
transplanted cells may still face challenges in integrating
into the host tissue, establishing functional connections,
and maintaining their desired phenotype [107]. Further
research is needed to optimize differentiation protocols,
enhance cell maturation, and improve the engraftment
of iPSC-derived cells for successful long-term outcomes.
Additionally, ethical considerations surrounding the use
of iPSCs in regenerative medicine should not be over-
looked. Issues such as the informed consent of donors,
privacy of genetic information, and the potential for
commercialization of iPSC-based therapies need to be
carefully addressed to ensure responsible and ethical
implementation [108].

Immune compatibility of iPSCs The iPSCs possess sev-
eral advantages over other sources of stem cells in terms
of immune compatibility. Unlike ESCs, which are derived
from embryos and may elicit an immune response when
transplanted, iPSCs can be generated from adult somatic
cells, such as skin fibroblasts or blood cells. This means
that iPSCs can be produced from the same individual
who will receive the therapy, minimizing the risk of
immune rejection [25].

Autologous iPSCs The use of autologous iPSCs, gener-
ated from a patient’s own cells, offers the greatest poten-
tial for immune compatibility. As the iPSCs are geneti-
cally identical to the donor, there is no risk of rejection
or graft-versus-host disease. This approach is particularly
useful in the treatment of diseases such as Parkinson’s

(See figure on next page.)
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disease, diabetes, or spinal cord injuries, where the goal
is to replace lost or damaged cells with healthy ones. In
these cases, iPSCs can be differentiated into the desired
cell type, such as dopaminergic neurons or pancreatic
beta cells, before transplantation. However, the genera-
tion of autologous iPSCs is not always feasible or prac-
tical. For example, patients with genetic disorders may
have mutations present in all of their cells, making the
generation of disease-free iPSCs difficult. Addition-
ally, patients with advanced or widespread disease may
not have a sufficient number of healthy cells to generate
iPSCs. In these cases, allogeneic iPSCs, generated from a
donor’s cells, may be utilized [109].

Allogeneic iPSCs The use of allogeneic iPSCs raises the
possibility of immune rejection, as the cells are genetically
different from the host. However, several approaches are
being explored to overcome this challenge. One approach
is to use gene editing technologies, such as CRISPR/
Cas9, to introduce genetic modifications into the iPSCs
that reduce their immunogenicity. For example, research-
ers can delete or downregulate genes that code for major
histocompatibility complex (MHC) molecules, which are
responsible for presenting antigens to T cells and trigger-
ing an immune response. By reducing MHC expression,
iPSCs may be able to evade detection by the host immune
system. Another approach is to use immunosuppressive
drugs, such as cyclosporine or tacrolimus, to dampen the
host immune response. However, these drugs can have
significant side effects and increase the risk of infection
or malignancy. Therefore, alternative strategies that pro-
mote immune tolerance and reduce the need for immu-
nosuppression are being investigated [110].

Promoting immune tolerance One approach to pro-
moting immune tolerance is to generate iPSC-derived
cells that express immune-modulatory molecules, such
as indoleamine 2,3-dioxygenase (IDO), programmed
death-ligand 1 (PD-L1), or galectin-1. These molecules
can inhibit T cell activation and promote the generation
of regulatory T cells, which suppress immune responses.
By incorporating these molecules into iPSC-derived cells,
researchers aim to create a “tolerogenic” environment

Fig. 7 1 The progression of stem cell development, focusing on various aspects. In panel a, it depicts the morphological transformations

that occur at different stages of stem cell development. Panel b highlights the molecular processes involved in the acquisition of cellular

diversity. Panel ¢ showcases the pluripotent nature of stem cells obtained at different developmental phases. Lastly, panel d provides an overview
of the molecular characteristics observed throughout the course of stem cell development. 2 The control of different characteristics in pluripotent
stem cells through epitranscriptomic modifications. The regulatory effects of m6A (indicated in red), m1A (in yellow), pseudouridine (in green),
and m5C (in blue) modifications are linked to specific biological traits exhibited by pluripotent stem cells. Reprinted from [106] with permission

from the Springer Nature
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that can induce immune tolerance and reduce the risk of
rejection [111].

Potential applications in regenerative medicine

The iPSCs can be differentiated into specific cell types rel-
evant to tissue repair and regeneration. For instance, they
can be directed to differentiate into cardiomyocytes for
cardiac tissue regeneration, hepatocytes for liver tissue
engineering, or neurons for the treatment of neurologi-
cal disorders. The ability to generate patient-specific cells
holds great promise for developing customized therapies
and overcoming the limitations associated with organ
transplantation. The iPSCs provide a valuable platform
for studying the mechanisms underlying various diseases.
By reprogramming cells from patients with genetic dis-
orders or complex diseases, researchers can generate
disease-specific iPSC lines that recapitulate the pathol-
ogy in a controlled laboratory setting [19]. These disease
models allow for a better understanding of disease pro-
gression, identification of novel therapeutic targets, and
screening of potential drugs. Traditional drug develop-
ment processes rely heavily on animal models and can
be time-consuming and costly. iPSCs offer an alternative
approach by providing human-specific cell models for
drug screening and toxicity testing. iPSC-derived cells,
such as cardiomyocytes or hepatocytes, can be utilized
to evaluate the efficacy and safety of drug candidates,
reducing the need for animal testing and improving the
accuracy of preclinical studies. In certain degenerative
diseases, such as Parkinson’s disease or diabetes, iPSCs
hold the potential to replace damaged or dysfunctional
cells [23]. By differentiating iPSCs into the desired cell
type, such as dopaminergic neurons or pancreatic beta
cells, researchers aim to restore lost function and allevi-
ate disease symptoms. However, challenges related to
the scalability, maturation, and long-term safety of iPSC-
derived cells need to be addressed before widespread
clinical application [7].

Advancements in the field of iPSC research

Over the past decade, the field of iPSC research has
seen significant advancements and progress. iPSCs are
a type of stem cell that are created by reprogramming
adult cells to a pluripotent state, meaning they have the
potential to develop into any type of cell in the body.
This technology has opened up new avenues for regen-
erative medicine, disease modeling, drug discovery, and
personalized medicine [1]. One of the most significant
advancements in iPSC research has been the develop-
ment of more efficient and reliable methods for repro-
gramming adult cells. Early methods of reprogramming
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involved the introduction of transcription factors into
cells using viruses, which posed a risk of mutations and
potential tumorigenesis. However, recent advances have
utilized non-viral methods such as mRNA, microRNA,
and small molecules, which are safer and more efficient
[112]. These methods have also led to the production of
high-quality iPSCs with improved differentiation poten-
tial and reduced genomic abnormalities. Another area
of advancement in iPSC research is the development of
more sophisticated techniques for manipulating and con-
trolling iPSC differentiation. Scientists can now direct
iPSCs to differentiate into specific cell types, such as neu-
rons, cardiac cells, and pancreatic cells, using specific
growth factors, signaling molecules, and genetic manipu-
lation [19]. This has led to the creation of more complex
in vitro models of human disease, allowing for the study
of disease mechanisms and drug screening. In addition,
iPSC research has made significant strides in the field
of personalized medicine. iPSCs can be generated from
a patient’s own cells and then differentiated into specific
cell types, allowing for the creation of personalized dis-
ease models and drug screening platforms. This has the
potential to revolutionize drug discovery, as it allows for
the identification of patient-specific drug targets and the
development of personalized treatment plans. Another
major advancement in the field of iPSC research is the
use of gene editing techniques such as CRISPR-Cas9 to
manipulate the genome of iPSCs [7]. This has allowed for
the creation of disease-specific iPSC lines with specific
genetic mutations, which can be used to study disease
mechanisms and test potential therapies. Gene editing
also holds potential for the development of gene thera-
pies, which could treat genetic diseases by correcting
mutations in iPSCs and then differentiating them into
the affected cell type. Advancements in iPSC research
have also led to new approaches in cancer research and
therapy [1]. iPSCs can be used to model cancer develop-
ment and progression, allowing for the identification of
genetic and epigenetic changes that drive tumor growth.
Additionally, iPSCs can be used to develop personalized
cancer treatments, such as chimeric antigen receptor
(CAR) T cell therapy. CAR T cell therapy involves repro-
gramming a patient’s own T cells using iPSC technology,
allowing them to specifically target and kill cancer cells
[113]. Finally, advancements in iPSC research have raised
important ethical and legal considerations. The crea-
tion and use of iPSCs raises questions about ownership,
consent, and the potential for genetic manipulation and
designer babies. Additionally, the use of iPSCs in drug
screening and disease modeling could lead to the exploi-
tation of vulnerable populations, such as those with rare
genetic diseases [22].
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iPSCs in cancer therapy

One of the key advantages of iPSCs in cancer therapy is
their ability to serve as models for studying cancer biol-
ogy [1]. By reprogramming somatic cells from cancer
patients into iPSCs, researchers can generate patient-spe-
cific cell lines that retain the genetic and epigenetic char-
acteristics of the original tumor [2]. These iPSC-derived
cancer cells can be differentiated into different cell types
and used to study the mechanisms of cancer develop-
ment, progression, and response to treatment [3]. This
approach provides a unique opportunity to investigate
individualized responses to various therapies and develop
personalized treatment strategies [4].

iPSCs as a source of cancer cells for research and drug
screening

The iPSCs have demonstrated great potential as a valu-
able tool for studying cancer biology and developing
novel therapies [2]. One significant application of iPSCs
in cancer research is their use as a source of cancer cells
for in vitro studies and drug screening [4]. By reprogram-
ming somatic cells from cancer patients, researchers can
generate iPSC lines that harbor the genetic and epige-
netic alterations characteristic of the individual’s cancer
[1]. These patient-specific iPSCs can be further differenti-
ated into various cancer cell types, allowing for the crea-
tion of in vitro models that closely resemble the patient’s
tumor [1]. This enables researchers to study the molecu-
lar mechanisms underlying cancer initiation, progression,
and response to treatment. By comparing iPSC-derived
cancer cells with healthy cells from the same individual,
scientists can identify key genetic and epigenetic changes
that contribute to cancer development [5]. Moreover,
iPSC-derived cancer cells provide a platform for drug
screening and testing. Researchers can expose these
cells to different therapeutic agents to evaluate their effi-
cacy and selectivity against the specific cancer type [5].
iPSC-derived models allow for personalized medicine
approaches, where drugs can be screened on patient-spe-
cific cancer cells to identify the most effective treatment
options [6]. This personalized approach has the potential
to revolutionize cancer therapy by tailoring treatments to
individual patients, improving treatment outcomes, and
reducing adverse effects [7]. Table 3 provides an overview
of the utilization of iPSCs as a valuable source of cancer
cells for research and drug screening purposes.

Personalized cancer treatment using iPSCs

The ability to generate patient-specific iPSCs opens up
new possibilities for personalized cancer treatment [2].
Traditional cancer treatments, such as chemotherapy
and radiation therapy, often lack specificity and can have
significant side effects. iPSCs offer a unique opportunity
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to develop personalized therapies that target cancer cells
while sparing healthy tissues [5]. By reprogramming
somatic cells from patients into iPSCs, researchers can
differentiate these iPSCs into various cell types, includ-
ing immune cells [6]. iPSC-derived immune cells can be
genetically modified to enhance their tumor-targeting
capabilities, such as expressing chimeric antigen recep-
tors (CARs) or T-cell receptors (TCRs) specific to cancer
antigens [8]. These modified immune cells, also known
as iPSC-derived CAR-T or TCR-T cells, can be expanded
in large quantities and reinfused into the patient [2]. As
these cells are derived from the patient’s own cells, the
risk of immune rejection is minimized. Personalized
cancer immunotherapies using iPSC-derived immune
cells have shown promising results in preclinical stud-
ies [8]. They hold the potential to improve the efficacy
and specificity of cancer treatment while reducing off-
target effects. However, challenges such as ensuring the
safety and effectiveness of iPSC-derived immune cells,
optimizing their differentiation protocols, and overcom-
ing immune evasion mechanisms employed by cancer
cells need to be addressed before their widespread clini-
cal application [9]. Table 4 provides an overview of the
potential of personalized cancer treatment through the
use of iPSCs.

iPSCs for developing immunotherapies for cancer

Immunotherapies have emerged as a breakthrough
approach in cancer treatment, harnessing the power of
the immune system to selectively target and eliminate
cancer cells. iPSCs offer unique advantages for develop-
ing immunotherapies by providing an unlimited source
of immune cells for manipulation and expansion [8].
One promising strategy is the generation of iPSC-derived
dendritic cells (DCs). DCs play a crucial role in initiat-
ing and regulating immune responses. iPSC-derived DCs
can be engineered to express specific tumor antigens or
antigen-presenting molecules, enhancing their ability
to activate immune cells against cancer cells [10]. These
iPSC-derived DCs can be used as vaccines to stimulate
an anti-tumor immune response in patients. Addition-
ally, iPSCs can be differentiated into natural killer (NK)
cells, a type of immune cell known for their ability to
recognize and kill cancer cells. iPSC-derived NK cells
can be genetically engineered to enhance their tumor-
targeting capabilities and to improve their persistence
and cytotoxicity [11]. These modified iPSC-derived NK
cells can then be used as a potent immunotherapy for
cancer treatment [12]. Furthermore, iPSCs can be uti-
lized to generate tumor-specific T cells. Tumor-infiltrat-
ing lymphocytes (TILs) obtained from cancer patients
have shown promising results in immunotherapy. How-
ever, their limited supply and functional exhaustion pose
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challenges for clinical applications [13]. iPSCs provide
a renewable source for generating TILs in large quanti-
ties. iPSC-derived T cells can be genetically modified to
express tumor-specific TCRs or CARs, enabling them to
recognize and eliminate cancer cells [14]. These iPSC-
derived T cells can be expanded and infused back into
the patient to mount an effective anti-tumor immune
response [15]. The use of iPSCs for developing immuno-
therapies offers the potential for personalized treatments
and improved clinical outcomes [15]. By combining the
advantages of iPSC technology with the specificity and
potency of immune cells, researchers are paving the way
for more targeted and effective cancer therapies. Table 5
highlights the utilization of iPSCs in the advancement of
immunotherapies for cancer.

Mechanisms of iPSC-based cancer therapy

The iPSCs have shown tremendous potential in the field
of cancer therapy. Their unique characteristics, such as
pluripotency and self-renewal, enable the development of
innovative approaches for the treatment of various types
of cancer [473].

iPSC-derived cancer cells for drug screening

and personalized treatment

One of the major challenges in cancer treatment is iden-
tifying effective drugs that specifically target cancer cells
while sparing healthy cell [474]. iPSCs offer a valuable
tool for addressing this challenge by providing a plat-
form for generating patient-specific cancer cells [475].
By reprogramming somatic cells from cancer patients
into iPSCs, it is possible to differentiate them back into
cancer cells representing the patient’s specific tumor
type [15]. These iPSC-derived cancer cells can be used
for drug screening and testing the efficacy of various
anticancer drugs [105]. Researchers can expose these
cells to different compounds and observe their response,
allowing for the identification of personalized treatment
options. This approach has the potential to improve the
success rate of cancer treatment by tailoring therapies to
individual patients based on the characteristics of their
specific cancer cells [476]. In a recent investigation car-
ried out by Ware et al. (2014), the primary focus was
on obtaining nontransgenic hESCs in a naive state and
examining their properties and potential for develop-
ment [477]. This study builds upon prior research that
had demonstrated the advantages of achieving a naive
pluripotent state in mice while highlighting the chal-
lenges in replicating the same state in human cells.
The researchers employed two strategies for obtaining
naive hESCs. Firstly, they successfully converted exist-
ing primed hESC lines into the naive state by exposing
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them to histone deacetylase inhibitors, followed by cul-
tivation with MEK/ERK and GSK3 inhibitors (2i) along
with FGF2. Secondly, they directly derived naive hESCs
from human embryos using 2i and FGF2. The result-
ant naive hESCs exhibited traits consistent with the
naive state, including growth patterns, gene expres-
sion, X-inactivation profile, mitochondrial morphol-
ogy, microRNA profile, and developmental potential in
teratomas. Importantly, this research also underscores
the role of iPSCs in the context of naive hESCs. iPSCs
are somatic cells reprogrammed to a pluripotent state
akin to embryonic stem cells. In Fig. 8, the researchers
illustrate the influence of 2i culture on both mouse and
human pluripotent cells, emphasizing the adaptability
of these culture conditions to various pluripotent cell
types, including iPSCs. Furthermore, Fig. 8 presents
diverse genomic analyses conducted on naive hESCs,
shedding light on the molecular attributes of these cells
and their comparison to other pluripotent states, includ-
ing iPSCs. Additionally, Fig. 8 offers a comprehensive
analysis of the stages of pluripotency in hESCs using
various techniques, providing insights into the distinct
characteristics of naive hESCs and their relationship
with iPSCs. Lastly, Fig. 8 illustrates the developmental
potential of teratomas derived from different cell states,
encompassing naive and primed hESCs. This under-
scores the importance of comprehending and character-
izing pluripotent states, including naive and iPSCs, due
to their significant implications for research in regenera-
tive medicine and developmental biology.

iPSCs for developing cancer vaccines

and immunotherapies

Immunotherapy has emerged as a promising approach
for cancer treatment, harnessing the body’s immune
system to target and eliminate cancer cells. iPSCs offer a
novel avenue for developing cancer vaccines and immu-
notherapies [478]. Researchers can reprogram iPSCs
to express specific tumor antigens, which are proteins
found on the surface of cancer cells that can trigger an
immune response [479]. These iPSCs can be differenti-
ated into dendritic cells or other antigen-presenting
cells, which are crucial for activating the immune system
[480]. The iPSC-derived antigen-presenting cells can
then be used to stimulate the patient’s immune system,
priming it to recognize and attack cancer cells express-
ing the specific tumor antigens. This approach holds
promise for the development of personalized immuno-
therapies that target the unique characteristics of each
patient’s cancer cells [481]. Table 6 highlights the sig-
nificant role of iPSCs in the field of cancer vaccines and
immunotherapies.
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Utilizing iPSCs for cancer cell differentiation and apoptosis
Another mechanism through which iPSCs contribute to
cancer therapy is by directing their differentiation into
specific cell types that can target and eliminate cancer
cells [25]. Researchers can guide iPSCs to differenti-
ate into immune cells, such as NK cells or T cells, which
have the ability to recognize and destroy cancer cells
[25]. The iPSC-derived NK cells can be engineered to
enhance their anti-cancer properties, such as increas-
ing their cytotoxic activity or improving their targeting
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capabilities. These modified iPSC-derived NK cells can
then be used as a cell-based therapy to directly kill can-
cer cells figure [131]. Similarly, iPSC-derived T cells can
be modified to express CARs that recognize specific can-
cer cell antigens, enabling them to selectively target and
eliminate cancer cells [488]. Furthermore, iPSCs can be
used to induce apoptosis, programmed cell death, in
cancer cells. By understanding the signaling pathways
and molecular changes that drive cancer cell survival,
researchers can engineer iPSCs to produce and release

(See figure on next page.)

Fig. 8 1 The impact of 2i culture on pluripotent cells in mice and humans. In panel A, mouse pluripotent colonies were subjected to alkaline
phosphatase staining. The two plates on the left show that the addition of 2i to mEpiSC colonies leads to differentiation and a loss of alkaline
phosphatase positive cells. However, the four plates on the right demonstrate that when mEpiSCs are grown in butyrate plus SAHA

before introducing 2i, pluripotent colonies thrive. In panel B, human embryonic stem cells (H1) were either directed back to 2i culture

through butyrate exposure or pushed forward towards differentiation without prior exposure to B/S. This indicates that 2i culture must follow

B/S exposure to prevent differentiation. The scale bars in the figure represent a length of 100 uM. 2 The genomic analysis conducted on naive
human embryonic stem cells (hESCs). In panel (A), a heat map displays the RNA expression levels of target genes regulated by HIF2a (EPAST)

in H1-2iF cells compared to the parent H1 cells. The comparison was performed using quadruplicate samples and the cells were cultured in TeSR2.
Panel (B) presents a principal component analysis (PCA) plot comparing mouse whole genome Agilent array data. The left side of the plot shows
embryo data from Hunter et al. (8), while the right side shows mouse embryonic stem cell (mESC) equivalents, including R1p22 (mESC-2iL,

naive), mEpiSC7p24AF (mEpiSC-AF, primed), and mEpiSC7p55(AF7,B/51)2iL20 (mEpiSC-2iL, toggled to naive). The expression data of naive (3iL,
green squares) and primed (AF, blue squares) Elf1 cells are also compared with in vivo mouse embryo data in the plot on the left. In panel (C),

a comparison is shown between in-house EIf1 expression array data and data generated by Hanna et al. (5). The comparison includes naive

and primed cell lines, represented by dark blue dots and orange dots, respectively. The lines tested on the left side of the graph are grouped
identically on the EIf1 primed side. Panel (D) displays DNase | hypersensitivity analysis of the enhancer regions for the POU5F1 gene in EIf1

and H1 cells. The lower black line represents Elf1, and the blue line above represents H1. The first exon of POU5F1 is shown above the H1 data,
along with a 2-kb size bar indicating the proximal enhancer (PE) and distal enhancer (DE). In panel (E), a comparison of ChIP-seq H3K27me3 data

is presented. The orange line represents primed hESCs (data from Gafni et al,, 6), while the blue line represents naive EIf1-2iL cells. The comparison
focuses on the subset of genes from panel (C) that are associated with Gene Ontology “developmental genes” (n=648). 3 The analysis of different
stages of pluripotency in human embryonic stem cells (hESCs). Panel (A) shows the results of microRNA analysis related to pluripotency. Panel

(B) demonstrates the labeling of XIST (X-inactive specific transcript) using a technique called fluorescence in situ hybridization (FISH). In the left
image, Elf1-3iLs cells do not show a cloud-like XIST signal, whereas EIf1s primed cells exhibit two XIST signals. Furthermore, cells differentiated for 10
days display a single XIST signal (represented by a red dot) within the nucleus. When the nucleus is highlighted using DAPI staining and the field

is magnified, XIST remains undetectable in naive EIf1 cells (lower left). However, upon differentiation, the XIST signal becomes detectable on one

or both X chromosomes (red dots, white arrows, lower right). Panel (C) presents the results of bisulfite sequencing of the XIST promoter using
different primer sets. The figure shows that XIST remains methylated throughout the naive and primed stages. However, using specific primers,
methylation appears to decrease in naive cells compared to primed cells. This decrease is also observed in in vitro-differentiated cells and in a
teratoma at day 98. The circles represent CpG sites, where open circles indicate unmethylated and filled circles indicate methylated CpGs. Panel

(D) consists of graphs representing the cloning efficiency (percentage) and doubling times (hours) of EIf1 naive, EIf1 primed, H1 naive, and H1
primed cells. Panel (E) displays electron microscopy images of mitochondria. The left panels highlight the difference in mitochondrial shape
between EIf1-3iL and EIf1-AF cells. This difference is quantified in the graph on the right, where an increased ratio indicates a rounder population
of mitochondria. The error bars represent the standard error of the mean (SEM). 4 The developmental capacity of teratomas derived from different
types of cells. Panel A displays sections of teratomas labeled with H&E staining. Specifically, it shows sections from Elf1p17-2iL10 teratoma (naive; 42
days) and Elf1p15T8 teratoma (primed, 67 days). Panel B focuses on endoderm-specific labeling of the EIf1 teratomas shown in Panel A. The upper
two panels of both tumors represent sequential sections. The upper panel highlights liver development using red (albumin), green (a-fetoprotein),
and blue (E-cadherin) labeling. The second set of panels highlights pancreatic development using red (PDX1), green (SOX9), and blue (E-cadherin)
labeling. The next three panels (descending) in both tumors are different sequential sections. The first set represents liver development, the second
set represents pancreatic development, and the third set represents liver development using alternative markers (labeled as above and red, CYP3A
and green, HNF4A). The lower panel of EIf1p17-2iL10 (naive) is included to emphasize the level of organization of endodermal development

within these tumors, labeled with red (FOXA2), green (SOX9), and blue (E-cadherin). The bottom right panel (EIf1p15T8) serves as a negative control.
Panel C displays H&E sections of an H1 naive teratoma (44 days). The graph below the H&E sections quantifies the areas stained for E-cadherin
(epithelial cells) or PDX1 (pancreatic progenitors) in primed (H1p44-AF9), naive [H1p49(B/S3)2iF10], and naive reverted to primed [H1p49(B/S3, 2iF4)
AF5] H1 generated teratomas. The graph indicates that both the overall epithelial developmental potential and the pancreatic subset are enhanced
in the naive state compared to the primed state. Panel D shows the top three panels with H&E sections of an mESC teratoma (naive, 13 days). The
lower panels display immunofluorescent labeling of sections from this mESC teratoma. The scale bars in panels A and D define the scale for all
H&E-stained sections and are set at 100 uM. Reprinted from [477] with permission from the PNAS
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therapeutic molecules or microRNAs that promote can-
cer cell apoptosis [481]. This approach offers a poten-
tial strategy for selectively eliminating cancer cells while
minimizing harm to healthy cells.

Current limitations and challenges in iPSC-based
cancer therapy

In recent years, iPSCs have emerged as a promising tool
in the field of cancer therapy. These cells, which can be
derived from adult somatic cells and reprogrammed to
exhibit pluripotency, hold great potential for personal-
ized medicine and regenerative therapies [489]. How-
ever, despite the significant progress made in this area,
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there are several limitations and challenges that need to
be addressed before iPSC-based cancer therapy can be
widely adopted. One of the major challenges in iPSC-
based cancer therapy is the technical difficulty asso-
ciated with generating high-quality iPSCs [490]. The
reprogramming process itself is complex and inefficient,
often resulting in low-quality iPSCs with genomic abnor-
malities [491]. These abnormalities can limit the thera-
peutic potential of iPSCs and may even pose safety risks,
such as tumorigenicity [491]. Researchers are actively
working on improving the efficiency and quality of iPSC
generation. Techniques such as the use of non-integrat-
ing reprogramming methods, optimization of culture
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conditions, and the development of novel reprogram-
ming factors are being explored to enhance the genera-
tion of high-quality iPSCs [492, 493]. However, further
research is needed to overcome these technical difficul-
ties and ensure the reliable production of iPSCs for can-
cer therapy. Another significant challenge in iPSC-based
cancer therapy lies in the regulatory and safety aspects
of using these cells in clinical settings [494]. iPSCs, being
a relatively new technology, pose unique regulatory chal-
lenges. The regulatory agencies need to establish clear
guidelines and standards for the production, characteri-
zation, and quality control of iPSCs for cancer treatment
[40]. Safety is also a crucial concern when using iPSCs
in cancer therapy. As mentioned earlier, iPSCs can har-
bor genomic abnormalities that could potentially lead to
tumorigenicity. Rigorous safety assessments and moni-
toring protocols should be implemented to minimize the
risk of adverse events and ensure patient safety [495].
The use of iPSCs in cancer therapy raises important ethi-
cal and legal concerns that need to be carefully addressed
[496]. The generation and manipulation of iPSCs involve
the use of human embryos or adult somatic cells, which
raises ethical questions regarding the source of cells and
the potential destruction of embryos [497]. To navigate
these ethical challenges, researchers and policymakers
must engage in comprehensive discussions and establish
clear guidelines regarding the sources of cells, informed
consent, and the potential uses of iPSCs in cancer ther-
apy [497]. Striking a balance between scientific advance-
ment and ethical considerations is crucial to ensure the
responsible and ethical use of iPSCs in cancer treatment.
In addition to the ethical concerns related to the source
of cells, there are broader ethical and legal concerns sur-
rounding the use of iPSCs in cancer therapy. These con-
cerns include issues of privacy, consent, and potential
commercial exploitation of iPSC technology [498]. The
use of iPSCs for personalized cancer therapy requires
the collection and storage of patients’ biological mate-
rials, including somatic cells. Ensuring the privacy and
confidentiality of patients’ data is essential to maintain
trust in the healthcare system. Moreover, there is a need
to address potential conflicts of interest and ensure equi-
table access to iPSC-based cancer therapies. Policies and
regulations should be in place to prevent the commercial
exploitation of iPSC technology and to promote fair and
affordable access to these treatments. Generating high-
quality iPSCs remains a technical challenge in iPSC-
based cancer therapy [499]. The reprogramming process
can be affected by various factors, such as the age and
quality of the somatic cells used as the starting mate-
rial [500]. Researchers have observed that iPSCs derived
from older donors or from cells with genetic abnormali-
ties tend to have a higher risk of genomic instability and
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lower differentiation potential [501]. Overcoming these
technical difficulties is crucial to ensure the genera-
tion of iPSCs that are suitable for use in cancer therapy.
Efforts are underway to improve the efficiency and reli-
ability of iPSC generation. Researchers are exploring
different reprogramming methods, including the use
of small molecules and modified RNA, to enhance the
efficiency and quality of iPSC production [502, 503].
Additionally, advancements in gene editing technolo-
gies such as CRISPR-Cas9 are being utilized to correct
genomic abnormalities in iPSCs, further improving their
quality and safety [504]. Regulatory and safety issues are
significant challenges that need to be addressed when
considering the use of iPSCs in cancer treatment. The
regulatory landscape for iPSC-based therapies is still
evolving, and regulatory agencies are actively working to
establish guidelines and standards [505]. Safety concerns
related to iPSC-based cancer therapy include the poten-
tial for tumor formation and immune rejection [506,
507]. To mitigate these risks, extensive preclinical stud-
ies and rigorous safety assessments are required before
iPSC-based therapies can progress to clinical trials [508].
Long-term monitoring and follow-up of patients receiv-
ing iPSC-based treatments are also necessary to evalu-
ate their safety and efficacy [507]. Moreover, regulatory
agencies need to establish clear criteria for the charac-
terization and quality control of iPSCs used in cancer
therapy [509]. This includes ensuring that the iPSCs have
the desired pluripotent properties and are free from
genetic abnormalities and contaminants [510]. While
iPSC-based cancer therapy holds immense promise,
there are several limitations and challenges that need to
be overcome. Technical difficulties in generating high-
quality iPSCs and addressing regulatory, safety, ethical,
and legal concerns are crucial areas that require further
research and development [511]. Collaboration among
researchers, policymakers, and regulatory agencies is
essential to navigate these challenges and unlock the
full potential of iPSC-based cancer therapy, ultimately
leading to improved patient outcomes and personalized
treatments in the future.

The biogenesis of cancer

Cancer is a multistep disease that is characterized by
continuous and excessive cell division. Globally, it is the
second leading cause of death [16, 17]. Cancer is caused
by genetic mutations and epigenetic alterations. Dur-
ing the initial stages of cancer development, normal
cells undergo transformation toward a neoplastic state,
acquiring new capabilities such as unlimited replica-
tive potential, resistance to cell death, and stimulation of
angiogenesis. Biogenesis refers to the process by which
normal cells become cancerous [18]. This article will
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explore the various aspects of tumorigenesis, includ-
ing the cancer cell-of-origin hypothesis, the interplay
between genetics, epigenetics, and environmental fac-
tors, and the role of stem cells in tumorigenesis.

Overview of tumorigenesis

During the past 20 years, we have gained a great deal
of knowledge about how various cancers develop at the
molecular and cellular levels [19]. Variability in response
to anti-cancer drugs among cancer patients can be elu-
cidated by genetic molecular features such as muta-
tions and copy number changes, and DNA methylation
[20]. In addition to improving our understanding of this
process, identifying genes and pathways involved will
also help us to develop new therapeutic targets [21]. In
cancer, chromosomal changes and genes are disrupted
through genomic approaches. It is recognized that tum-
origenesis is a complex process that involves progres-
sive transformations triggered by multiple factors and
it is regulated by both oncogenes and tumor suppressor
genes. Several growth-promoting and growth-restricting
mechanisms regulate the cell cycle which is crucial for
proper division and propagation. A disruption of this
regulation may lead to uncontrolled proliferation and
genomic instability, which may trigger the development
of cancer [22]. Activation of oncogenes leads to tumori-
genesis, which controls cell proliferation and apoptosis.
They can be activated by structural alterations result-
ing from mutation or gene fusion. Additionally, tumor
suppressor genes (TSG) encode proteins that regu-
late cell proliferation negatively. They have included in
two classes: the “caretakers” of the genome (or Type I),
which are DNA repair genes that protect the genome
from mutations (XPB, MSH2, etc.), and the gatekeepers
(or Type II), which avert cancer through direct control
of cell growth (p53, p16, etc.).The inactivation of tumor
suppressor genes by loss or mutation is a vital step for
the development of tumors [23]. Besides genetic altera-
tions, epigenetic mechanisms contribute to the devel-
opment of malignant phenotypes, according to growing
evidence [24]. The study of epigenetics, which is dynamic
and susceptible to environmental factors, is concerned
with mechanisms that change gene expression without
altering the primary DNA sequence. Epigenetic pro-
cesses are heritable and reversible and consist of changes
in DNA methylation, histone modifications, small non-
coding microRNAs (miRNA), and nucleosome remod-
eling [25]. The alteration of cellular methylation status
by a specific methyltransferase might explain the dif-
ferences in the probability of malignant transformation
[26]. Tumor cells in different tissue with a wide range
of patterns of histone modification, genome-wide or in
individual genes, demonstrate the presence of epigenetic
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heterogeneity at a cellular level [27]. The combined
action of multiple epigenetic factors results in tumori-
genesis. For example, the repression of tumor suppressor
genes is caused by the methylation of DNA CpG islands
with hypoacetylated and hypermethylated histones
[28]. Several hallmarks of epigenetic events have been
identified during gene silencing, including histone H3
and H4 hypoacetylation, histone H3K9 methylation, and
cytosine methylation [29].

Overview of the cancer cell-of-origin hypothesis

The cancer cell-of-origin hypothesis is a fundamental
concept in cancer research that aims to identify the spe-
cific type of cell from which a tumor originates [512].
This hypothesis suggests that certain cancers arise from a
small subset of cells within a tissue or organ that possess
unique properties, enabling them to acquire the genetic
and epigenetic alterations necessary for tumor initiation
and progression [513]. According to recent studies pub-
lished in renowned scientific journals, researchers have
made significant progress in elucidating the origins of
various types of cancer [512]. Some studies focused on
breast cancer, revealing that a small population of mam-
mary stem cells, which normally aid in the maintenance
and repair of breast tissue, can undergo genetic muta-
tions that transform them into cancer-initiating cells.
These findings support the cancer cell-of-origin hypoth-
esis, highlighting the importance of targeting these spe-
cific cells for effective treatment strategies [514]. Another
study investigated the origins of brain tumors, specifi-
cally glioblastoma, one of the most aggressive and lethal
forms of brain cancer [515]. By analyzing human brain
tissue samples and using advanced genetic sequencing
techniques, scientists identified a subset of neural stem
cells as the likely cell-of-origin for glioblastoma. These
cells possess the ability to self-renew and differentiate
into various types of brain cells, making them suscepti-
ble to acquiring oncogenic mutations that lead to tumor
formation [514]. In addition to breast and brain can-
cer, the cancer cell-of-origin hypothesis has also been
explored in other malignancies [516]. Research on colo-
rectal cancer has suggested that a small population of
intestinal stem cells may give rise to the development
of adenomas, the precursor lesions of colorectal cancer
[517]. Similarly, in skin cancer, studies have implicated
epidermal stem cells as the cell-of-origin for various
types of skin tumors, including basal cell carcinoma and
squamous cell carcinoma [518]. Understanding the cell-
of-origin for different cancers is not only crucial for
unraveling the molecular mechanisms underlying tumor
development but also has significant implications for
personalized medicine and targeted therapies [519]. By
identifying and characterizing the unique properties of



Chehelgerdi et al. Molecular Cancer ~ (2023) 22:189

cancer-initiating cells, researchers can develop strate-
gies to specifically target and eliminate these cells, thus
preventing tumor recurrence and improving patient
outcomes [518]. Advancements in single-cell sequenc-
ing technologies have played a pivotal role in advancing
our understanding of the cancer cell-of-origin hypoth-
esis. These cutting-edge techniques enable researchers
to analyze individual cells within a tumor and decipher
their genomic and epigenomic landscapes [520]. By
comparing the genetic profiles of cancer-initiating cells
with their normal counterparts, scientists can identify
key genetic alterations that drive tumor initiation and
progression [521]. Moreover, the cancer cell-of-origin
hypothesis has prompted further investigation into the
role of the tumor microenvironment in tumor develop-
ment [521]. Emerging evidence suggests that interactions
between cancer-initiating cells and their surrounding
microenvironment, including immune cells, fibroblasts,
and blood vessels, play a critical role in promoting tumor
growth and metastasis [522]. Targeting these interac-
tions may provide novel therapeutic opportunities for
cancer treatment. The cancer cell-of-origin hypothesis
has revolutionized our understanding of tumor initiation
and progression [523]. By identifying the specific cells
from which cancers originate, researchers have made
significant strides in deciphering the underlying mecha-
nisms of various malignancies. This knowledge has paved
the way for the development of personalized medicine
approaches that target cancer-initiating cells, offering
new hope for improved treatment outcomes [524]. Con-
tinued research in this field holds promise for further
advancements in cancer prevention, diagnosis, and ther-
apy, ultimately leading to better patient care and survival
rates [525].

The relationship between cell-of-origin and cancer
stem cells is a fundamental aspect of cancer biology.
While the cell-of-origin initiates the oncogenic process,
CSCs sustain and drive tumor growth, metastasis, and
treatment resistance [512]. Recognizing the roles and
characteristics of both cell types is vital for advancing
our understanding of cancer and developing more pre-
cise and effective treatments. Cell-of-origin refers to the
normal cell type from which cancer originates within the
body [525]. Cancer typically arises when these normal
cells accumulate genetic mutations or epigenetic changes
that lead to uncontrolled growth and the development of
a malignant tumor. The specific cell-of-origin can vary
depending on the type of cancer and the tissue or organ
in which it develops [521]. For instance, in lung cancer,
the cell-of-origin may be a normal lung epithelial cell,
while in breast cancer, it could be a mammary gland cell.
The cell-of-origin plays a crucial role in shaping the char-
acteristics of the resulting cancer, including its growth
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patterns and response to treatment. Cancer stem cells
(CSCs), on the other hand, represent a specialized sub-
set of cells within a tumor [526]. These cells are distin-
guished by their unique ability to self-renew and give rise
to various cell types found within the tumor [525]. CSCs
are thought to derive from either a small population of
cancer cells that acquire additional mutations or from
normal stem cells within the tissue that undergo dediffer-
entiation. They are often found at the apex of the tumor
hierarchy and are responsible for driving tumor growth,
initiating new tumors (tumor initiation), promoting
metastasis, and conferring resistance to conventional
cancer therapies [526]. One of the critical distinctions
between cell-of-origin and CSCs lies in their roles in tum-
origenesis [512]. The cell-of-origin is the initial cell that
undergoes oncogenic events, leading to the formation of
a cancerous lesion. In contrast, CSCs are responsible for
the long-term maintenance of the tumor, playing a cen-
tral role in its sustained growth and progression. Because
CSCs possess self-renewal abilities and are highly resist-
ant to treatment, they are often the culprits behind can-
cer recurrence after initial therapy [526]. Understanding
the clinical implications of the cell-of-origin and CSCs
is essential for cancer research and treatment strategies.
Identifying the cell-of-origin provides insights into the
tumor’s characteristics and behavior, helping clinicians
tailor treatment approaches. For example, knowledge of
the cell-of-origin can inform decisions about targeted
therapies or treatments designed to eliminate the bulk
of tumor cells derived from the cell-of-origin. In con-
trast, targeting CSCs has become a focal point in cancer
therapy development [525]. Strategies aimed at eradicat-
ing or inhibiting CSCs are crucial for preventing tumor
relapse and improving long-term treatment outcomes. By
selectively targeting these stem-like cells within a tumor,
researchers and clinicians hope to undermine the tumor’s
ability to regenerate and resist treatment, ultimately lead-
ing to more effective cancer therapies [521].

Understanding the interplay between genetics,

epigenetics and environment in tumorigenesis

There is increasingly evidence supporting that genetic
and epigenetic mechanisms do not operate separately
during tumorigenesis, they work together and are inter-
twined and take advantage of each other. Additionally,
epigenetic changes may occur due to chance or as a result
of environmental factors [30]. Ultimately, gene expression
and abnormal phenotypes influenced by genetics, epige-
netics and environment [31]. Although the genetic road
to cancer or genome instability is relatively straightfor-
ward which occurred by mutation of tumor suppressors
and/or oncogenes causes either a loss or gain of function
and abnormal expression. Epigenetic pathways determine
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tumorigenesis through integrating numerous epigenetic
variations, which are much more complex [31]. Epige-
netics is based on the idea that interaction between the
environment and the epigenome can alter phenotypes
and contribute to disease susceptibility. It is noted that
these changes could be transmitted down through gen-
erations [32]. Epigenetics is susceptible to environmental
stressors. For example exposure to metals, chemical and
xenobiotic compounds, air pollution, benzene, organic
pollutants, and radiation can induce mutations that con-
tribute to the development of cancer especially during
embryonic stages, environmental factors have a more
crucial impact on the genome and even can increase the
risk of cancer in F}, F, and F; generation [33]. The repres-
sion of tumor suppressor genes can also be induced by
unhealthy habits, diet and pharmacological agents apart
from chemical and physical environmental contributors.
Several studies have shown how diet and food availabil-
ity affect the epigenome in humans and how these epi-
genetic changes may be involved in several diseases in
adulthood. There is an association between folate intake
in the diet and epigenetic status in mammals [34] and
has been related to methylation changes in colon cancer
[35] and hyperhomocysteinemia [36]. Moreover, phar-
macological treatments including those used for epilepsy,
bipolar disorder, serious depression, migraine, and schiz-
ophrenia, complementary treatment for latent HIV infec-
tion can also induce genome-wide epigenetic changes
[37]. In this regard, it remains unknown what part of the
changes are caused by the interaction of the environ-
ment with the epigenome and what part are the result of
just genetics. In order to, further research should focus
on understanding the causes of these changes. Several of
these questions will be answered in the future by next-
generation technologies.

The role of stem cells in tumorigenesis

Stem cells have been used for over 30 years for cancer
treatment via tissue regeneration and as delivery vehi-
cles. Research communities have been directed towards
advancement in the field of cancer research following the
recent introduction of cancer stem cells as the backbone
of cancer development [7]. Stem cells are undifferentiated
and have the ability to self-renew and proliferate for longer
periods, as well as produce multiple types of cells [38]. In
a recent investigation led by Saha et al., the primary focus
was on the development of specially modified surfaces to
improve the cultivation of human pluripotent stem cells
(hPSCs) within a completely defined environment [527].
The study’s objective was to address the shortcomings
associated with traditional culture systems reliant on
feeder cells and establish a standardized and reproducible
platform for hPSC cultivation. Figure 9 underscores the
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crucial role of chemically optimized surfaces in fostering
the growth of more undifferentiated hPSCs compared to
substrates with feeder cells, underscoring the superior-
ity of these engineered surfaces. Figure 9 illustrates the
physical changes applied to the polystyrene substrates,
encompassing both chemical and geometrical modifi-
cations, which were pivotal in enhancing their perfor-
mance. To further advance the engineered surfaces, the
study employed computational modeling, as depicted in
Fig. 9, to simulate and predict cell behavior on substrates
featuring UV-patterned spots, aiding in the design and
enhancement of these surfaces. Figure 9 demonstrates
the successful long-term cultivation of stem cells on these
UV-patterned substrates, underscoring their suitability
for maintaining hPSCs in a healthy, undifferentiated state.
Additionally, Fig. 9 provides experimental findings and
visual proof supporting the effective reprogramming and
genetic modification of hPSCs utilizing the UV-patterned
substrates, highlighting their potential utility in disease
modeling and personalized medicine applications. Finally,
Fig. 9 illustrates the utilization of UV-patterned substrates
to facilitate the transfer of individual hPSCs, further
emphasizing the practical advantages offered by these
engineered surfaces. Oncogenes and anti-oncogenes play
a key role in initiation of cancer which is followed by the
conversion normal stem cells into cancer cells under cer-
tain environmental conditions [39]. In general, stem cells
reveal various levels of differentiation potential, start-
ing with totipotency, pluripotency, multipotency, oli-
gopotency and finally unipotency/monopotency [528].
The role of stem cells in tumorigenesis encompasses the
concept of Cancer Stem Cells (CSCs), which represent
a subset of cancer cells sharing characteristics with nor-
mal stem cells [247]. CSCs play a pivotal role in driving
uncontrolled tumor progression through their abilities in
self-renewal [528]. Although it’s worth noting that unlike
normal stem cells, not all CSCs exhibit pluripotent dif-
ferentiation potential, which refers to the capacity for dif-
ferentiation into all three germ layers [247]. Cancer stem
cells are hypothesized to cause metastasis and resistance
to therapy, as well as post-operative recurrences. As a
result, targeting CSCs may provide new treatments for
cancer patients [42]. Recently, many molecular mecha-
nisms have been elucidated that explain tumorigenesis
in cancer and stem cell self-renewal [43]. Abnormal acti-
vation of signaling pathways is involved in tumor patho-
genesis and plays critical roles in growth, progression,
and relapse of cancers. The following are signaling cas-
cades that are frequently dysregulated in cancer: Ras/Raf/
MEK/ERK (MAPK) as a major determinant in the con-
trol of proliferation, survival, and differentiation. And the
PTEN/PI3K/AKT/mTOR pathways. Activating mutations
of Ras and Raf frequently leading to activation of their
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Fig. 9 1 The comparison between the growth of undifferentiated human p\unpotent stem ceHs on chemically optimized substrates

and feeder-containing substrates. The figure includes multiple panels showing different aspects of the experiment. Panel A depicts a schematic
diagram of the UV treatment process, while panels B and C display XPS spectra indicating the surface chemical functionality of a polystyrene culture
dish before and after UV treatment. Phase-contrast and fluorescence images of transgenic Oct4-GFP hESCs on these surfaces are shown, with bright
green fluorescence indicating strong expression of the pluripotency marker Oct4. Panel D presents the relative number of hESC colonies on UVPS
(UV-treated polystyrene) compared to conventional TCPS (standard tissue culture polystyrene) on the seventh day after cell seeding. Panel E
demonstrates colony formation on virgin polystyrene treated with various UV doses, and the inset shows the prediction of colony numbers based
on a PLS model. In panel F, the PLS model is used to identify surface ions that either support or inhibit hESC colony formation based on ToF-SIMS
data. Panel G presents the number of adhered cells after 24 h of culture on UVPS coated with either human serum or recombinant human
vitronectin, along with integrin-blocking antibodies. The results show that blocking avB5 integrin reduces adhesion, while blocking 1 integrin

has minimal effect. Finally, panel H compares the number of undifferentiated Oct4-GFP-positive hESCs per well on UVPS and standard mouse
embryonic feeder (mEF)-containing substrates after seven days of culture. UVPS coated with vitronectin is represented by the red bar, while the gray
bar represents the mEF-containing substrates. The error bars in all panels indicate 95% confidence intervals, and the experiments were conducted
with a sample size of three. 2 The optimization of polystyrene substrates through chemical and geometrical modifications. Panel A provides

a schematic representation of the UV treatment process, which can be controlled spatially by inserting a photomask between the UV source

and the dish. An overlay of phase-contrast and fluorescent images shows transgenic Oct4-GFP hESC cultures on a UV-patterned polystyrene
substrate. The substrate, referred to as UV-Pattern, was coated with FBS (fetal bovine serum). Panel B presents a Time-of-Flight Secondary lon Mass
Spectrometry (ToF-SIMS) scan of the UVPS (UV-patterned polystyrene) surface after patterning with a photomask. The scan reveals the intensity

of all positive ions, with different colors indicating varying intensities. The profile demonstrates a resolution of 30 um between the points

where the ion intensity changes from 20 to 80%. The abbreviation “Max" stands for maximum. Panel C shows immunostaining of pluripotency
markers in cells cultured on the UV-Pattern described in Panel A. Panel D demonstrates the possibility of patterning human embryonic stem cells
(hESCs) or human-induced pluripotent stem cells (hiPSCs) using different geometries, suggesting versatility in the patterning process. Panel E
presents the results of the experiment, showing the number of undifferentiated Oct4-GFP-positive cells in each well after 7 days of culture. The
measurement was performed using flow cytometry on constant area patterns. Each well initially contained 15,000 cells, and the cumulative
UV-treated area per well remained the same across all patterns. Error bars represent the 95% confidence intervals, and the surfaces were precoated
with 20% bovine serum. The cells were seeded in the presence of a ROCK inhibitor for the first 8-12 h. 3 The results of simulating cell behavior

on substrates patterned with UV light. In the first part (A), snapshots of human embryonic stem cells (hESCs) or hiPSCs are shown on spots

with diameters of 300 and 1,400 um. These snapshots were taken during the simulation and demonstrate that the majority of cells aggregate
within 3 h, which is consistent with observations made during live imaging. The second part (B) presents the distribution of cells within each
aggregate as predicted by the cell migration model. This prediction is shown for two different patterned spot diameters: 300 pum and 1,400 um. It

is important to note that no ROCK inhibitor was present in the media during these simulations. Lastly, part (C) provides information

about the percentage of cells that exist as single cells, not paired or in colonies, as a function of cell density. When cells are seeded at a typical
density used in routine cell culture (60,000 cells per well in a 6-well plate), the data indicates that less than 0.01% of cells remain as single cells. 4 The
use of a UV-patterned substrate to facilitate long-term culture of cells. Panel A shows an overlay of phase-contrast and fluorescent images
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Fig.9 (continued)

of transgenic Oct4-GFP BGO1 hESC cultures on the UV-patterned substrate after 10 passages using collagenase dissociation. Panel B presents flow
cytometry data of cells after two consecutive passages on the UV-patterned substrate, indicating the relative fluorescent units (RFU) and maximum
(Max) values. The passage number (p) is also mentioned. Panel C displays immunostaining results for pluripotency markers in cells grown

on the UV-patterned substrate. Panel D exhibits the formation of teratomas in immunodeficient mice by cells cultured on the UV-patterned
substrate. Hematoxylin and eosin (H&E) staining of the teratoma reveals the presence of tissues representing all three germ layers. Panel E depicts
the number of undifferentiated Oct4-GFP-positive hESCs over three passages using accutase on the UV-patterned substrate (red) compared

to standard mouse embryonic feeder (mEF)-containing substrates (gray) when seeded with 24,000 cells per well of a six-well plate. The error bars
indicate 95% confidence intervals, and the high R2 coefficient of determination suggests a good fit to the exponential growth model. Panel F
shows flow cytometry data for pluripotency markers SSEA-4 and Tra-1-60 after more than 10 consecutive passages on the UV-patterned substrate
for two different hiPSC lines, P237.1 and P237.5. Collagenase passaging (Col) is mentioned. In the case of transgenic Oct4-GFP BGO1 hESCs passaged
on MEFs, only GFP-positive cells were analyzed for Tra-1-60 and SSEA-4 expression, excluding MEFs from the analysis. 5 The utilization

of UV-patterned substrates to facilitate the reprogramming and gene modification of human pluripotent stem cells. In panel A, phase-contrast
images display BGOT human embryonic stem cells (hESCs) on UV-patterned substrates with specific dimensions. These cells were subjected

to electroporation with CAAGS-GFP targeting and ZFN plasmids. Following electroporation, the cells were initially cultured in the presence of ROCK
inhibitor. A successful targeted clone was then transferred to mouse embryonic fibroblasts (mEFs) and exhibited a high level of green fluorescent
protein (GFP) expression after more than two months of culture. Panel B includes phase-contrast and immunostained images of “patient-237"
fibroblasts on UV-patterned polystyrene. These fibroblasts were infected with a modified version of the pHAGE-STEMCCA vector, which contains
loxP sites for Cre-mediated excision. The patterned surface was coated with human serum, enabling fibroblasts to adhere to the untreated areas

of the dish. Over a period of four weeks, the fibroblasts underwent morphological changes and formed colonies of hiPSCs on the UV-patterned
substrates. Panel C depicts the immunostaining of pluripotency markers in the patient-237 hiPSC line grown on the UV-patterned substrate. In
panel D, Southern blot analysis of genomic DNA from various patient-237 hiPSC lines is shown, focusing on the KIf4 gene. The analysis reveals
different bands representing the presence or absence of the reprogramming vector. The red-labeled cell lines indicate successful excision

of the reprogramming vector upon Cre-recombinase expression. The loss of specific viral KLF4 bands indicates the isolation of vector-free hiPSCs
through clonal selection. The accompanying bar graph illustrates the percentage of cells positive for pluripotency markers SSEA-4, TRA-1-60,

and TRA-1-81, as determined by flow cytometry in a vector-free patient-237 hiPSC line after two passages on the UV-patterned substrate. Error bars
represent the 95% confidence intervals based on three replicates. “Pos” denotes positive. Panel E showcases teratoma formation in immunodeficient
mice resulting from the injection of vector-free hiPSCs that were reprogrammed and cultured on the UV-patterned substrate. Hematoxylin

and eosin (H&E) staining of the teratoma reveals the presence of tissues representative of all three germ layers. 6 The use of a UV-patterned
substrate to facilitate the transfer of individual human pluripotent stem cells. In panel A, images show BGO1 human embryonic stem cells (hESCs)
cultured on the "UV-Pattern” substrate after 7 and 27 passages using single-cell accutase dissociation. The image at passage 7 contains a fluorescent
overlay indicating high expression of the Oct4-GFP marker. Panel B displays patient-237 hiPSCs at passage 27, with immunostaining indicating
expression of the pluripotency marker Nanog (green) in all cell nuclei and high expression of SSEA-4 (red). The surfaces of the substrates were
coated with 20% bovine serum, and cells were seeded in the presence of a ROCK inhibitor for the initial 8-12 h. Panel C presents flow cytometry
results of BGO1 hESCs with the Oct4-GFP reporter after three consecutive passages on the UV-Pattern substrate using accutase. Panel D shows flow
cytometry results for pluripotency markers SSEA-4 and Tra-1-60 in cells from five different cell lines after more than 10 consecutive passages

on the UV-Pattern substrate. The letter "A” denotes accutase-mediated passaging. In the case of transgenic Oct4-GFP BGO1 cells passaged on mouse
embryonic fibroblasts (MEFs), only GFP-positive cells were analyzed for Tra-1-60 and SSEA-4 expression, excluding mEFs from the analysis. Panel E

demonstrates that patient-237 hiPSCs propagated on the UV-Pattern substrate for over 5 months (27 passages) maintained a normal 46XY
karyotype. Lastly, panel F provides the design parameters used to develop the UV-treated culture system for human pluripotent stem cells.

Reprinted from [527] with permission from the PNAS

downstream targets MEK1/2 and ERK1/2 [44]. Similarly,
in the PI3K/AKT/mTOR pathway, mutation/inactivation
of PTEN resulting in activation of PI3K and its down-
stream targets AKT and mTOR [45]. Wnt signaling plays
a crucial role in regulating endogenous stem cells as well
as tissue development and homeostasis. Cancer stem cells
are influenced by abnormal Wnt signaling, which directly
contributes to the development and maintenance of many
cancers [529]. The Hedgehog (Hh) signaling pathway with
three proteins which is involved in activation (Hedgehog
(Hh) ligand, Patched (Ptch) and Smoothened (Smo)) is a
conserved evolutionary pathway that transmits signals
from the cell membrane to the nucleus. It is critical for the
regeneration of tissue and is normally inactive or poorly
active. The Hh signaling pathway may be involved in
various stages of carcinogenesis, as well as in early tumor
stages and metastatic tumors [47]. Besides being masses

of malignant cells, tumorigenesis is also affected by
changes in the tumor microenvironment (TME). Tumor
microenvironments are formed by interactions between
malignant and non-transformed cells like endothelial and
immune cells, MSCs, and fibroblast-like stroma cells, the
tumor vasculature and lymphatics, as well as fibroblasts,
pericytes and sometimes adipocytes [48]. Essentially, this
microenvironment contribute to maintain tumor phe-
notypes by triggering self-renewal of CSCs, stimulating
angiogenesis, and recruiting cells that produce additional
factors that drive metastasis and invasiveness of tumor
cells [49]. Over several decades, cancer biomarkers like
long non-coding RNAs as one of the most important
regulatory factors can be used effectively for diagnosis,
therapy, and prognosis via their role in identification can-
cer stem cells and their related microenvironments. They
are detectable in liquid biopsy samples such as plasma,
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saliva, and urine [50]. In both developed and develop-
ing countries, cancer remains a significant economic and
social burden. It is well known that cancer contributes
to increased mortality, poor health, and high healthcare
costs in the long run. Therefore, further research is imper-
ative to fully understand the mechanisms underlying tum-
origenesis and to develop novel therapeutic strategies to
promote the health and well-being of cancer patients [51].

The iPSCs as a model for tumorigenesis

The iPSCs have emerged as a valuable model for study-
ing tumorigenesis. Their ability to differentiate into can-
cer cells, their genetic fidelity to patient-derived cells,
and their capacity to recapitulate tumorigenic properties
make them an ideal tool for investigating the complex
processes underlying tumor initiation, progression, and
response to therapy. iPSCs offer a unique opportunity to
study the molecular and genetic changes occurring dur-
ing tumorigenesis, providing insights into the key fac-
tors driving tumor development [530]. As research in
this field advances, iPSCs hold great promise for advanc-
ing our understanding of cancer biology and paving the
way for personalized and targeted cancer therapies [531].
Moreover, iPSCs offer the advantage of being able to
model the early stages of tumorigenesis, which is often
challenging to study using traditional cancer cell mod-
els [532]. By inducing the differentiation of iPSCs into
specific cell lineages relevant to the type of cancer being
investigated, researchers can gain insights into the initial
cellular events that lead to tumor formation [532]. This
includes the acquisition of cancer-specific mutations,
epigenetic modifications, and alterations in signaling
pathways [533]. iPSCs can provide a time-resolved snap-
shot of the molecular changes occurring during early car-
cinogenesis, offering a valuable tool for identifying novel
biomarkers and potential therapeutic targets [534, 535].
In addition to their potential in studying cancer initia-
tion, iPSCs can be employed to investigate the dynamic
nature of tumor progression[536]. By generating iPSC-
derived cancer cells at different stages of tumor develop-
ment, researchers can observe and analyze the molecular
changes that occur as the cancer progresses [537]. This
longitudinal approach enables the identification of key
genetic and epigenetic events driving tumor growth,
invasion, and metastasis [538]. Furthermore, iPSCs can
be used to model the heterogeneity observed within
tumors, allowing researchers to study the subpopulations
of cancer cells with distinct properties, such as stem-like
cells or cells with drug-resistant phenotypes [539]. This
information is crucial for developing targeted therapies
that can effectively eradicate different cancer cell popu-
lations. The use of iPSCs in tumorigenesis research also
extends to the field of drug discovery and personalized
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medicine [540]. iPSCs derived from patients with specific
types of cancer can be employed in drug screening assays
to evaluate the efficacy and toxicity of potential therapeu-
tic agents [541]. This approach holds promise for devel-
oping personalized treatment strategies, as iPSCs can
be used to predict patient-specific responses to different
drugs. By analyzing the drug response profiles of iPSC-
derived cancer cells, researchers can identify individual-
ized treatment regimens tailored to each patient’s unique
genetic and cellular characteristics, ultimately improving
treatment outcomes [540]. While the potential of iPSCs
in tumorigenesis research is immense, several challenges
and limitations need to be addressed. One challenge
is the efficient and reliable generation of iPSCs from
patient samples, as this process can be time-consuming
and may have variable success rates. Additionally, ensur-
ing the faithful differentiation of iPSCs into the desired
cancer cell types can be complex, requiring the optimi-
zation of differentiation protocols [542]. Furthermore,
the long-term stability and genetic integrity of iPSCs and
their differentiated derivatives need to be carefully moni-
tored to avoid unintended genetic or epigenetic changes
that could impact the reliability of the model [542]. The
iPSCs represent a powerful and versatile model for study-
ing tumorigenesis. Their ability to recapitulate tumo-
rigenic properties, investigate molecular and genetic
changes, and model the heterogeneity of tumors makes
them a valuable tool for advancing our understanding
of cancer development and progression. Furthermore,
iPSCs have the potential to revolutionize drug discovery
and personalized medicine by enabling the development
of tailored therapies based on individual patient char-
acteristics[543]. As researchers continue to overcome
challenges and refine techniques in iPSC research, the
promising potential of iPSCs for tumorigenesis and ther-
apy will be further realized, paving the way for improved
diagnostics, treatments, and patient outcomes in the field
of oncology.

The potential of iPSCs to study tumorigenesis

iPSCs have emerged as a promising resource for delving
into the origins of cancer, a multifaceted ailment stem-
ming from a combination of genetic, epigenetic, and
environmental influences [532].

Tumorigenesis is a complex series of events where
changes occur in how genes are expressed, how proteins
function, and how cells behave, all culminating in the for-
mation of cancerous tumors [536]. While there have been
notable advancements in the field of cancer research, sev-
eral facets of how tumors develop are still not fully com-
prehended. This lack of understanding presents
difficulties in crafting successful treatments for various
cancer forms. iPSCs, on the other hand, originate from
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mature somatic cells that have undergone reprogram-
ming to attain a pluripotent state, enabling them to trans-
form into any cell type within the body [539]. The
capability to create iPSCs from individuals afflicted with
diverse forms of cancer offers scientists a potent means
to investigate the molecular alterations that transpire
during the development of tumors. iPSCs can be trans-
formed into various cell categories pertinent to cancer,
including cancer stem cells, which are thought to play a
pivotal role in the onset and advancement of numerous
cancer types [534, 535]. Analyzing the actions of cancer
stem cells that originate from iPSCs allows scientists to
uncover the fundamental processes driving the onset and
advancement of cancer. Beyond serving as a distinct
method for investigating how tumors form, iPSCs can
serve as valuable tools for screening potential drugs and
tailoring medical treatments. iPSCs can be generated
from individuals with various cancer types, facilitating
the creation of customized cancer models specific to each
patient [536]. These models can be used to screen poten-
tial therapies, identify drugs that are most effective in
specific patient populations, and develop personalized
treatment plans. This approach has the potential to sig-
nificantly improve cancer treatment outcomes by tailor-
ing therapies to individual patients based on their unique
genetic makeup and cancer characteristics [532]. Another
potential application of iPSCs in cancer research is the
development of immunotherapies. Inmunotherapies are
a promising approach to cancer treatment that involves
harnessing the patient’s immune system to fight cancer
[539]. Nonetheless, the difficulty in creating successful
immunotherapies arises from the intricate interplay
between cancer cells and the immune system. iPSCs offer
a potential solution by allowing for the creation of
patient-specific immune cells, facilitating the develop-
ment of customized immunotherapeutic approaches
[536]. These therapies have the potential to be more
effective and have fewer side effects than current
approaches to cancer treatment. Despite the potential of
iPSCs in cancer research, there are still many challenges
that must be addressed [532]. One of the main challenges
is the tumorigenic properties of iPSCs. iPSCs have been
shown to have a higher propensity to form tumors than
other types of stem cells, which could limit their use in
cancer research and therapy [536]. However, recent
advances in iPSC technology have led to the development
of safer and more efficient methods for generating iPSCs,
which could help to address this challenge. Another chal-
lenge is the ethical and legal considerations surrounding
iPSC research [532]. The use of human embryonic stem
cells in research has been controversial due to ethical
concerns, but iPSCs offer a viable alternative that avoids
these issues. However, there are still ethical and legal
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considerations that must be addressed, such as ensuring
that iPSC research is conducted in an ethical and respon-
sible manner and that patient privacy is protected [536].
In a recent investigations provided the study delved into
the molecular and functional similarities between differ-
entiated cells originating from induced pluripotent stem
cells (iPSCs) and embryonic stem cells derived through
somatic cell nuclear transfer (SCNT), known as nt-ESCs
[544]. The research compared the differentiation pro-
cesses and traits of cardiomyocytes (PSC-CMs) and
endothelial cells (PSC-ECs) derived from genetically
matched sets of iPSCs, nt-ESCs, and in vitro fertilization
embryo-derived ESCs (IVF-ESCs). The study revealed
that iPSC-derived cells displayed comparable lineage
gene expression, cellular diversity, physiological charac-
teristics, and metabolic functions when compared to
their corresponding nt-ESC counterparts. Figure 10 illus-
trates the cardiac differentiation process across various
human stem cell types, emphasizing the role of iPSCs.
Additionally, Fig. 10 demonstrates the generation of
endothelial cells from different pluripotent stem cell
sources. The RNA-seq analysis results in Fig. 10 offered
insights into the global gene expression profiles of PSCs,
PSC-CMs, and PSC-ECs. Furthermore, Fig. 10 provides a
comprehensive examination of DNA methylation pat-
terns in these cell types using RRBS-seq. These findings
suggest that iPSCs can effectively replace nt-ESCs in gen-
erating patient-specific differentiated cells, facilitating
disease modeling and preclinical drug testing. Figure 10
identifies consistent differentially methylated regions in
undifferentiated PSCs and fully differentiated cells, while
Fig. 10 illustrates the impact of doxorubicin-induced tox-
icity on CMs derived from various sources, including
iPSCs, nt-ESCs, and IVF-ESCs. These results underscore
the potential of iPSCs in regenerative medicine and
emphasize the significance of considering genetic com-
position when assessing the molecular and functional
attributes of differentiated cells. The iPSCs offer signifi-
cant potential for studying tumorigenesis, developing
new cancer therapies, and improving patient outcomes
[545, 546]. The ability to generate iPSCs from patients
with different types of cancer provides a powerful tool for
studying the molecular changes that occur during cancer
initiation and progression. iPSCs can also be used for
drug screening, personalized medicine, and the develop-
ment of immunotherapies [24]. While there are still chal-
lenges that must be addressed, the potential benefits of
iPSC research in tumorigenesis are significant and war-
rant continued investment in this field [543]. Moreover,
iPSCs hold promise for early detection of cancer. Detect-
ing cancer at an early stage is crucial for improving
patient outcomes, as it allows for timely intervention and
treatment. iPSCs can be utilized to create disease models
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Fig. 10 1 The process of differentiating human iPSCs, nuclear transfer embryonic stem cells (nt-ESCs), and in vitro fertilization embryonic stem cells
(IVF-ESCs) into cardiac cells. Panel (A) presents an overview of the experimental design used in the study. Panel (B) illustrates a monolayer cardiac
differentiation protocol facilitated by small molecules. Panel (C) shows the sarcomere structures of pluripotent stem cell-derived cardiac cells
(PSC-CMs) and rat adult cardiac cells, stained for cardiac troponin T (green), a-actinin (red), and the nuclei counterstained with DAPI (blue). The scale
bars represent 25 um, and the magnification is 600 x . Panel (D) quantifies the efficiency of cardiac differentiation by calculating the percentage

of cells positive for TNNT2 (cardiac troponin T) using flow cytometry. Panel (E) compares the expression of TNNT2 in iPSC-derived cardiac cells
(iPSC-CMs), nt-ESC-derived cardiac cells (nt-ESC-CMs), and IVF-ESC-derived cardiac cells (IVF-ESC-CMs). Panels (F-H) depict the heterogeneity

of cardiac cells derived from different types of pluripotent stem cells using single-cell quantitative polymerase chain reaction (qPCR) analysis. Blue,
red, and green colors represent iPSC-CMs, nt-ESC-CMs, and IVF-ESC-CMss, respectively. Heavy and light colors indicate two different cell lines

within each category. Each row represents a single cell, while each column represents a single gene. The color key applies to panels F-H. Statistical
analysis using one-way ANOVA was performed, and the error bars represent the standard error of the mean (SEM). 2 The generation of endothelial
cells (ECs) from various types of pluripotent stem cells (PSCs) using different methods. In (A), a protocol involving small molecules is shown

for inducing endothelial differentiation. The effectiveness of the differentiation process is evaluated in (B) by determining the percentage

of CD31 +cells at day 12 of differentiation. Representative immunofluorescence staining of PSC-derived ECs using CD31 and CD144 antibodies

is presented in (C), with the nuclei counterstained using DAPI. (D) compares the maintenance of endothelial characteristics among induced
pluripotent stem cell-derived ECs (iPSC-ECs), nuclear transfer embryonic stem cell-derived ECs (nt-ESC-ECs), and in vitro fertilization-derived ECs
(IVF-ESC-ECs) by measuring the percentage of CD144 + cells. No significant differences were observed among these cell types. The expression levels
of EC-specific marker genes, PECAM1 (E), CDHS5 (F), and NOS3 (G), were similar in iPSC-ECs, nt-ESC-ECs, and IVF-ESC-ECs. The production of nitric
oxide by PSC-ECs and human umbilical vein endothelial cells (HUVECs) is shown in (H), while (I) presents the average number of branches in tubes
formed by PSC-ECs. 3 The results obtained from analyzing the global gene-expression profiles of pluripotent stem cells (PSCs), PSC-derived
cardiomyocytes (PSC-CMs), and PSC-derived endothelial cells (PSC-ECs) using RNA sequencing (RNA-seq). A) The differentially expressed genes
(DEGs) between PSCs, PSC-CMs, and PSC-ECs were clustered using unsupervised hierarchical clustering (with a statistical significance threshold

of <0.1). B) PSC-ECs were grouped together based on the specific reprogramming approaches used to generate the iPSCs (i12C, i12J),
non-transgenic embryonic stem cells (nt-ESCs) (NT1, NT2), and in vitro fertilization-derived embryonic stem cells (IVF-ESCs) (ESO7, ESO8) (with

a statistical significance threshold of g <0.1). C) The number of DEGs identified in PSCs, PSC-CMs, and PSC-ECs due to the different reprogramming
approaches is shown, with overlapping regions indicating the number of consistent DEGs shared among the different cell types. D) Gene ontology
(GO) analysis was performed to identify enriched functional terms for the DEGs between iPSC-CMs, nt-ESC-CMs, and IVF-ESC-CMs (with a statistical
significance threshold of P <0.05). E) GO terms associated with the DEGs in ECs derived from iPSCs, nt-ESCs, and IVF-ESCs were identified using GO
analysis (with a statistical significance threshold of P<0.05). 4 The results obtained from analyzing the global DNA methylome of pluripotent stem
cells (PSCs), PSC-derived cardiomyocytes (PSC-CMs), and PSC-derived endothelial cells (PSC-ECs) using a technique called RRBS-seq. A) This part
shows the percentages of different types of methylated cytosines (mCG, mCHG, and mCHH) among all observed 5-methylcytosines in PSCs,
PSC-CMs, and PSC-ECs.B) An unsupervised hierarchical clustering analysis is performed based on the global CpG methylation levels of PSCs,
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Fig. 10 (continued)

PSC-CMs, and PSC-ECs. The clustering groups include iPSCs, non-transgenic embryonic stem cells (nt-ESCs), in vitro fertilization-derived ESCs
(IVF-ESCs), and their respective differentiated cells (CMs and ECs). The height of the cluster trees represents the similarity or dissimilarity

between different objects and groups. C) The number of differentially methylated cytosines (DMCs) identified through pairwise comparisons

is depicted in this section. The identified DMCs have a statistical significance (g <0.01) and a methylation difference of at least 25%. D) Another
unsupervised hierarchical clustering analysis is conducted, but this time for differentially methylated regions (DMRs) in CpG islands (CGls)

across the genome in PSCs, PSC-CMs, and PSC-ECs. The DMRs shown here have a statistical significance (g<0.01) and amount to a total of 3,452. F)
Lastly, an unsupervised hierarchical clustering analysis is presented for 2,324 DMRs located in CGl shores (regions adjacent to CGls) in PSCs,
PSC-CMs, and PSC-ECs. These DMRs also have a statistical significance (g <0.01). 5 The identification of consistent differentially methylated regions
(DMRs) in undifferentiated pluripotent stem cells (PSCs) and fully differentiated cells. In panel A, 42 consistent DMRs within CpG islands (CGls) were
found in both PSCs and differentiated cells. Panel B shows 40 consistent DMRs located in CGl shores, which were either hypermethylated

or hypomethylated in in vitro fertilization (IVF) samples. Panel C provides the numbers of IVF-specific hypermethylated, IVF-specific hypomethylated,
and inter-individual DMRs persistently present in PSCs, PSC-derived cardiomyocytes (PSC-CMs), and PSC-derived endothelial cells (PSC-ECs). The
consistent DMRs specific to iPSCs were not found in CGl shores. Panels D and E represent IVF-specific consistent CGI-DMRs identified

in undifferentiated PSCs and differentiated cells. Panels F and G demonstrate that the methylation levels of iPSC-specific consistent CGI-DMRs

in iPSCs were higher compared to those in non-transgenic embryonic stem cells (nt-ESCs) and IVF-ESCs. Panel H shows the results of Spearman’s
correlation analysis, indicating a significant correlation between consistent promoter DMRs and the mRNA abundance of the associated genes
(P<2.2e—16).6 The results of a study examining the toxic effects of doxorubicin on cardiomyocytes (CMs) derived from iPSCs, non-transgenic
embryonic stem cells (nt-ESCs), and in vitro fertilization-derived ESCs (IVF-ESCs). Panel (A) shows the dose-dependent impact of doxorubicin

on the viability of PSC-CMs. The viability was measured using a Prestoblue cell viability assay, and the results indicate that as the dose of doxorubicin
increases, the viability of PSC-CMs decreases. The values were normalized to the viability at 0 pM doxorubicin. Panel (B) displays the effect

of doxorubicin treatment on the production of ATP in PSC-CMs. ATP production was measured using a CellTiter-Glo assay, and the data suggests
that doxorubicin treatment negatively affects ATP production in PSC-CMs. Panel (C) demonstrates the assessment of cellular apoptosis in PSC-CMs
after doxorubicin treatment. A luminescent Caspase 3/7 assay was used to measure apoptosis, and the results indicate that doxorubicin treatment
leads to increased cellular apoptosis in PSC-CMs. Panel (D) reveals that the viability of PSC-CMs is not significantly affected after 24 h of doxorubicin

treatment. Panel (E) presents the detection of whole-cell reactive oxygen species (ROS), specifically hydrogen peroxide (H202), in PSC-CMs

after different doses of doxorubicin treatment for 24 h. The data suggests that doxorubicin administration leads to an increase in ROS levels

in PSC-CMs. Panel (F) shows the acute influence of doxorubicin treatment on the mitochondrial glutathione (GSH) concentration in PSC-CMs. The
GSH concentration was measured using a GSH-Glo Glutathione kit, and the results indicate that doxorubicin treatment has an impact

on the mitochondrial GSH concentration in PSC-CMs. Reprinted from [547] with permission from the PNAS

that mimic the early stages of cancer development, pro-
viding valuable insights into the molecular and cellular
changes that occur during this critical phase [545, 546].
By studying these models, researchers can identify bio-
markers and develop innovative diagnostic tools for the
early detection of cancer. This can lead to more effective
screening strategies and the ability to detect cancer
before it progresses to an advanced stage [543]. Further-
more, iPSCs offer a valuable platform for understanding
the role of epigenetic modifications in tumorigenesis.
Epigenetic alterations, such as DNA methylation and his-
tone modifications, play a significant role in the develop-
ment and progression of cancer. iPSCs can be
reprogrammed from patient-derived somatic cells, cap-
turing the epigenetic marks present in the original cells
[545, 546]. By comparing iPSCs derived from healthy
individuals and those with cancer, researchers can iden-
tify specific epigenetic modifications associated with
tumorigenesis. This knowledge can lead to the develop-
ment of targeted therapies aimed at reversing or inhibit-
ing these cancer-associated epigenetic changes [24].
Additionally, iPSCs provide an opportunity for studying
the tumor microenvironment and its influence on tumo-
rigenesis. The tumor microenvironment consists of vari-
ous cell types, including immune cells, fibroblasts, and

blood vessels, which interact with cancer cells and impact
tumor growth and metastasis. iPSCs can be differentiated
into these different cell types, allowing researchers to rec-
reate a simplified version of the tumor microenvironment
in the laboratory [543]. By studying the interactions
between iPSC-derived tumor cells and the surrounding
microenvironment, researchers can gain insights into the
complex signaling pathways and cellular crosstalk
involved in cancer progression. This knowledge can aid
in the development of novel therapeutic strategies target-
ing the tumor microenvironment [545, 546].

Comparison of iPSCs with traditional cancer cell models

The iPSCs have emerged as a promising tool in can-
cer research, providing unique advantages compared to
traditional cancer cell models [548]. Comparing iPSCs
to traditional cancer cell models highlights the unique
advantages and limitations of each model. While tradi-
tional cancer cell models have been critical in advancing
our understanding of cancer biology and drug discovery
[545, 546], iPSCs offer novel capabilities that enhance
our ability to study cancer development and progress
towards personalized medicine [24]. By leveraging the
strengths of both models, researchers can continue to
make progress in cancer research, ultimately leading
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to more effective therapies and improved patient out-
comes. While traditional cancer cell models, such as
established cancer cell lines and patient-derived xeno-
grafts (PDX), have been instrumental in advancing our
understanding of cancer biology and drug discovery,
iPSCs offer distinct benefits that enhance our ability to
study tumorigenesis and develop effective therapies [24,
549]. One key advantage of iPSCs is their ability to reca-
pitulate the genetic and epigenetic diversity observed in
tumors [550]. Traditional cancer cell models often repre-
sent a specific subtype or clone of cancer cells, limiting
their applicability to studying the heterogeneity seen in
clinical tumors [546]. In contrast, iPSCs can be gener-
ated from various somatic cells, including cancer cells,
allowing for the generation of iPSC lines that reflect the
genomic and epigenomic alterations found in individual
patients [551, 552]. This enables researchers to study the
effects of specific mutations and alterations on cancer
development and progression, offering valuable insights
into personalized medicine approaches [552]. Moreo-
ver, iPSCs have the unique ability to differentiate into
various cell types, including different lineages of cancer
cells. This feature allows researchers to generate diverse
populations of cancer cells that mirror the heterogeneity
within tumors [553]. By differentiating iPSCs into spe-
cific cancer cell lineages, researchers can investigate the
molecular changes associated with cancer progression
and metastasis as well as identifying potential therapeutic
targets [554]. In addition to their capacity for differen-
tiation, iPSCs can also be utilized to model early stages
of cancer development [125]. Traditional cancer cell
models often represent advanced stages of the disease,
limiting the ability to study the initial events leading to
cancer formation [543]. iPSCs, on the other hand, can be
reprogrammed from somatic cells obtained from healthy
individuals, allowing researchers to study the early
stages of carcinogenesis [554]. This provides a unique
opportunity to uncover the molecular changes and cel-
lular processes that drive cancer initiation, offering
insights into early detection and prevention strategies
[555]. Furthermore, iPSCs offer a powerful tool for drug
screening and personalized therapy development. Tradi-
tional cancer cell models have been extensively used in
high-throughput drug screening assays. However, these
models often fail to accurately predict drug responses
in patients, partly due to their limited representation of
patient-specific genetic backgrounds [556]. iPSCs, with
their ability to capture patient-specific genetic informa-
tion, can be utilized to generate personalized cancer cell
models. By deriving iPSCs from patient samples and dif-
ferentiating them into cancer cells, researchers can cre-
ate an individualized platform for testing drug efficacy
and toxicity, aiding in the development of personalized
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treatment regimens [548]. Despite these advantages,
there are challenges and limitations associated with
iPSCs compared to traditional cancer cell models. One
major challenge is the complexity and cost of iPSC gen-
eration and maintenance [33]. The reprogramming pro-
cess itself is time-consuming and requires specialized
expertise. Additionally, the long-term culture of iPSCs
can lead to genomic instability and alterations in their
epigenetic landscape, potentially affecting their suit-
ability as cancer models [542]. These technical chal-
lenges need to be addressed to ensure the reliability and
reproducibility of iPSC-based cancer research [542].
Moreover, ethical considerations surrounding the use of
iPSCs should be taken into account. The generation of
iPSCs involves the manipulation of human embryos or
the reprogramming of adult somatic cells, raising ethical
concerns and legal regulations. These ethical considera-
tions should be carefully addressed to ensure the respon-
sible and ethical use of iPSCs in cancer research and
therapy development [557]. In conclusion, iPSCs offer
distinct advantages when compared to traditional cancer
cell models, enabling researchers to study the complex-
ity and heterogeneity of tumors more effectively [549].
Their ability to recapitulate the genetic and epigenetic
diversity of tumors, differentiate into multiple cell line-
ages, model early stages of carcinogenesis, and generate
personalized cancer cell models makes iPSCs a powerful
tool in cancer research [125, 540]. However, challenges
and limitations such as technical difficulties and ethical
considerations need to be addressed to ensure the reli-
ability and ethical use of iPSCs in cancer research and
therapy development. Table 7 presents a comprehensive
overview of the advantages and limitations associated
with two prominent cancer research models: iPSCs and
traditional cancer cell models.

The use of iPSCs to study the tumorigenic properties

of cancer cells

The iPSCs have emerged as a powerful tool in the study of
cancer biology. With their ability to differentiate into vari-
ous cell types and self-renew, iPSCs offer a unique model
for investigating the tumorigenic properties of cancer cells
[559]. Tumorigenic properties refer to the ability of can-
cer cells to form tumors. Cancer cells can acquire these
properties through a variety of molecular changes, such
as alterations in gene expression, mutations, and changes
in signaling pathways [560]. By studying these proper-
ties, researchers can gain insights into the mechanisms
of cancer development and identify potential targets for
cancer therapy [561]. One of the challenges in studying
cancer is the heterogeneity of tumor cells. Cancer cells
are genetically and phenotypically diverse, even within the
same tumor [562]. This heterogeneity makes it difficult to
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accurately characterize the properties of cancer cells and
develop effective therapies [562]. iPSCs offer a solution
to this challenge by providing a homogeneous population
of cells with a known genetic background. iPSCs can be
generated from patient-derived somatic cells, including
cancer cells. These iPSCs retain the genetic and epigenetic
alterations found in the original cells and can be differen-
tiated into various cell types, including cancer cells [552].
By comparing the properties of iPSC-derived cancer cells
with those of the original cancer cells, researchers can
identify changes in gene expression and signaling path-
ways that contribute to tumorigenesis. One approach to
studying the tumorigenic properties of cancer cells using
iPSCs involves the generation of tumor organoids [563].
Tumor organoids are three-dimensional cultures of cells
that mimic the structure and function of a tumor [563].
iPSC-derived cancer cells can be used to generate tumor
organoids that closely resemble the original tumor [368].
These organoids can be used to study the properties of
the tumor, such as growth rate, invasion, and response
to therapy [564]. Another approach involves the use of
iPSC-derived cancer cells in xenograft models. Xenograft
models involve the transplantation of human cancer cells
into immunocompromised mice [565]. iPSC-derived can-
cer cells can be used to generate xenograft models that
closely resemble the original tumor [565]. These models
can be used to study the properties of the tumor in vivo,
such as growth rate, invasion, and response to therapy.
The use of iPSCs to study the tumorigenic properties of
cancer cells has several potential implications for cancer
therapy. By identifying the molecular changes that con-
tribute to tumorigenesis, researchers can develop targeted
therapies that selectively inhibit these changes [566].
iPSC-derived cancer cells can also be used to screen drugs
for their efficacy in killing cancer cells. This approach has
the potential to identify new drugs and drug combina-
tions that are effective in treating cancer [5]. Addition-
ally, iPSC-derived cancer cells can be used in personalized
medicine [24]. By generating iPSCs from patient-derived
cells and differentiating them into cancer cells, research-
ers can create a patient-specific model of the tumor. This
model can be used to identify the most effective treat-
ment for the patient, based on the properties of their
tumor [24]. Despite the potential benefits of using iPSCs
to study the tumorigenic properties of cancer cells, there
are several limitations and challenges. One challenge is
the cost and technical expertise required to generate and
maintain iPSCs [567]. Additionally, iPSC-derived cancer
cells may not fully capture the complexity of the original
tumor, as they may lack the microenvironmental cues
and interactions with other cell types that contribute to
tumorigenesis [490]. Another limitation is the potential
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for iPSC-derived cancer cells to form tumors when trans-
planted into mice [506]. iPSCs have been shown to have
tumorigenic potential, and this risk is heightened when
iPSCs are differentiated into cancer cells. Therefore, care-
ful consideration and rigorous characterization are nec-
essary when using iPSC-derived cancer cells in xenograft
models or transplantation experiments [506]. Despite
these challenges, the use of iPSCs to study the tumo-
rigenic properties of cancer cells holds great promise.
The ability to generate patient-specific models of tumors
allows for personalized approaches to cancer therapy [24].
By understanding the molecular changes that drive tumo-
rigenesis, researchers can develop targeted therapies that
are tailored to individual patients, increasing the chances
of successful treatment outcomes [24]. Furthermore, the
use of iPSC-derived cancer cells in drug screening can
accelerate the discovery and development of new cancer
therapies [568]. Traditional drug screening methods often
fail to accurately predict the response of human tumors
due to the limitations of using immortalized cancer cell
lines [569]. iPSC-derived cancer cells provide a more rep-
resentative model that better reflects the complexity and
heterogeneity of human tumors, increasing the likeli-
hood of identifying effective treatments [559]. In addition
to their potential in drug discovery, iPSCs offer valuable
insights into the early detection and prevention of cancer.
By studying the properties of iPSC-derived cancer cells,
researchers can identify biomarkers and molecular signa-
tures associated with early stages of tumorigenesis. This
knowledge can contribute to the development of non-
invasive diagnostic tools for the early detection of can-
cer, enabling timely interventions and improved patient
outcomes. The iPSCs have opened up new avenues for
studying the tumorigenic properties of cancer cells. Their
ability to recapitulate the genetic and epigenetic altera-
tions found in cancer cells, combined with their poten-
tial for differentiation into various cell types, provides a
valuable platform for investigating the mechanisms of
tumorigenesis [570]. The use of iPSC-derived cancer cells
in tumor organoids and xenograft models allows for the
study of tumor growth, invasion, and response to therapy
in a controlled and reproducible manner [571]. Moreo-
ver, iPSCs have the potential to drive advancements in
personalized medicine, drug discovery, and early cancer
detection. However, challenges such as cost, technical
expertise, tumor heterogeneity, tumorigenicity, and ethi-
cal considerations must be addressed to fully harness the
potential of iPSCs in cancer research [507, 572]. Con-
tinued investment in iPSC research and collaboration
between scientists, clinicians, and ethicists is crucial to
unlock the full potential of iPSCs in understanding and
treating cancer.
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The use of iPSCs to study the molecular and genetic
changes during tumorigenesis

One recent study published in the journal Cell Stem Cell
demonstrated the potential of iPSCs in cancer research
by using them to study the molecular changes that
occur during the progression of colorectal cancer. The
researchers generated iPSCs from both healthy indi-
viduals and patients with early-stage colorectal cancer
and then differentiated them into intestinal organoids.
Using this model, they were able to identify key molecu-
lar changes that occur during the early stages of colo-
rectal cancer development, including alterations in the
Wnt signaling pathway and changes in the expression
of genes involved in cellular differentiation. They also
observed an increase in the number of cancer stem cells
present in the organoids derived from cancer patients,
which could contribute to the development and pro-
gression of the disease [573]. Another study published
in the journal Nature Communications utilized iPSCs to
study the genetic changes that occur during the devel-
opment of lung cancer. The researchers used iPSCs
derived from patients with lung cancer to create lung
organoids that closely resemble the cellular architecture
of human lung tissue. By comparing the genetic profiles
of the lung organoids derived from healthy individuals
and patients with lung cancer, the researchers were able
to identify mutations in several key genes that are fre-
quently mutated in lung cancer, including TP53, KRAS,
and EGFR. They also observed changes in the expres-
sion of genes involved in cell adhesion and signaling
pathways that are known to play a role in cancer devel-
opment [574]. These studies demonstrate the potential
of iPSCs in cancer research, particularly in understand-
ing the early molecular and genetic changes that occur
during tumorigenesis. iPSC-derived models can provide
a more accurate representation of human disease than
traditional cell culture models and offer a more cost-
effective and ethical alternative to animal models [543].
Additionally, iPSCs have the potential to be used in the
development of personalized cancer therapies. By gen-
erating iPSCs from individual patients, researchers can
create organoids that closely resemble the patient’s own
tissue, allowing for more accurate testing of potential
treatments and the development of personalized thera-
peutic approaches [575-577]. However, there are also
challenges associated with the use of iPSCs in cancer
research. One major limitation is the potential for iPSCs
to harbor genetic abnormalities or epigenetic changes
that could affect their behavior and skew the results of
experiments. Researchers must carefully screen and
characterize iPSCs to ensure that they are of high qual-
ity and free from abnormalities before using them in
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experiments [542]. Furthermore, there are ethical and
legal considerations associated with the use of iPSCs,
particularly when it comes to the creation and use of
iPSCs derived from human embryos [557]. Research-
ers must navigate complex regulatory frameworks and
ensure that they are conducting their research in an
ethical and responsible manner [557]. Despite these
challenges, the use of iPSCs in cancer research holds
tremendous promise for advancing our understanding
of tumorigenesis, identifying new therapeutic targets,
and developing personalized treatments for the dis-
ease. With continued investment and research, iPSCs
have the potential to revolutionize cancer research and
improve outcomes for patients around the world [574].

Applications of iPSCs in tumorigenesis

The iPSCs have emerged as a powerful tool in cancer
research, offering diverse applications in various aspects
of tumorigenesis [507]. The utilization of patient-derived
iPSCs has undeniably emerged as a powerful tool in the
realm of cancer research. Various research groups across
the globe have undertaken compelling investigations
into the intricate relationship between germline muta-
tions and the occurrence of cancer. Through meticulous
experimentation, these dedicated teams have harnessed
the potential of iPSCs to unveil profound insights into
the underlying mechanisms of cancer development and,
in turn, drive forward the frontiers of drug discovery
[572]. One notable aspect of this vibrant field is the con-
siderable body of work that has culminated in critical
findings regarding cancer etiology and progression. The
omission of a comprehensive review of these pivotal dis-
coveries by the authors is a regrettable oversight. These
findings represent a cornerstone of contemporary iPSC-
based cancer research, providing valuable benchmarks
for the broader scientific community. By neglecting to
acknowledge and incorporate these contributions, the
authors risk presenting an incomplete analysis of the
field, leaving gaps in the understanding of the complex
interplay between germline mutations and cancer [574].
To ensure a well-rounded and robust assessment of the
iPSC-based cancer research landscape, it is imperative
for the authors to address this significant deficiency in
their work. By integrating these important contributions
into their analysis, the authors can enrich their study and
provide a more holistic perspective on the transforma-
tive potential of patient-derived iPSCs in deciphering
the mysteries of cancer. This collaborative and inclu-
sive approach will not only benefit the authors’ work
but also foster a deeper understanding of the broader
scientific community’s collective efforts in unraveling
the complexities of cancer biology [542]. Moreover, the
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incorporation of these crucial findings from various
research groups will enhance the overall scientific rigor
of the authors’ analysis. By acknowledging the exten-
sive body of work conducted in the field of iPSC-based
cancer research, the authors can strengthen the founda-
tion upon which their research is built. This inclusivity
will not only validate the efforts of their peers but also
elevate the credibility and comprehensiveness of their
own work [574]. Additionally, the integration of these
research findings can provide a broader context for the
authors’ work, allowing readers and fellow researchers
to appreciate the interconnectedness of different studies
within this multidisciplinary field. It can also help iden-
tify potential gaps or areas that require further investi-
gation, fostering a collaborative environment for future
research endeavors [575-577].

The use of iPSCs in developing new cancer therapies

The iPSCs have emerged as a promising tool in the devel-
opment of new cancer therapies, offering unprecedented
opportunities to advance our understanding of tumori-
genesis and transform the landscape of cancer treatment
[578, 579]. These remarkable cells, which are derived
from adult somatic cells through a process of reprogram-
ming, possess the ability to differentiate into various cell
types, including those relevant to cancer, making them an
invaluable resource for studying disease mechanisms and
developing novel therapeutic strategies [24, 580, 581].
Table 8 presents a comprehensive overview of the current
iPSC-based cancer therapies that have emerged as prom-
ising strategies in the field of oncology. One of the key
advantages of iPSCs in cancer therapy lies in their ability
to provide a robust and patient-specific model for study-
ing tumorigenesis [564, 577]. By reprogramming cells
from cancer patients, researchers can generate iPSCs that
carry the genetic and epigenetic signatures of the individ-
ual’s tumor [550]. These iPSCs can then be differentiated
into the specific cell types affected by cancer, allowing
for detailed investigation of the molecular changes and
abnormalities associated with the disease [582]. This per-
sonalized approach enables researchers to gain insights
into the underlying mechanisms of cancer development,
identify novel therapeutic targets, and tailor treatment
strategies to individual patients [24, 581, 583]. Further-
more, iPSCs offer a unique platform for drug screening
and the development of targeted therapies [540, 584].
Traditional cancer cell lines and animal models often fail
to accurately replicate the complexity and heterogene-
ity of human tumors, limiting their predictive value in
preclinical studies [545, 546]. iPSC-derived cancer cells,
on the other hand, can more faithfully recapitulate the
genetic and phenotypic characteristics of the patient’s
tumor, making them an ideal tool for testing the efficacy
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and toxicity of potential therapeutics [576, 585]. Through
high-throughput screening approaches, large libraries of
compounds can be screened against iPSC-derived can-
cer cells, leading to the identification of novel drug can-
didates and personalized treatment options [548, 586].
Immunotherapies, which harness the body’s immune
system to target and eliminate cancer cells, have revo-
lutionized cancer treatment in recent years [555, 587].
iPSCs hold great promise in this field as well, as they can
be engineered to express tumor-specific antigens and
used as a source for generating patient-specific immune
cells. By differentiating iPSCs into immune cells, such as
T cells or natural killer cells, researchers can create a per-
sonalized immunotherapy approach that is tailored to the
patient’s specific tumor antigens [588—-590]. This person-
alized immunotherapy has the potential to enhance the
efficacy of treatment while minimizing off-target effects,
leading to more targeted and effective cancer therapies
[104, 531, 581, 591]. Moreover, iPSCs can be utilized for
cancer early detection and diagnosis. Through their abil-
ity to differentiate into various cell types, including those
found in tumors, iPSCs can be employed to generate spe-
cific cell populations that mimic the early stages of cancer
development [533, 539, 592]. By studying the molecular
changes and aberrant signaling pathways present in these
iPSC-derived cancer cells, researchers can gain valuable
insights into the early detection and diagnosis of cancer
[267, 554, 593]. This knowledge can then be translated
into the development of innovative diagnostic tools and
biomarkers for improved cancer screening and early
intervention [125]. Despite the tremendous potential of
iPSCs in cancer therapy, several challenges and limita-
tions need to be addressed. One major hurdle is the risk
of tumorigenicity associated with the transplantation
of iPSCs or their derivatives [594, 595]. The pluripotent
nature of iPSCs renders them capable of uncontrolled
growth and potential tumor formation. Therefore, strin-
gent quality control measures and extensive charac-
terization of iPSCs and their differentiated progeny are
essential to ensure their safety and efficacy in clinical
applications [542, 594].

The use of iPSCs in drug screening and development

The use of iPSCs in drug screening and develop-
ment has emerged as a promising avenue in the field
of medicine. iPSCs, which are derived from adult cells
reprogrammed to possess pluripotency, offer a unique
platform for studying disease mechanisms and evaluat-
ing the efficacy and safety of potential drugs [568, 575,
584]. This paragraph will delve into the advantages of
iPSCs in drug screening and development, highlight-
ing their potential to revolutionize the process of dis-
covering new therapies. One of the key advantages of
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using iPSCs in drug screening is their ability to reca-
pitulate disease phenotypes in a controlled laboratory
setting [575]. By reprogramming patient-specific cells,
researchers can generate iPSCs that carry the genetic
signature of a particular disease [553, 611]. These dis-
ease-specific iPSCs can then be differentiated into rel-
evant cell types affected by the disease, such as neurons
for neurodegenerative disorders or cardiomyocytes for
cardiovascular diseases [611, 612]. This approach ena-
bles scientists to model the disease in a dish, allow-
ing for the identification of novel drug targets and the
screening of potential therapeutics in a more physi-
ologically relevant context [576, 613]. Furthermore,
iPSCs provide a valuable tool for studying rare diseases
or conditions where access to patient samples is lim-
ited. These cells can be generated from easily accessible
somatic cells, such as skin cells or blood cells, and then
differentiated into the desired cell types [21]. This not
only circumvents the need for invasive procedures to
obtain patient-specific samples but also allows for the
creation of large, diverse libraries of disease-specific
iPSCs [556, 576, 614]. These libraries can be shared
among researchers, fostering collaboration and accel-
erating drug discovery efforts for conditions that have
previously been challenging to study. The use of iPSCs
in drug screening also holds promise for personal-
ized medicine. iPSCs can be derived from individual
patients, allowing for the development of tailored thera-
pies based on a patient’s specific genetic background.
This approach has the potential to transform the field of
oncology, as it can aid in the identification of person-
alized treatment strategies for cancer patients. By gen-
erating iPSCs from tumor cells, researchers can create
a personalized model that mimics the unique charac-
teristics of a patient’s cancer [15, 615, 616]. This model
can be used to screen a variety of drugs and identify the
most effective treatment options, thereby improving
patient outcomes and reducing unnecessary exposure to
ineffective therapies [616]. In addition to personalized
medicine, iPSCs offer an invaluable resource for drug
toxicity testing [617-619]. Many promising drug can-
didates fail during the later stages of development due
to unexpected toxic effects on vital organs or systems.
By using iPSCs to generate different cell types, research-
ers can evaluate the potential toxicity of drugs in a con-
trolled and reproducible manner [619]. For instance,
iPSC-derived liver cells can be used to assess the hepa-
totoxicity of drug candidates [620], while iPSC-derived
cardiomyocytes can provide insights into potential car-
diac side effects [621, 622]. This early identification of
drug toxicity can help pharmaceutical companies make
informed decisions about which compounds to advance
in the drug development pipeline, ultimately reducing

Page 66 of 111

the risk of adverse effects in clinical trials and improv-
ing patient safety [622]. Moreover, iPSCs enable the
screening of existing drugs for new therapeutic appli-
cations [623]. Repurposing known drugs for different
diseases can significantly reduce the time and cost asso-
ciated with developing new treatments. iPSCs provide a
reliable platform for evaluating the efficacy of approved
drugs in various disease models. By exposing iPSC-
derived disease-relevant cells to a library of known
compounds, researchers can identify drugs that exhibit
unexpected therapeutic effects or synergistic interac-
tions with existing therapies [624]. This approach has
the potential to uncover new treatment options for a
range of diseases, opening up avenues for drug repur-
posing and expanding the therapeutic arsenal available
to clinicians. The use of iPSCs in drug screening and
development holds tremendous potential to transform
the field of medicine [568, 611]. These versatile cells
allow for the generation of disease-specific models, per-
sonalized medicine approaches, toxicity testing, and
drug repurposing efforts. iPSCs provide a unique plat-
form for studying disease mechanisms and evaluating
the efficacy and safety of potential drugs [535, 623]. By
reprogramming patient-specific cells, researchers can
create disease-specific iPSCs that accurately recapitu-
late the genetic signature and phenotypic characteris-
tics of various diseases [594, 625, 626]. The ability to
generate disease-specific cell types from iPSCs allows
researchers to study the underlying mechanisms of
diseases in a controlled laboratory environment [622].
This approach provides valuable insights into disease
progression, identifying key molecular pathways and
targets that can be exploited for therapeutic interven-
tions [609, 614]. By screening potential drugs on iPSC-
derived disease models, researchers can assess their
effectiveness in restoring normal cellular function and
halting disease progression [627]. This screening pro-
cess helps prioritize drug candidates for further devel-
opment, increasing the efficiency of the drug discovery
process and reducing the reliance on animal models.
Personalized medicine is another area where iPSCs have
the potential to revolutionize drug development. By
generating iPSCs from individual patients, it is possible
to create patient-specific models that accurately reflect
their genetic makeup and disease characteristics. This
personalized approach allows for tailored treatment
strategies, optimizing therapeutic outcomes and mini-
mizing adverse effects [241, 617]. iPSCs can be used
to screen a variety of drugs on patient-specific disease
models, identifying the most effective treatments for
individual patients. This approach has particular rel-
evance in the field of oncology, where tumor-derived
iPSCs can be utilized to screen a range of targeted
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therapies and chemotherapeutic agents, enabling cli-
nicians to make informed treatment decisions based
on the unique biology of a patient’s tumor [15]. One
of the critical advantages of iPSCs in drug screening is
their potential to predict drug toxicity and side effects.
Adverse drug reactions and toxic effects are significant
challenges in drug development. iPSCs offer a reliable
and scalable platform for assessing drug toxicity by dif-
ferentiating them into organ-specific cell types [585,
617, 618]. By subjecting iPSC-derived cells to potential
drug candidates, researchers can evaluate their safety
profiles, identifying any potential toxic effects on spe-
cific organs or systems [620]. With ongoing research
and advancements in iPSC technology, the integration
of iPSCs in drug discovery pipelines holds great prom-
ise for accelerating the development of safe and effective
treatments for a wide range of diseases.

The use of iPSCs in personalized medicine

The use of iPSCs in personalized medicine has emerged
as a groundbreaking approach with the potential to
revolutionize patient care [568, 575, 584]. Personalized
medicine aims to tailor medical treatments to individual
patients based on their unique genetic, epigenetic, and
environmental characteristics. iPSCs, which can be gen-
erated from adult cells through reprogramming, offer
a remarkable tool for modeling diseases, understanding
individual variations, and developing personalized ther-
apies [575]. One of the primary advantages of iPSCs in
personalized medicine is their ability to recapitulate the
genetic makeup of individual patients [623]. By repro-
gramming cells from patients with specific diseases
or conditions, iPSCs can serve as disease models that
accurately reflect the genetic variations present in those
patients. This allows researchers to study the underlying
mechanisms of diseases at the cellular level and design
personalized treatment strategies [622]. Furthermore,
iPSCs can be differentiated into various cell types, includ-
ing those affected by specific diseases. This differentiation
potential enables the generation of disease-specific cells,
such as cardiomyocytes for heart diseases or neurons for
neurodegenerative disorders [568, 575, 584]. By studying
these disease-specific cells derived from iPSCs, research-
ers can gain insights into the molecular changes associ-
ated with the disease and identify potential therapeutic
targets. In personalized medicine, iPSCs have shown great
promise in drug discovery and development [622]. Tra-
ditional drug development often relies on animal mod-
els or cell lines that may not fully capture the complexity
of human diseases. iPSCs, on the other hand, provide a
human-specific platform for drug screening and testing.
By generating iPSCs from patients with varying responses
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to specific drugs, researchers can evaluate drug efficacy
and toxicity on patient-specific cells [575]. This approach
has the potential to optimize drug selection and dosage,
leading to improved treatment outcomes and reduced
adverse effects. Moreover, iPSCs can be utilized in the
field of regenerative medicine, which aims to replace or
repair damaged tissues and organs [623]. By differentiat-
ing iPSCs into specific cell types, it becomes possible to
generate patient-specific cells for transplantation. This
approach mitigates the risk of immune rejection, as the
transplanted cells are derived from the patient’s own
iPSCs. For instance, iPSCs can be differentiated into car-
diomyocytes and used for cell-based therapy in patients
with heart diseases. This personalized regenerative
approach holds immense potential for restoring tissue
function and improving patient outcomes [568, 575, 584].
The application of iPSCs in cancer personalized medicine
is particularly exciting. Cancer is a highly heterogeneous
disease, and treatment response can vary significantly
among patients. iPSCs offer the opportunity to generate
patient-specific cancer models that closely resemble the
individual’s tumor. These models can be used to study the
molecular characteristics of the cancer, identify potential
therapeutic targets, and predict the response to specific
treatments. iPSC-based cancer models also facilitate the
screening of anti-cancer drugs, enabling the selection of
personalized treatment regimens based on the unique
genetic profile of each patient’s cancer cells [622]. How-
ever, despite the immense potential of iPSCs in personal-
ized medicine, several challenges need to be addressed.
The process of reprogramming cells into iPSCs is complex
and time-consuming, limiting their immediate clinical
application. Additionally, ensuring the safety and efficacy
of iPSC-derived cells for transplantation requires rigor-
ous quality control and validation [575]. Moreover, ethi-
cal considerations surrounding the generation and use of
iPSCs, such as obtaining informed consent and protect-
ing patient privacy, must be carefully addressed to ensure
responsible and ethical practices. The iPSCs hold tremen-
dous promise in personalized medicine, offering a unique
platform for disease modeling, drug screening, and regen-
erative therapies [568, 575, 584]. Their ability to recapitu-
late patient-specific genetic variations and differentiate
into disease-specific cells provides valuable insights into
individual diseases and facilitates the development of per-
sonalized treatment strategies. While challenges exist,
continued research and development in iPSC technology,
along with the establishment of robust ethical guidelines,
will pave the way for the widespread implementation
of iPSCs in personalized medicine [623]. To unlock the
full potential of iPSCs in personalized medicine, fur-
ther research is needed to optimize the reprogramming



Chehelgerdi et al. Molecular Cancer ~ (2023) 22:189

process and improve the efficiency of iPSC generation.
Advances in gene-editing technologies, such as CRISPR-
Cas9, have the potential to enhance the precision and safety
of iPSC reprogramming, making it a more feasible and reli-
able method for clinical applications [575]. Additionally,
efforts should be made to develop standardized protocols
for iPSC differentiation into various cell types, ensuring
consistency and reproducibility across different laborato-
ries and research settings [622]. Another crucial aspect that
requires attention is the establishment of robust bioin-
formatics and data analysis pipelines to handle the large
amount of data generated from iPSC-based personalized
medicine studies. Integration of genomics, transcriptom-
ics, proteomics, and other omics data from iPSC-derived
cells can provide a comprehensive understanding of disease
mechanisms and identify biomarkers for personalized diag-
nostics and treatment monitoring [623]. The use of iPSCs in
personalized medicine holds immense promise for advanc-
ing patient care. iPSCs provide a powerful tool for disease
modeling, drug screening, and regenerative therapies, ena-
bling a more precise and tailored approach to treatment.
While challenges exist, ongoing research and technological
advancements, along with collaborative efforts between dif-
ferent stakeholders, will pave the way for the integration of
iPSC-based personalized medicine into mainstream health-
care. With continued investment in iPSC research and
responsible application, which can harness the full potential
of iPSCs to transform the landscape of personalized medi-
cine, offering patients more effective, targeted, and person-
alized treatment options [568, 575, 584].

The use of iPSCs in cancer early detection and diagnosis

The use of iPSCs in cancer early detection and diagnosis
holds immense promise and potential. Cancer is a com-
plex disease characterized by the accumulation of genetic
and epigenetic alterations in cells, leading to uncontrolled
proliferation and tumor formation [550, 554]. Early detec-
tion and accurate diagnosis are crucial for improving
patient outcomes and implementing timely and effective
treatment strategies [593]. iPSCs, with their unique prop-
erties and capabilities, offer a valuable tool in the quest for
early cancer detection. iPSCs can be generated by repro-
gramming adult somatic cells, such as skin cells or blood
cells, into a pluripotent state similar to embryonic stem
cells. These iPSCs have the ability to differentiate into var-
ious cell types, including those found in different organs
and tissues affected by cancer [568, 601]. This characteris-
tic makes iPSCs an attractive candidate for modeling can-
cer initiation and progression. One of the key applications
of iPSCs in cancer early detection is the generation of
organoids or miniaturized organs in a dish [564, 603]. In a
recent investigation led by Hanna et al,, the focus was on
creating iPSCs that closely resembled mouse embryonic

Page 68 of 111

stem cells (mESCs) in terms of their biological and epige-
netic characteristics [628]. The study centered on employ-
ing a novel reprogramming approach to transform hESCs
into a less mature state resembling mESCs. Figure 11 pro-
vides a visual representation of the iPSC generation pro-
cess using this method. By inducing the expression of
Oct4, Klf4, and KIf2 factors in hESCs and subjecting them
to specific growth conditions, the researchers successfully
generated what they referred to as “epigenetically con-
verted cells” These cells exhibited striking similarities to
mESCs in terms of growth properties, gene expression
patterns, and reliance on specific signaling pathways, as
highlighted in Fig. 11. Additionally, Fig. 11 underscores
the likenesses between naive hESCs and mESCs in signal-
ing and epigenetic characteristics. Figure 11 further dem-
onstrates the connection between naive hESCs, hiPSCs,
and mESCs based on their transcriptional profiles, show-
casing the success of the reprogramming approach in pro-
ducing hiPSCs that closely mimic mESCs. These findings
pave the way for a deeper understanding of pluripotency
in humans and hold great promise for conducting disease-
specific research using patient-derived iPSCs. The iPSCs
can be directed to differentiate into specific cell types rel-
evant to different cancer types, allowing the creation of
organoids that closely mimic the structure and function of
actual organs [556]. These organoids can be used to study
the early stages of cancer development, providing
researchers with a platform to investigate the molecular
changes and cellular interactions that drive tumor forma-
tion. Furthermore, iPSC-derived organoids can be utilized
for personalized medicine approaches in cancer diagnosis
[130, 577, 629]. By obtaining patient-derived iPSCs,
researchers can generate organoids that replicate the
genetic and epigenetic makeup of the individual’s tumor.
This personalized organoid model can then be used to test
the efficacy of different treatment options, helping clini-
cians identify the most effective therapeutic strategies for
specific patients [630, 631]. This approach holds the
potential to optimize treatment outcomes by tailoring
therapies to the individual characteristics of each patient’s
cancer. In addition to organoid models, iPSCs can also be
employed for the development of non-invasive diagnostic
tools for cancer. Traditional cancer diagnostic methods
often involve invasive procedures such as biopsies, which
can be uncomfortable for patients and may carry associ-
ated risks. iPSCs offer a non-invasive alternative by allow-
ing the generation of liquid biopsy models [376, 610].
iPSC-derived cells can be released into the bloodstream
and collected for analysis, providing valuable information
about the presence and characteristics of tumors [610].
Liquid biopsy-based approaches using iPSCs have the
potential to revolutionize cancer diagnosis, enabling early
detection and monitoring of disease progression in a
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minimally invasive manner [632]. Moreover, iPSCs can be
genetically modified to express specific reporter genes or
markers that are associated with cancer. These modified
iPSCs can be used to develop sensitive and specific bio-
sensors for the detection of cancer-related molecules or
biomarkers in patient samples. By leveraging the unique
properties of iPSCs, such as their ability to self-renew and
differentiate, these biosensors can provide highly accurate
and reliable diagnostic information [633, 634]. Despite the
tremendous potential of iPSCs in cancer early detection
and diagnosis, there are challenges that need to be
addressed. One such challenge is the efficient and stand-
ardized generation of iPSCs from patient samples [490,
635]. The reprogramming process can be time-consuming
and may require optimization to ensure the generation of
high-quality iPSCs [636]. Additionally, the scalability of

(See figure on next page.)
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iPSC-based diagnostic approaches needs to be improved
to enable their widespread clinical implementation [637].
Ethical and legal considerations also come into play when
using iPSCs for cancer research and diagnosis. Ensuring
informed consent and protecting patient privacy are para-
mount. Guidelines and regulations should be established
to govern the collection, storage, and use of patient-
derived iPSCs for diagnostic purposes, ensuring that ethi-
cal standards are upheld and patient rights are respected
[557, 572]. The use of iPSCs in cancer early detection and
diagnosis represents a promising avenue of research [623].
iPSC-derived organoids and liquid biopsy models offer
tremendous potential in understanding the molecular
mechanisms underlying cancer initiation and progression.
These models can help identify key genetic and epigenetic
alterations associated with specific cancer types, enabling

Fig. 11 1 The process of deriving iPSCs with characteristics similar to naive mouse embryonic stem cells (mESCs). Panel A shows the overall
strategy and representative images of C1 cultures and a subcloned cell line called C1.2 at various reprogramming stages. The passage number (p)
is indicated. Additionally, images of NOD mESCs (mouse ESCs) and C1.2 hiPSCs (human iPSCs derived from C1) after withdrawal of doxycycline
(DOX) are presented. Panel B demonstrates the maintenance of the C1 hiPSC line in a conventional growth condition for human embryonic

stem cells (hESCs) supplemented with basic fibroblast growth factor (bFGF) and serum. The C1 line is transferred to a medium called N2B27
PD/CH/LIF +DOX, and emerging colonies are subcloned. A representative clone called C1.10 hiPSC is shown. Panel C explores the signaling
dependence of pluripotent cell lines. Pluripotent cells are divided equally and plated on feeders in different growth media that are typically used

for maintaining these cell lines. After 36 h, the wells are treated with specific inhibitors or growth factors. After 6 days, the wells are fixed and stained
for a pluripotency marker called Nanog to determine the relative percentage of pluripotent colonies. Colony formation is normalized to an internal
control growth medium without inhibitors. Panel D focuses on the reprogramming process of the C1.2 hiPSC line. The cells are electroporated
with mammalian expression vectors expressing specific reprogramming factors and subjected to puromycin selection. The cells are then passaged
in a medium called PD/CH/LIF without DOX. The values indicate the relative percentage of SSEA4 + colonies obtained compared to control cells
that were transfected with a polycistronic construct encoding Oct4, KIf4, and Sox2. Panel E investigates the screening of factors that enable

the propagation of transgene-independent C1 hiPSCs, meaning these cells no longer require DOX for stabilization. The effects of removing
individual factors from a pool of 13 small molecules or cytokines are examined on the survival and pluripotency maintenance of C1 hiPSCs. C1
cells are plated on feeders in N2B27 media with the indicated factors. The P values obtained using Student’s t-test indicate significant changes
compared to cells grown in DOX/PD/CH/LIF conditions, which are defined as the control with 100% survival. 2 The characteristics of naive human
embryonic stem cell (hESC) lines. In panel A, a diagram outlines the process of reverting hESCs to generate naive hESCs. Representative images

of WIBR3 hESCs at different stages of the reversion process in the presence of PD (small molecule), CH (chemical), LIF (leukemia inhibitory factor),
and FK (forskolin) are shown. The passage number (p) and magnifications of the captured images are indicated. Panel B presents the single-cell
cloning efficiency of various pluripotent stem cell lines. This efficiency is determined by counting the number of wells containing colonies positive
for Nanog (a pluripotency marker) after 7 days. Panel C displays the estimated cell doubling time. Plated cells were counted at 1,4, and 7 days
after plating in triplicates, and the increase in cell number was used to calculate the average doubling time. The error bars represent the standard
deviation (SD), and the P values, determined using Student’s t-test, indicate significant differences between the average values of hESC/hiPSC lines
compared to the average values of naive hESC/hiPSC lines. 3 The similarities in signaling and epigenetic characteristics between naive human
embryonic stem cells (hESCs) and mouse embryonic stem cells (MESCs). In panel A, the dependence of pluripotent cell lines on specific signaling
pathways was assessed. After a 7-day period, the wells were fixed and stained to determine the percentage of colonies positive for pluripotency
markers. Mouse stem cells were stained with SSEA1. The colony formation was normalized to a control growth medium without inhibitors, which
was represented in the first left column. Normalized percentages below 5% were categorized as “sensitivity”to the presence of the supplemented
inhibitor. Panel B shows the expression of early germ-cell markers through RT-PCR in the presence or absence of BMP4/7/8 cytokines. Lastly,

in panel C, a representative analysis using fluorescence in situ hybridization (FISH) was conducted to examine the presence of XIST RNA (red)

and Cot1 nuclear RNA (green). The Pri-WIBR3.2 cell line was analyzed after being passaged in conventional bFGF/serum-containing human

ESC growth conditions. The numbers provided in the figure indicate the average percentage of XIST-positive nuclei counted. 4 The similarities

in gene expression between naive human embryonic stem cells (hESCs) and naive human-hiPSCs with mouse embryonic stem cells (mESCs). (A)

a bar chart comparing the expression levels of pluripotency and lineage-specific marker genes in hESCs and naive hESCs, with asterisks indicating
genes that showed significant differences between the two groups of samples; (B) a fluorescence-activated cell sorting (FACS) analysis measuring
the surface expression of human and mouse major histocompatibility complex (MHC) class | alleles, with a black graph representing the control
isotype match; (C) a cross-species gene expression clustering depicting the grouping of mESCs and naive hESCs as distinct from mEpiSCs

(mouse epiblast stem cells) and hESCs. The legend on the right explains that yellow and blue colors represent positive and negative correlations,
respectively. The gene expression levels were clustered based on Spearman correlation and average linkage, with mouse samples labeled in purple
and human samples labeled in brown. Reprinted from [628] with permission from the PNAS
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Fig. 11 (See legend on previous page.)

the development of targeted therapies tailored to individ-
ual patients [633, 634]. Furthermore, iPSC-based diagnos-
tic tools, such as biosensors and liquid biopsy approaches,
hold the promise of non-invasive and highly sensitive
detection of cancer-related molecules and biomarkers.
These innovative techniques have the potential to revolu-
tionize cancer diagnosis by providing early detection,
monitoring disease progression, and assessing treatment
response in a minimally invasive manner [630, 631]. By
avoiding the need for invasive procedures like biopsies,
iPSC-based diagnostics can significantly improve patient
comfort and reduce associated risks. Moreover, iPSCs can
be used in conjunction with other diagnostic modalities,
such as imaging techniques, to enhance the accuracy and
reliability of cancer diagnosis. Combining iPSC-based
models with imaging technologies allows for a compre-
hensive analysis of tumor characteristics, including size,
location, and molecular features [633, 634]. This integra-
tive approach can provide clinicians with a more compre-
hensive understanding of the disease, aiding in the
selection of appropriate treatment strategies [630, 631].
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Despite the remarkable potential of iPSCs in cancer early
detection and diagnosis, several challenges need to be
overcome before their widespread clinical implementa-
tion. Standardizing the generation of iPSCs and optimiz-
ing the differentiation protocols to produce organoids that
faithfully recapitulate the complexity of real tumors are
essential steps. Additionally, large-scale validation studies
are necessary to assess the sensitivity, specificity, and reli-
ability of iPSC-based diagnostic approaches across differ-
ent cancer types and patient populations [630, 631].
Furthermore, regulatory frameworks and guidelines
should be established to address the ethical and legal con-
siderations associated with iPSC research [633, 634].
Ensuring informed consent, protecting patient privacy,
and adhering to ethical standards are paramount when
utilizing iPSCs in cancer research and diagnostics. Col-
laboration between researchers, clinicians, ethicists, and
regulatory authorities is crucial to develop guidelines that
safeguard patient rights and promote responsible and eth-
ical use of iPSCs [610]. The iPSCs offer a promising ave-
nue for early cancer detection and diagnosis. Their ability
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to generate organoids, develop biosensors, and serve as
liquid biopsies opens up new possibilities for understand-
ing the molecular basis of cancer and implementing per-
sonalized treatment strategies. While there are challenges
to overcome, continued investment in iPSC research and
collaborative efforts among stakeholders can pave the way
for the clinical translation of iPSC-based approaches, ulti-
mately leading to improved cancer outcomes and patient
care [633, 634].

Future of iPSCs in tumorigenesis

The future of iPSCs in tumorigenesis holds great prom-
ise, offering opportunities for advancements in precision
medicine, the development of new therapies, the creation
of more advanced models for research, and integration
with other emerging technologies [549, 556, 638]. The
future of iPSCs in tumorigenesis research is extremely
promising. iPSCs have the potential to advance preci-
sion medicine by providing patient-specific models for
personalized therapies and enabling the identification of
specific genetic and epigenetic alterations associated with
cancer [576]. The development of new cancer therapies
is also within reach, as iPSCs can be utilized for drug
screening, gene therapy, and the production of immune
cells with enhanced anti-tumor properties [551, 555, 584,
596]. However, further advancements are needed in the
development of more advanced iPSC models that accu-
rately mimic the complex tumor microenvironments and
facilitate the study of tumor heterogeneity and thera-
peutic resistance. Integrating iPSCs with other emerging
technologies, such as gene editing, single-cell sequenc-
ing, and bioengineering, will further enhance our under-
standing of tumorigenesis and aid in the identification of
novel biomarkers and therapeutic targets [130, 629, 639].
The continued investment in iPSC research, along with
collaborations between scientists and clinicians, will be
crucial in unlocking the full potential of iPSCs in tumori-
genesis and therapy. The future of iPSCs in tumorigenesis
research is bright, offering exciting prospects for preci-
sion medicine, the development of innovative therapies,
advanced models for research, and integration with
other cutting-edge technologies. As scientists continue
to explore the vast potential of iPSCs, we can look for-
ward to groundbreaking discoveries that will shape the
field of cancer research and ultimately improve patient
outcomes.

iPSCs have the potential to revolutionize cancer precision
medicine

These cells can be generated from patients’ own somatic
cells, allowing for the creation of patient-specific iPSC
lines [612, 640]. This opens up avenues for personal-
ized medicine approaches in cancer treatment (Table 9).
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By deriving iPSCs from cancer patients, researchers can
study the molecular changes that occur during tumo-
rigenesis and identify specific genetic and epigenetic
alterations associated with the disease [15, 24]. iPSCs can
be differentiated into various cell types, including can-
cer cells, which enables the development of personalized
therapies targeting the specific cancer subtypes present
in individual patients [24]. The use of iPSCs in precision
medicine holds the promise of tailoring treatments to
individual patients based 9.2.

iPSCs offer the potential to develop new cancer therapies
Through iPSC-based technologies, researchers can gen-
erate large quantities of patient-specific cells, including
cancer cells, which can be used for drug screening and
testing [584]. This allows for the identification of novel
compounds or combinations of drugs that are more effec-
tive in targeting cancer cells while minimizing the toxicity
on healthy tissues [585, 626]. iPSCs can also be genetically
engineered to correct cancer-associated mutations or
introduce therapeutic genes, providing a platform for gene
therapy approaches [555]. Additionally, iPSCs can be uti-
lized to produce immune cells with enhanced anti-tumor
properties, facilitating the development of immunothera-
pies for cancer treatment. The versatility and adaptability
of iPSCs make them a valuable tool in the development of
innovative cancer therapies [551, 583, 599].

iPSCs offer the potential to develop new cancer therapies

Through iPSC-based technologies, researchers can gen-
erate large quantities of patient-specific cells, including
cancer cells, which can be used for drug screening and
testing [610]. This allows for the identification of novel
compounds or combinations of drugs that are more
effective in targeting cancer cells while minimizing the
toxicity on healthy tissues. iPSCs can also be genetically
engineered to correct cancer-associated mutations or
introduce therapeutic genes, providing a platform for
gene therapy approaches [542]. Additionally, iPSCs can
be utilized to produce immune cells with enhanced anti-
tumor properties, facilitating the development of immu-
notherapies for cancer treatment. The versatility and
adaptability of iPSCs make them a valuable tool in the
development of innovative cancer therapies [555, 606].

The development of more advanced iPSC models

for tumorigenesis research is a crucial area of focus
Current iPSC models provide valuable insights into the
early stages of cancer development and progression.
However, there is a need for more sophisticated mod-
els that accurately recapitulate the complex dynamics of
tumor microenvironments, including interactions with
stromal cells, immune cells, and extracellular matrices.
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Advances in tissue engineering and organoid technol-
ogy are being integrated with iPSCs to create 3D tumor
models that better mimic the physiological condi-
tions of tumors in vivo [324]. These advanced models
can enhance our understanding of tumor heterogene-
ity, therapeutic resistance, and metastasis, enabling the
development of more effective treatment strategies [125].
Furthermore, the integration of patient-derived iPSCs
with advanced genomic and proteomic analyses can
provide comprehensive molecular characterization of
tumors, aiding in the identification of novel biomarkers
and therapeutic targets [641, 642].

The integration of iPSCs with other emerging technologies
in cancer research holds significant potential

iPSCs can be combined with gene editing techniques,
such as CRISPR-Cas9, to introduce precise genetic
modifications or perform functional genomics studies
to elucidate the role of specific genes in tumorigen-
esis [606, 638, 643]. Moreover, the integration of iPSCs
with single-cell sequencing technologies allows for the
analysis of individual cancer cells, revealing heteroge-
neity and clonal evolution within tumors [639]. This
information can guide treatment decisions and iden-
tify novel targets for therapy. Furthermore, the integra-
tion of iPSCs with bioengineering approaches, such as
microfluidics and organ-on-a-chip systems, enables the
study of tumor cell migration, invasion, and response
to therapeutic agents in more physiologically relevant
environments [540]. By combining iPSCs with these
emerging technologies, researchers can gain deeper
insights into the mechanisms underlying tumorigenesis
and develop innovative strategies for cancer diagnosis
and treatment. Table 10 provides an insightful over-
view of emerging technologies in iPSC-based cancer
research.

Case studies

The case studies mentioned emphasize the success-
ful use of iPSCs in studying the development of can-
cer and their significant impact on the advancement
of cancer therapies. iPSCs provide unique opportuni-
ties in various areas, including modeling diseases [15],
tailoring treatments, screening drugs [556], regenera-
tive medicine [125], immunotherapies [608], early can-
cer detection, and precision medicine [24]. By serving
as a platform to investigate the complex mechanisms
involved in cancer development, iPSCs have expanded
our knowledge of the genetic, epigenetic, and envi-
ronmental factors contributing to cancer [545]. Fur-
thermore, iPSCs have played a vital role in developing
individualized and targeted therapies, offering great
potential for improving patient outcomes and reducing
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the overall burden of cancer [531]. As research pro-
gresses in the field of iPSCs and tumorigenesis, it is
important to address the challenges and limitations
associated with iPSC-based approaches. This includes
enhancing the efficiency of iPSC generation, refin-
ing differentiation protocols to generate specific cell
types more effectively, and considering the ethical and
regulatory aspects of iPSC research [545]. Continued
investment in iPSC research and fostering collabora-
tion among scientists, clinicians, and policymakers
will further unlock the full potential of iPSCs in cancer
research and therapy development. This collaborative
effort holds the promise of devising better strategies for
cancer prevention, early detection, and personalized
treatment approaches that can greatly impact the field
of oncology. Table 11 highlights several significant case
studies in cancer research that have utilized iPSCs.

iPSC-based disease modeling

Disease modeling involves generating in vitro models of
human diseases to understand the underlying mecha-
nisms, test drug efficacy, and develop new treatments.
Traditionally, disease modeling relied on animal models
or immortalized cell lines, both of which have limita-
tions in recapitulating human disease due to differences
in physiology, genetic makeup, and epigenetic regulation
[553]. In a recent study, some researchers provided the
remarkable potential of human induced pluripotent stem
(iPS) cells for disease modeling was highlighted [726].
The researchers utilized iPS cells to model both cardiac
and neural diseases, as depicted in Fig. 12 of their study.
By reprogramming somatic cells from patients with these
diseases, they were able to generate patient-specific iPS
cells, which accurately recapitulated disease phenotypes
in vitro. This breakthrough allowed for a deeper under-
standing of the underlying mechanisms and pathophysi-
ology of these diseases. Additionally, Fig. 12 in the study
illustrated the process of deriving and utilizing iPS cells,
emphasizing their pivotal role in advancing regenera-
tive medicine and drug discovery. The findings from this
study underscore the immense potential of iPS cells in
revolutionizing disease research and personalized medi-
cine. The iPSCs offer several advantages over traditional
disease models. Firstly, iPSCs can be derived directly
from patients with a disease, allowing for the modeling
of patient-specific diseases [543]. This is particularly rel-
evant for diseases with a strong genetic component, such
as cancer, where different mutations in the same gene can
result in different cancer subtypes and response to treat-
ment [543]. Secondly, iPSCs can be differentiated into
different cell types, including disease-relevant cell types,
such as neurons for neurodegenerative diseases, cardio-
myocytes for cardiovascular diseases, and hepatocytes
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Fig. 12 1The process of deriving and utilizing human induced pluripotent stem (iPS) cells. It shows that adult somatic cells, which are specialized
cells in the body, can be reprogrammed into iPS cells capable of differentiating into various cell types. These iPS cells have several applications. a) One
application is disease modeling, where human iPS cells are used to investigate the molecular mechanisms behind disease phenotypes. For example,
they can be employed to study the molecular causes of arrhythmia in cardiomyocytes or defects in neurogenic differentiation. b) Human iPS cells
can also be utilized in drug screening and discovery. They help determine the effects of candidate drugs and new compounds and identify target
pathways. ¢) Another valuable application of human iPS cells is in conducting toxicity tests for cardiac, neural, and liver cells. These tests assess the toxic
responses of cells to drugs and substances. Combining drug screening and toxicity tests allows for human preclinical trials in a controlled laboratory
setting, enabling early involvement of “the patient”in the drug discovery process. 2 The use of human induced pluripotent stem (iPS) cells for modeling
cardiac and neural diseases and the improvement of disease symptoms. In the first scenario (a), skin fibroblasts taken from a patient with type 1 long QT
syndrome (LQT1), which is caused by a mutation in the KCNQ1 potassium channel gene, were reprogrammed into iPS cells using retroviral transduction
of four specific genes. These iPS cells were then transformed into clusters called embryoid bodies and subsequently differentiated into cardiomyocytes.
The presence of spontaneous contraction in these cells indicated the existence of functioning heart muscle cells. By applying isoprenaline, a substance
that mimics B-adrenergic stress, arrhythmic events similar to those observed in LQT1 patients'hearts were induced in the cardiomyocytes. However,
when the B-blocker propranolol was administered, the arrhythmia was suppressed. In the second scenario (b), skin fibroblasts were obtained
from a patient with Rett syndrome (RTT), which is caused by a mutation in the MECP2 gene responsible for regulating epigenetic processes. These
fibroblasts were reprogrammed into human iPS cells using retroviral transduction of the same four genes mentioned earlier. The iPS cells were then
differentiated into embryoid bodies, and the appearance of rosette structures indicated the presence of neural precursors. Further differentiation of these
precursors resulted in the formation of glutamatergic neurons. These neurons exhibited reduced numbers of glutamatergic synapses (represented by red
dots) and a decrease in soma size (the cell body of the neuron). However, treatment with insulin-like growth factor 1 (IGF1) caused an increase in both the
number of glutamatergic synapses and the size of the neuron’s soma. Reprinted from [726] with permission from the Springer Nature
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for liver diseases [247, 727]. This enables the generation
of more physiologically relevant disease models that
mimic the tissue-specific characteristics of the disease
[543]. Lastly, iPSC-based disease models can be used
to test drug efficacy and toxicity, potentially leading to
the development of more effective and safer treatments
[125, 626]. In a recent study conducted by Lowry et al,,
the researchers focused on generating human induced
pluripotent stem (iPS) cells from dermal fibroblasts,
with the aim of advancing stem cell-based therapies for
degenerative diseases [728]. In a recent investigation
led by Lowry and colleagues, the primary focus was on
the generation of iPS cells from dermal fibroblasts, aim-
ing to advance the use of stem cell-based therapies for
degenerative diseases [728]. The study employed specific
transcription factors, including KLF4, OCT4, SOX2, and
C-MYC, to reprogram dermal fibroblasts into iPS cells.
The outcomes, illustrated in Fig. 13, indicated a striking
resemblance of the iPS cell clones to human embryonic
stem cells (HESC) in terms of their visual characteristics.
Furthermore, Fig. 13 presented evidence that these iPS
clones expressed key markers typically associated with
HESC, suggesting a molecular similarity. Transcriptome
analysis, as shown in Fig. 13, further affirmed the like-
ness in gene expression profiles between iPS clones and
HESC. Additionally, Fig. 13 provided evidence that iPS
cells could form embryoid bodies (EBs) akin to HESC,
and Fig. 13 emphasized the pluripotent nature of iPS cells
by demonstrating their capacity to differentiate into ecto-
derm, endoderm, and mesoderm lineages. These findings
underscore the pivotal role of iPSCs in offering an abun-
dant source of patient-specific pluripotent stem cells with
potential clinical applications.

Case study: iPSC-based modeling of Familial Adenomatous
Polyposis (FAP)

Familial adenomatous polyposis (FAP) is a rare heredi-
tary disease characterized by the development of multi-
ple adenomatous polyps in the colon and rectum, leading
to a high risk of colon cancer. FAP is caused by mutations
in the adenomatous polyposis coli (APC) gene, which
regulates cell proliferation and differentiation. However,
the molecular mechanisms underlying the development
of FAP and the progression to colon cancer are not fully
understood. In a recent study, iPSCs were generated
from skin fibroblasts of FAP patients with different APC
mutations and differentiated into intestinal organoids,
which mimic the structure and function of the intesti-
nal epithelium. The iPSC-derived organoids from FAP
patients showed an increased number of polyps, aberrant
Wnt signaling pathway activation, and increased pro-
liferation compared to healthy control organoids. These
results suggest that APC mutations lead to increased
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proliferation and aberrant Wnt signaling in the intesti-
nal epithelium, contributing to the development of FAP
and colon cancer. Furthermore, the FAP patient-derived
organoids were sensitive to a Wnt inhibitor, demonstrat-
ing the potential of using iPSC-based disease models for
drug discovery and personalized medicine [729].

Impact on tumorigenesis understanding

Tumorigenesis is a complex process involving multi-
ple genetic and epigenetic alterations that drive normal
cells to become cancerous. Understanding the molecu-
lar mechanisms underlying tumorigenesis is critical for
developing new cancer therapies and improving patient
outcomes [530, 730]. iPSC-based disease modeling pro-
vides a powerful tool for studying tumorigenesis, as it
allows for the generation of patient-specific disease mod-
els that recapitulate the tissue-specific characteristics of
the cancer [730]. The iPSC-based disease models have
been used to study the molecular changes associated
with tumorigenesis, including changes in gene expres-
sion, epigenetic modifications, and protein signaling
pathways [729]. For example, iPSC-based disease models
have been used to study the genetic and epigenetic altera-
tions associated with the development of breast cancer,
leukemia, and glioblastoma [533, 549, 627]. These studies
have provided valuable insights into the early events of
cancer development and the underlying molecular mech-
anisms. In the context of tumorigenesis, iPSC-based dis-
ease models have helped uncover key genes and signaling
pathways involved in tumor initiation and progression
[543, 730]. By comparing iPSCs derived from healthy
individuals and those with cancer, researchers have iden-
tified genetic mutations and gene expression changes
specific to cancer cells. These findings have shed light
on the dysregulation of important cellular processes,
such as cell cycle control, DNA repair mechanisms, and
cell signaling pathways, contributing to the understand-
ing of how normal cells transform into cancer cells [24].
Furthermore, iPSC-based disease models have been
instrumental in elucidating the role of epigenetic modi-
fications in tumorigenesis. Epigenetic alterations, such as
DNA methylation and histone modifications, can regu-
late gene expression patterns and contribute to the devel-
opment and progression of cancer. iPSCs derived from
cancer patients have allowed researchers to investigate
epigenetic changes associated with specific cancer types
and identify potential epigenetic markers for early can-
cer detection and targeted therapies [24]. Importantly,
iPSC-based disease models have facilitated the study of
tumor heterogeneity, a hallmark of cancer, which refers
to the genetic and phenotypic diversity observed within
tumors. By generating iPSCs from different regions or
subpopulations of tumors, researchers have been able
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to recreate the heterogeneous nature of cancers in vitro
[730]. This has enabled the exploration of tumor evolu-
tion, clonal dynamics, and the identification of subpop-
ulations of cells responsible for metastasis or resistance
to therapy [576]. Such knowledge is invaluable for devel-
oping personalized treatment strategies tailored to indi-
vidual patients. Table 12 presents an overview of key case
studies highlighting the application of iPSCs in under-
standing tumorigenesis.

Personalized medicine and drug screening

Personalized medicine and drug screening are two inter-
connected concepts that have the potential to revolu-
tionize healthcare [15]. Personalized medicine aims to
tailor medical treatment to an individual’s unique genetic
makeup, lifestyle, and environmental factors [731]. Drug
screening, on the other hand, involves testing a large

(See figure on next page.)
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number of compounds to identify potential drug candi-
dates for a specific disease or condition [15]. Personalized
medicine is based on the premise that every individual is
unique and responds differently to medical treatments.
The use of genomic sequencing, proteomic profiling,
and other advanced technologies has made it possible to
identify specific genetic mutations and biomarkers asso-
ciated with different diseases [732]. By analyzing an indi-
vidual’s genetic makeup, physicians can identify which
drugs are likely to be most effective and which ones may
cause harmful side effects. One example of personalized
medicine is the use of targeted therapies for cancer treat-
ment [733]. Traditional chemotherapy drugs kill rapidly
dividing cells, including healthy cells, leading to many
negative side effects. Targeted therapies, however, are
designed to specifically target cancer cells by exploiting
their genetic vulnerabilities. For instance, some cancer

Fig. 13 1 The similarity in appearance between induced pluripotent stem (iPS) clones and human embryonic stem cells (HESC). In panel A,
the figure shows colonies of NHDF1 (normal human dermal fibroblast) cells infected with different viruses. These viruses include an empty
virus, a GFP-containing virus, or a combination of six viruses, each carrying one of five specific transcription factors or GFP. The colonies are

observed under phase contrast microscopy, revealing their diverse morphologies. Panels B-B” provide phase-contrast images of specific colonies
from the cultures transduced with the combination of five transcription factors and GFP. These images are merged with live TRA-1-81 staining
(shown in red) and GFP fluorescence (shown in green) derived from the pMX-GFP virus. The upper images show the merged view, while the lower
images display only the TRA-1-81 channel. It is noteworthy that only a small fraction of colonies exhibit TRA-1-81 positivity, as indicated in panels
B and B’ Importantly, the TRA-1-81 staining in these positive colonies closely resembles that of HESC. Panels C-C"display phase-contrast images
of iPS clones at different passages, highlighting their morphological characteristics. Finally, panels D-D" present “live" TRA-1-81 staining merged
with the phase-contrast appearance of specific iPS clones at passage 5. 2 The induced pluripotent stem (iPS) clones exhibit important markers
found in human embryonic stem cells (HESC). In panel A and A; polymerase chain reaction (PCR) was performed on genomic DNA obtained

from various sources: iPS clones, “early” OCT4/C-MYC clones, NHDF1 (normal human dermal fibroblast) cells infected with control or defined factor
viruses, and HSF1 or H9 HESC. The PCR targeted specific regions of integrated viruses, with a loading control PCR for a genomic region on the X
chromosome within the XIST locus. Additionally, iPS clones 24 and 29 were included in panel A'as a positive control for the PCR conditions. In
panel B, reverse transcription PCR (RT-PCR) was conducted to analyze pMX retroviral transcription and the expression of endogenous counterparts
of the defined factors, as well as other genes specific to HESC (TDGF1 through REX1), in iPS clones, NHDF1 cells, HSF1 HESC, and OCT4/CMYC
clones. It is worth noting that iPS clones 24 and 29, as well as the OCT4/CMYC clones, displayed limited suppression of expression from the viruses
they received. 3 The comparison of the transcriptome (gene expression profile) between induced pluripotent stem (iPS) clones and human
embryonic stem cells (HESC). In panel A, the expression values of various cell types are presented on a scatter plot using genome-wide microarray
expression data. The cell types include fibroblasts infected with control viruses or viruses carrying specific factors, iPS clones 2 and 5, and the HSF1
HESC line. It is observed that iPS clones 2 and 5 exhibit a high similarity to the HSF1 HESC, while iPS lines 1 and 7 show slightly less similarity.

Panel B represents the global Pearson correlation analysis of the entire expression data between the different cell types, indicating the degree

of similarity in gene expression. Panel C displays the hierarchical clustering of gene-expression data using the indicated cell types. The analysis
involved normalization and expression analysis with DNA-chip analyzer (dChip), filtering genes based on a 20% presence call, and removing
redundant probe sets. In panel D, the 2,000 most up- and down-regulated genes in HSF1 versus NHDF (normal human dermal fibroblast) were
identified from genome-wide expression datasets. The expression of these genes was further analyzed to determine if they were up-regulated,
down-regulated, or showed no change in expression between iPS clones (or infected fibroblast pools) and NHDF. The terms “MI”and “MD”"
represent statistically marginal increase and decrease, respectively. 4 The formation of embryoid bodies (EBs) by induced pluripotent stem (iPS)
cells, which is comparable to human embryonic stem cells (HESCs). Panel A displays phase-contrast images of EBs created from iPS clones 2 and 5.
Panel B demonstrates the growth of iPS-derived EBs when placed on adherent tissue culture dishes using three distinct media conditions. One

of the media conditions includes the presence of bone morphogenetic protein 4 (BMP). 5 The pluripotency of induced pluripotent stem (iPS) cells
and the increased expression of markers associated with ectoderm, endoderm, and mesoderm. In panel A, a real-time RT-PCR analysis compares
the expression of pluripotency genes in iPS cells and control human embryonic stem cells (HESC) after inducing differentiation through embryoid
body (EB) formation and subsequent plating under specific conditions (BMP4, FBS, and retinoic acid). The analysis measures the fold change

in gene expression relative to the reference gene GAPDH. Notably, the down-regulation of pluripotency markers like OCT4 and NANOG is observed
during EB differentiation. In panel B, a similar analysis is conducted, but this time the expression of marker genes associated with different germ
layers is examined. Each marker is specific to a particular germ layer, as indicated. The y-axis represents the fold induction of gene expression
compared to undifferentiated cells. While the extent of induction of lineage markers may vary between HESC and iPS clones, the overall pattern
remains consistent. Reprinted from [728]with permission from the PNAS
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cells have overactive growth receptors on their surface,
which targeted therapies can block, slowing down can-
cer growth. Drug screening is a crucial step in the drug
development process. It involves testing thousands of
compounds to identify those that have the potential to
become effective drugs for a specific disease or condi-
tion [611]. High-throughput screening (HTS) is a popu-
lar approach that allows researchers to rapidly test a large
number of compounds. HTS can be used to identify new
drugs, repurpose existing drugs for new uses, or optimize
existing drugs to improve their efficacy [731]. Advances
in drug screening technologies, such as computer simu-
lations and artificial intelligence (AI), have significantly
accelerated the drug discovery process. These technolo-
gies can predict how a drug will interact with a specific
target, predict toxicity, and identify potential drug com-
binations [732]. By using these tools, researchers can
quickly identify potential drug candidates and prioritize
those with the greatest potential for success. Personalized
medicine and drug screening are becoming increasingly
intertwined [15]. By analyzing an individual’s genetic
makeup, physicians can identify which drugs are likely
to be most effective for a particular patient. This can
significantly reduce the trial-and-error process associ-
ated with traditional medicine [732]. Drug screening can
also be personalized by testing drugs on patient-derived
cells or tissue samples. This approach can help predict
which drugs are most likely to be effective for a par-
ticular patient, and avoid those that are likely to cause
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harm [733]. One example of the integration of personal-
ized medicine and drug screening is the development of
immunotherapies for cancer treatment [731]. Immuno-
therapies work by stimulating the body’s immune system
to target and kill cancer cells. However, not all patients
respond equally to immunotherapies [733]. By analyzing
an individual’s genetic makeup, researchers can identify
which patients are most likely to respond to a particular
immunotherapy and which ones are not. This can help
tailor treatment to each patient and improve the overall
success rate of immunotherapies. Personalized medicine
and drug screening are two important concepts that have
the potential to transform healthcare [15]. Personalized
medicine aims to tailor medical treatment to an individ-
ual’s unique genetic makeup, lifestyle, and environmen-
tal factors, while drug screening involves testing a large
number of compounds to identify potential drug candi-
dates for a specific disease or condition [732]. The inte-
gration of these two concepts can significantly improve
patient outcomes by reducing trial and error and tailor-
ing treatment to each individual’s needs. With advances
in technology and research, personalized medicine and
drug screening are poised to become the standard of care
in many areas of healthcare [733].

Regenerative medicine and immunotherapies

Regenerative medicine and immunotherapies represent
groundbreaking approaches in the field of healthcare,
offering promising solutions for the treatment of various
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diseases, including cancer [555, 606]. Regenerative medi-
cine aims to restore, replace, or regenerate damaged tis-
sues and organs, while immunotherapies harness the
power of the immune system to combat diseases. These
two fields have gained significant attention and are revo-
lutionizing the landscape of modern medicine [731].
Regenerative medicine focuses on harnessing the regen-
erative potential of stem cells, including iPSCs, to repair
and replace damaged tissues and organs [732]. iPSCs are
generated by reprogramming adult cells, such as skin
cells, into a pluripotent state, giving them the ability to
differentiate into various cell types. This remarkable fea-
ture of iPSCs makes them an attractive tool for regen-
erative medicine applications [611]. They can be
differentiated into specific cell lineages, such as cardio-
myocytes for heart repair or pancreatic beta cells for dia-
betes treatment [15]. One of the key advantages of
regenerative medicine is its potential to provide person-
alized therapies. By utilizing a patient’s own cells to gen-
erate iPSCs, it becomes possible to create tissue or organ
grafts that are genetically identical to the patient, reduc-
ing the risk of immune rejection and the need for immu-
nosuppressive drugs. This personalized approach holds
great promise for improving patient outcomes and mini-
mizing complications associated with traditional trans-
plantation methods. In the realm of cancer treatment,
regenerative medicine offers innovative strategies. iPSCs
can be used to model cancer in a laboratory setting, pro-
viding researchers with a platform to study the mecha-
nisms of tumor formation, progression, and response to
various treatments. This enables the development of
more effective and targeted therapies [555, 606]. Further-
more, iPSCs can be engineered to express therapeutic
genes or anti-cancer agents, acting as “cellular factories”
that produce and release these substances specifically at
the site of the tumor. Immunotherapies, on the other
hand, harness the body’s immune system to recognize
and eliminate cancer cells. Traditional cancer treatments,
such as chemotherapy and radiation therapy, often have
systemic side effects and can harm healthy tissues [15].
Immunotherapies offer a more targeted approach, aiming
to enhance the immune response against cancer cells
while minimizing damage to normal cells [732]. One of
the most exciting developments in immunotherapy is the
use of immune checkpoint inhibitors [611]. These inhibi-
tors block the proteins that prevent immune cells from
recognizing and attacking cancer cells. By releasing these
immune checkpoints, the body’s immune system is reac-
tivated and can mount a robust response against the
tumor. This approach has shown remarkable success in
treating various cancers, including melanoma, lung can-
cer, and bladder cancer [555, 606]. Another promising
immunotherapy strategy is adoptive cell transfer, which
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involves isolating immune cells, such as T cells, from a
patient, genetically modifying them to express receptors
that recognize specific cancer antigens, and then reintro-
ducing these cells back into the patient’s body [732].
These modified immune cells can then specifically target
and eliminate cancer cells, leading to tumor regression.
This approach has shown remarkable efficacy in the
treatment of hematological malignancies, such as leuke-
mia and lymphoma. Combining regenerative medicine
with immunotherapies can offer even greater therapeutic
potential [555, 606]. iPSCs can be genetically engineered
to express immune-stimulatory molecules, such as
cytokines, which can enhance the immune response
against tumors [15]. Furthermore, iPSCs can be differen-
tiated into immune cells, such as dendritic cells or
natural killer cells, which can be used in cancer
immunotherapies to enhance the anti-tumor immune
response. Regenerative medicine and immunotherapies
are revolutionizing the field of healthcare, particularly in
the realm of cancer treatment. The regenerative potential
of iPSCs opens up new avenues for tissue repair and per-
sonalized therapies [611]. Meanwhile, immunotherapies
are providing targeted and effective approaches to acti-
vate the immune system against cancer cells. Combining
these two fields can lead to even more effective and per-
sonalized treatments for patients [731]. However, as with
any emerging technology, there are also challenges and
ethical considerations that need to be addressed. One of
the key challenges is the safety and efficacy of these ther-
apies [732]. While regenerative medicine and immuno-
therapies hold great promise, more research is needed to
fully understand their mechanisms and potential risks.
There is also a need for standardized protocols for the
manufacturing, testing, and administration of these ther-
apies to ensure their safety and efficacy. Another consid-
eration is the cost and accessibility of these therapies
[611]. Regenerative medicine and immunotherapies can
be expensive, and there is a need to ensure that they are
accessible to all patients who could benefit from them.
This includes developing more affordable and scalable
manufacturing methods for these therapies [15]. There
are also ethical considerations related to the use of
human embryonic stem cells and iPSCs. While the use of
iPSCs avoids the ethical concerns associated with the use
of embryonic stem cells, there are still concerns regard-
ing the consent and privacy of patients who donate their
cells for research [555, 606]. There is a need for clear
guidelines and ethical frameworks to ensure that the use
of iPSCs is conducted in an ethical and responsible man-
ner. Despite these challenges, regenerative medicine and
immunotherapies represent a promising future for
healthcare [611]. By harnessing the regenerative potential
of stem cells and the power of the immune system, these
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therapies offer innovative solutions for the treatment of
various diseases, including cancer. With continued
research and development, regenerative medicine and
immunotherapies have the potential to transform the
way we approach healthcare and provide personalized
and effective treatments for patients. In addition to their
potential in cancer treatment, regenerative medicine and
immunotherapies hold promise in a wide range of other
medical conditions [732]. For example, in the field of tis-
sue engineering, regenerative medicine approaches aim
to create functional tissues and organs that can replace
damaged or diseased ones. This can be particularly bene-
ficial for patients with organ failure or those in need of
organ transplantation. By utilizing stem cells and bioen-
gineering techniques, researchers are making strides in
developing functional tissues such as heart muscle, liver
tissue, and even entire organs like kidneys [15]. Further-
more, regenerative medicine approaches are being
explored for the treatment of degenerative diseases such
as Parkinson’s and Alzheimer’s. The ability to generate
specific cell types from stem cells opens up possibilities
for cell replacement therapies. Scientists are investigating
the use of iPSCs to generate neurons that can be trans-
planted into the brains of patients with neurodegenera-
tive disorders, potentially restoring lost function and
improving quality of life [732]. Immunotherapies, on the
other hand, have shown promise in various other areas
beyond cancer treatment [611]. For instance, they are
being investigated for the treatment of autoimmune dis-
eases, where the immune system mistakenly attacks
healthy cells and tissues. By modulating the immune
response, immunotherapies offer a targeted approach to
suppress or regulate the immune system, reducing
inflammation and preventing damage to the body’s own
tissues. Moreover, immunotherapies have demonstrated
potential in infectious diseases, such as HIV and viral
hepatitis [555, 606]. Researchers are exploring strategies
to boost the immune system’s ability to recognize and
eliminate viral pathogens, offering new avenues for the
development of antiviral therapies [611]. In the field of
transplantation, immunotherapies are being investigated
to improve the success of organ and tissue transplanta-
tion. By modulating the immune response and prevent-
ing organ rejection, these therapies have the potential to
increase the availability of donor organs and improve
patient outcomes [732]. While regenerative medicine and
immunotherapies are still relatively new fields, the pro-
gress and advancements made so far are highly promising
[733]. Ongoing research and clinical trials are expanding
our understanding of these approaches and paving the
way for their integration into mainstream medical prac-
tice [611]. Regenerative medicine and immunotherapies
represent transformative approaches in healthcare, with
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the potential to revolutionize the treatment of various
diseases. Regenerative medicine offers the possibility of
tissue and organ regeneration, personalized therapies,
and disease modeling using iPSCs. Immunotherapies
harness the power of the immune system to target and
eliminate cancer cells, as well as to treat autoimmune dis-
orders and infectious diseases [555, 606]. In a recent
study conducted by Wang et al., the researchers investi-
gated the immunogenicity and functional evaluation of
iPSC-derived organs for transplantation [734]. The study
aimed to determine whether iPSC-derived organs,
including skin, islet, and heart tissues, were capable of
surviving, repairing tissue damage, and functioning effec-
tively after transplantation. The researchers utilized 4n
complementation to generate iPSC-derived organs with-
out integration. Figure 14 highlights the process of creat-
ing 4n complementation mice using iPSCs without
integration, showcasing the innovative approach
employed in this study. Figure 14 demonstrates the suc-
cessful transplantation of iPSC-derived skin, which not
only survived but also effectively repaired skin wounds in
recipient mice. This finding indicates the potential thera-
peutic application of iPSC-derived skin for tissue regen-
eration. Figure 14 further illustrates the positive effects of
iPSC-derived islets in diabetic mouse models. The trans-
planted iPSC-derived islets successfully produced insulin
and effectively reduced high glucose levels, suggesting
their therapeutic potential for treating diabetes. Impor-
tantly, Fig. 14 also highlights the limited immunogenicity
of iPSC-derived islets, indicating their compatibility for
transplantation without eliciting significant immune
rejection responses. In Fig. 14, the outcomes of heart
transplantation using iPSC-derived hearts are depicted.
The iPSC-derived heart grafts displayed normal beating
for a duration of over 3 months in syngeneic recipients,
demonstrating their functional viability and long-term
survival. This finding provides promising evidence for the
feasibility of using iPSC-derived hearts in transplantation
procedures. In a recent investigation conducted by Wang
and colleagues, the researchers explored the immune
response and functional assessment of organs derived
from iPSCs intended for transplantation [734]. The study
aimed to ascertain whether iPSC-derived organs, such as
skin, islet, and heart tissues, could endure, repair dam-
aged tissue, and operate effectively post-transplantation.
To create iPSC-derived organs devoid of integration, the
researchers employed a 4n complementation approach.
Figure 14 illustrates the process of generating 4n comple-
mentation mice using iPSCs without integration, show-
casing the innovative method used. Figure 14 showcases
the successful transplantation of iPSC-derived skin,
which not only survived but also efficiently healed skin
injuries in recipient mice, suggesting the potential
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therapeutic utility of iPSC-derived skin for tissue regen-
eration. Figure 14 further illustrates the favorable effects
of iPSC-derived islets in diabetic mouse models. These
transplanted islets produced insulin and effectively low-
ered elevated glucose levels, indicating their potential
for treating diabetes. Additionally, Fig. 14 highlights the
limited immunogenicity of iPSC-derived islets, suggest-
ing their compatibility for transplantation without sig-
nificant immune rejection. In Fig. 14, the results of
heart transplantation using iPSC-derived hearts are
depicted. The iPSC-derived heart grafts exhibited nor-
mal beating for over 3 months in syngeneic recipients,
demonstrating their functional viability and long-term
survival. This discovery offers promising evidence for
the practicality of utilizing iPSC-derived hearts in trans-
plantation procedures.

Ethical and legal considerations

In recent years, the iPSCs have emerged as a powerful tool
in cancer research and therapy [41, 735]. However, their
use raises important ethical and legal considerations that
need to be carefully addressed. This section will discuss
four key aspects: the ethics of using human cells in iPSC
research, intellectual property rights, regulation of iPSC
research, and the need for international consensus on ethi-
cal and legal issues [15, 736]. The utilization of human
cells, including iPSCs, raises ethical questions related to
the source of cells, their derivation, and potential risks [45,
737]. iPSCs are typically generated from adult somatic
cells, such as skin or blood cells, which are reprogrammed
to exhibit pluripotent properties [41, 738]. While these
cells offer great potential for advancing cancer research,
their use necessitates ethical considerations. Researchers
must ensure that individuals providing cells for iPSC
research are adequately informed about the purpose, risks,
and potential benefits of the research [38, 739]. Respect for
donor autonomy and privacy should be maintained
throughout the process, including secure data manage-
ment and confidentiality. Another ethical consideration is
the use of embryos in iPSC research. Initially, iPSCs were
generated by reprogramming human embryos, which
raised ethical concerns due to the destruction of embryos
[41, 740]. However, advancements in reprogramming
techniques now allow for the generation of iPSCs from
adult cells, avoiding the need for embryo destruction. This
approach alleviates ethical concerns associated with
embryo use [15, 741]. Intellectual property rights play a
significant role in iPSC research, as they can impact the
accessibility and affordability of iPSC-based cancer thera-
pies. Patents are often filed for specific techniques, meth-
ods, or applications involving iPSCs [45]. These patents
grant exclusive rights to the patent holder, potentially lim-
iting the development of alternative therapies. The issue of
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patenting iPSC technology raises concerns about equitable
access to treatments and the sharing of scientific knowl-
edge [41, 742]. Balancing the interests of patent holders
with the broader goal of advancing cancer research and
treatment is crucial [15]. Encouraging collaborations,
licensing agreements, and patent pools can foster innova-
tion while ensuring that iPSC technology is accessible to
all researchers and clinicians. Regulation is an essential
aspect of iPSC research to ensure the safety and ethical
conduct of experiments [45, 743]. Regulatory frameworks
differ among countries, and variations in regulations can
impact the pace of progress in iPSC-based cancer research.
Stringent regulations may slow down research by impos-
ing lengthy approval processes and stringent safety
requirements [41, 744]. While necessary to protect partici-
pants and patients, these regulations should be designed to
strike a balance between safety and facilitating scientific
advancements. Harmonizing regulatory standards across
countries can promote collaboration, knowledge sharing,
and the efficient translation of iPSC-based therapies from
the lab to the clinic. Given the global nature of scientific
research and the potential impact of iPSCs on tumorigen-
esis and therapy, there is a pressing need for international
consensus on ethical and legal issues [15]. Establishing
guidelines and standards can ensure uniformity in research
practices and promote responsible and ethical use of iPSCs
[38, 745]. International consensus can address several
aspects, including informed consent procedures, data
sharing, privacy protection, and research collaborations
[45, 746]. By facilitating dialogue and agreement among
researchers, clinicians, ethicists, and policymakers from
different countries, international consensus can help navi-
gate the ethical complexities associated with iPSC research
[41, 747]. Collaborative efforts such as the International
Society for Stem Cell Research (ISSCR) and national regu-
latory bodies play a vital role in fostering consensus and
developing guidelines. These initiatives promote transpar-
ency, encourage ethical conduct, and address the legal
challenges surrounding iPSC research [45, 748]. Through
international collaboration, stakeholders can share best
practices, exchange knowledge, and establish common
ethical standards. This can enhance the credibility and reli-
ability of iPSC-based cancer research and ensure that the
potential benefits are maximized while minimizing poten-
tial risks [41, 749]. Moreover, international consensus on
intellectual property rights can facilitate the fair and equi-
table distribution of iPSC technologies. It can encourage
licensing agreements that allow for broader access to iPSC-
related discoveries, thereby promoting innovation and
accelerating progress in cancer research [15, 750].
Addressing ethical and legal considerations surrounding
iPSC research requires interdisciplinary engagement. Col-
laboration between scientists, clinicians, ethicists, legal
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experts, policymakers, and patient advocacy groups is cru-
cial to develop comprehensive guidelines that navigate the
complex ethical landscape [45, 751]. Furthermore, public
engagement and dialogue are vital to ensure that societal
values and concerns are taken into account. Including
diverse perspectives and involving the public in discus-
sions related to iPSC research can foster transparency,
trust, and support for scientific endeavors [38, 752]. As
with any emerging technology, safety is a paramount con-
cern in iPSC research. It is essential to thoroughly assess
the potential risks associated with the use of iPSCs, such as
tumorigenicity, genetic instability, and immunogenicity
[15, 753-758]. Robust preclinical studies and careful mon-
itoring of patients participating in clinical trials are crucial
to ensure the safety and efficacy of iPSC-based therapies.
Respecting patient autonomy and ensuring informed
consent are central to conducting ethical iPSC research.

(See figure on next page.)
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Patients must have a clear understanding of the nature of
the research, potential benefits and risks, and their rights
to withdraw from participation at any time [41, 759].
Informed consent processes should be transparent, com-
prehensive, and culturally sensitive, taking into account
the unique challenges and complexities of iPSC research
[45, 760]. The development of iPSC-based therapies has
the potential to revolutionize cancer treatment, but it is
important to ensure that the benefits are accessible and
affordable for all patients [38, 761-763]. Addressing issues
of affordability, equitable distribution, and fair pricing can
help mitigate disparities in access to these advanced thera-
pies [38, 764-768]. Collaboration between researchers,
industry, and policymakers is vital in developing strategies
to make iPSC-based treatments accessible to diverse popu-
lations. Public perception and understanding of iPSC
research can greatly influence its acceptance and support.

Fig. 14 1 The process of creating 4n complementation mice using iPSCs without the need for integration. Panel (a) shows the method used

to generate integration-free iPSCs. Panel (b) displays the morphology and alkaline phosphatase staining of these iPSCs. Panel (c) presents PCR
analysis results, indicating the absence of integration of the reprogramming vector in the iPSC lines tested. The reprogramming plasmid serves

as a positive control. Panel (d) demonstrates the normal karyotypes of the iPSCs through G-banding chromosomal analysis. Panel (e) exhibits
immunofluorescence staining of pluripotent markers (Nanog, Oct3/4, Sox2, and SSEA-1) in iPSCs. Panel (f) displays the results of RT-PCR analysis,
indicating successful differentiation of iPSCs into three germ layers. Panel (g) shows the formation of teratomas containing all three embryonic
germ layers when iPSCs are injected into severe-combined-immune-deficiency mice. Panel (h) represents iPSC mice generated through 4n
complementation. Finally, panel (i) presents the results of SSLP analysis, which distinguishes mice derived from different iPSC lines. 2 The successful
transplantation of skins derived from iPSCs, which were well-tolerated by the host and effectively repaired skin wounds. In (a), a schematic diagram
demonstrates the transplantation of skin, islets, and hearts derived from iPSC mice onto different locations of recipient mice. T-cell proliferation

or interferon (INF)-y release assays were used to detect primed T cells. (b) showcases the wound repair achieved through the transplantation

of iPSC-derived skin. The transplanted iPSC skin, similar to embryonic stem cell (ESm) and genetically identical skin (syngeneic), survived successfully
for over 100 days in recipient mice. Allogeneic skin transplants, serving as negative controls, were rejected within three weeks. Representative
images in (b) depict the grafts 20 weeks after transplantation. (c) provides a summary of the survival rates of explanted iPSC skin 20 weeks
post-transplantation. ESm and syngeneic skin transplants are shown as positive controls, while allogeneic skin transplants are negative controls.

(d) displays histological staining (H&E staining) of iPSC skin isolated from recipient mice eight weeks after transplantation. Allografts were stained
one week after transplantation and served as a negative control. iPSC skin explants exhibited normal structures similar to ESm and syngeneic mice,
while extensive tissue necrosis was observed in allografts. (e) demonstrates that T-cell infiltration was minimal in iPSC skin explants eight weeks
after transplantation. T cells were identified through immunostaining using anti-CD3, anti-CD4, and anti-CD8 antibodies. Sections from the spleen
and allogeneic skin grafts (one week after transplantation) were used as positive controls. (f) quantifies the percentage of proliferating cells,

while (g) presents an interferon (IFN)-y release assay to detect primed T cells in recipients of iPSC-derived skin. The quantified results are shown

as mean+s.e.m. of triplicates for each group (syngeneic: n=3; ESm: n=6; iPSC: n=6; allogeneic: n=3). 3 The effectiveness of iPSC-derived

islets in reducing high glucose levels in diabetic mice. In panel (a), the survival of iPSm islets in C57BL/6 hosts is summarized after 8 weeks

of transplantation. Panel (b) displays representative images of iPSm islets that were transplanted under kidney capsules, with dot circles indicating
the location of the grafted islets. Panel (c) shows the detection of T-cell infiltration in iPSm islets using an anti-CD3 antibody (shown in green).
Engrafted islets are labeled with anti-insulin staining (shown in red). In panel (d), the quantification of T-cell proliferation induced by different
stimulators is presented, with the mean and standard error of the mean (s.e.m.) shown for each group (syngeneic, ESm, iPSm, and allogeneic).
Panel (e) presents the quantification of interferon (IFN)-y release, again with the mean and s.e.m. shown for each group (syngeneic, ESm, iPSm,

and allogeneic). Panel (f) displays the monitoring of blood glucose levels in diabetic mice that were engrafted with allogeneic, syngeneic, and iPSm
islets. The different groups are represented by different colors (iPSm in yellow, syngeneic in green, and allogeneic in purple). Finally, in panel

(9), the glucose tolerance test conducted 8 weeks after islet transplantation is shown. Diabetic mice engrafted with iPSm islets (represented

in green) exhibited efficient response to high-glucose injection similar to mice transplanted with syngeneic islets (represented in purple). 4 Heart
transplantation using iPSC-derived cells. (a) Survival rates of mouse hearts derived from iPSCs (iPSm), embryonic stem cells (ESm), syngeneic
(genetically identical), and allogeneic (genetically different) transplants in recipient mice. (b) iPSm hearts beat at similar rates to ESm and syngeneic
hearts. (c) Transplanted hearts were examined using H&E staining. (d) T-cell infiltration was assessed by staining heart sections with anti-CD3
antibodies (green). No significant T-cell infiltration was observed in iPSm, ESm, and syngeneic mouse hearts from genetically identical recipients,
while allografts showed extensive T-cell infiltration (positive controls). Scale bars represent 50 um. (e) T-cell proliferation and (f) interferon

(INF)-y release were measured to detect activated T cells in mice with iPSm, ESm, syngeneic, and allogeneic heart transplants. (g) Expression

of the Zg16 and Hormad1 genes in transplanted skin, islets, and hearts eight weeks after transplantation. Reprinted from [734] with permission

from the Springer Nature
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Public education initiatives aimed at increasing awareness
and knowledge about iPSCs, their potential applications,
and the ethical considerations involved are essential [41,
769]. Open dialogue between scientists and the public can
foster trust, address concerns, and ensure that societal val-
ues are reflected in the development and implementation
of iPSC-based therapies. As iPSC-based therapies move
from research settings to clinical applications, long-term
monitoring and follow-up of patients are crucial [15, 770].
This is necessary to assess the long-term safety, effective-
ness, and potential side effects of iPSC-based treatments
[38, 771]. Establishing comprehensive surveillance pro-
grams and patient registries can provide valuable data for
ongoing evaluation and refinement of iPSC therapies [45,
772]. Effective ethical oversight and governance mecha-
nisms are essential to ensure the responsible conduct of
iPSC research. Regulatory bodies, research institutions,
and ethics committees play a vital role in reviewing and
approving research protocols, monitoring compliance with
ethical guidelines, and addressing any ethical concerns
that may arise [38, 773]. Table 13 highlights the key ethical
and legal considerations associated with iPSC research.
These considerations play a crucial role in shaping the eth-
ical framework and legal regulations surrounding the field.
They encompass various aspects such as informed con-
sent, privacy protection, research involving human sub-
jects, intellectual property rights, and potential misuse of
iPSC technology.

Unveiling the potential and challenges of iPSCs

in cancer initiation research

In the field of cancer research, gaining a deep understand-
ing of the complexities involved in the initiation of cancer
is a crucial and top-priority objective [15]. One ground-
breaking approach that has significantly transformed our
methods for deciphering this mysterious process is the
application of iPSCs. These extraordinary cellular entities
provide a distinct advantage in our quest to unravel the
secrets surrounding the onset of cancer, primarily because
of their remarkable adaptability [45]. iPSCs possess the
exceptional capacity to transform into the very cells from
which various types of cancer originate. This unique
attribute empowers researchers to explore the molecular
and cellular mechanisms underpinning cancer initiation
in ways that were previously considered unimaginable
[15]. Nevertheless, it is of utmost importance for authors
embarking on research in this field to address a pivotal
query: What is the actual contribution of iPSCs to our
comprehension of cancer initiation? This inquiry requires
a thorough examination of the potential advantages and
constraints inherent in investigations centered on iPSCs
[45]. By engaging in this exploration, scientists can pro-
vide invaluable insights into the intricate landscape of
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cancer initiation. It is through this scrutiny that the genu-
ine worth of iPSCs within the context of cancer research
becomes evident. By elucidating the intricate interplay
between genetic and environmental factors in the forma-
tion of cancerous cells, iPSCs offer a platform for exam-
ining the earliest phases of carcinogenesis, potentially
paving the path for innovative therapeutic interventions
and early detection methods [41]. Nonetheless, it is cru-
cial to acknowledge the limitations associated with the
use of iPSCs in unraveling the puzzle of cancer initiation.
These limitations encompass challenges related to accu-
rately replicating the microenvironment and epigenetic
modifications occurring during the natural progression of
cancer [45]. Furthermore, the inherent variability among
different iPSC lines, in conjunction with the complexity of
modeling various cancer types, emphasizes the need for
cautious and meticulous experimental design [41]. While
iPSCs present an unparalleled opportunity to shed light
on cancer initiation, researchers must navigate a multi-
faceted terrain marked by subtleties and restrictions to
effectively harness their full potential. By addressing these
concerns, the scientific community can chart a more pre-
cise course towards harnessing the capabilities of iPSCs to
illuminate the intricate aspects of cancer initiation [45].

Conclusion

The iPSCs have revolutionized the field of stem cell
research and have shown tremendous potential in the
development of new cancer therapies. In recent years,
significant progress has been made in iPSC-based tumo-
rigenesis research. Researchers have been able to gener-
ate iPSCs from cancer cells, providing a unique model
for studying the molecular changes that occur during
cancer development and progression. The iPSCs have
also been used to develop personalized cancer therapies,
allowing for targeted treatments based on a patient’s
specific genetic and epigenetic profiles. In addition,
iPSCs have been used for drug screening, allowing for
the identification of new compounds that may be effec-
tive in treating various types of cancer. Furthermore,
iPSCs have been used to generate immune cells that
can be used in immunotherapies, which have shown
great promise in the treatment of certain types of can-
cer. iPSCs have also been used to develop cancer early
detection methods, allowing for earlier diagnosis and
treatment of cancer. The impact of iPSCs on the future
of cancer research and treatment cannot be overstated.
iPSCs offer a powerful tool for studying the molecular
mechanisms of tumorigenesis and for developing new
cancer therapies. The ability to generate iPSCs from
cancer cells allows for the study of individual patient’s
tumors, leading to personalized treatments that may be
more effective and have fewer side effects than current
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Table 13 Key ethical and legal considerations in iPSC research
Consideration Description References
Intellectual Property Rights Refers to the legal ownership and control over the intellectual property (IP) generated [733,774]
from iPSC research. This consideration involves issues such as patenting iPSC technolo-
gies, ownership of cell lines, licensing agreements, and potential conflicts over IP rights
between researchers, institutions, and commercial entities
Regulations Refers to the regulatory frameworks and guidelines that govern iPSC research. This con- [535,775]

International Consensus

Privacy and Confidentiality

Informed Consent

Ethical Use of iPSCs in Research

Equity and Access to iPSC Technologies

Data Sharing and Collaboration

Ethical and Responsible Conduct of Research

Genetic Privacy and Discrimination

Research on Vulnerable Populations

Benefit-Sharing and Return of Results

sideration involves compliance with applicable laws, regulations, and ethical guidelines

at the national, regional, and institutional levels. It includes obtaining appropriate research
approvals, informed consent from donors of biological materials, and adherence to ethical
standards in research involving human subjects

Refers to the need for a global agreement or consensus on ethical and legal standards

in iPSC research. This consideration involves addressing differences in regulations and ethi-
cal frameworks across countries and fostering collaboration and sharing of data, resources,
and knowledge while respecting cultural, legal, and social diversity

Refers to protecting the privacy and confidentiality of individuals who contribute
biological materials for iPSC research. This consideration involves implementing meas-
ures to ensure that personal information and data are handled securely, anonymized
when necessary, and used only for authorized purposes while complying with applicable
privacy laws and regulations

Refers to obtaining voluntary, informed, and documented consent from individuals

who provide biological materials for iPSC research. This consideration involves ensuring
that potential donors are adequately informed about the nature, purpose, risks, and bene-
fits of the research and that their consent is obtained without coercion or undue influence

Refers to conducting iPSC research in an ethically responsible manner. This consideration
involves adhering to ethical principles, such as respect for autonomy, beneficence, non-
maleficence, and justice. It includes considering the potential ethical implications of iPSC
research, such as the creation and destruction of embryos, the use of human-animal
chimeras, and potential social implications

Refers to ensuring equitable access to iPSC technologies, benefits, and potential therapies.
This consideration involves addressing issues of fairness, affordability, and accessibil-

ity, particularly in the context of healthcare disparities and global health challenges. It
includes promoting the inclusion of diverse populations and addressing barriers to access
for underserved communities

Refers to the sharing of research data, resources, and knowledge among researchers
and institutions involved in iPSC research. This consideration involves promoting open
science principles, facilitating data sharing while respecting privacy and confidentiality,
and fostering collaboration to accelerate scientific progress and maximize the benefits
of iPSC research

Refers to upholding high ethical standards and responsible conduct in all aspects of iPSC
research. This consideration involves ensuring integrity, transparency, and accountability
in research practices, including study design, data collection, analysis, publication, and dis-
semination. It includes promoting research integrity and addressing conflicts of interest
or misconduct

Refers to protecting the privacy of an individual’s genetic information obtained

through iPSC research and preventing potential discrimination based on genetic data.
This consideration involves implementing safeguards to ensure that genetic information
is not misused, disclosed without consent, or used to discriminate against individuals

in areas such as employment, insurance, or social services

Refers to conducting iPSC research involving vulnerable populations, such as minors, indi-
viduals with cognitive impairments, or individuals lacking decision-making capacity. This
consideration involves implementing additional safeguards to protect the rights and wel-
fare of these individuals, including obtaining informed consent from legally authorized
representatives and ensuring the research benefits outweigh the potential risks

Refers to addressing the equitable sharing of benefits and returning research results

to participants or communities involved in iPSC research. This consideration involves
establishing mechanisms and policies to ensure that the benefits derived from iPSC
research, such as potential therapies or commercial products, are shared fairly

and that research findings are communicated back to participants in an understandable
manner

[611]

[532]

[593]

[15,776]

[46]
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Consideration

Description

References

Animal Welfare in iPSC Research

Research Transparency and Reproducibility

Commercialization and Accessibility

Refers to considering and minimizing potential harm or suffering experienced by animals
used in iPSC research, particularly in experiments involving human-animal chimeras. This
consideration involves following ethical guidelines for animal welfare, implementing
appropriate animal care and use protocols, and exploring alternative methods to reduce
or replace animal models when feasible

Refers to promoting transparency and reproducibility in iPSC research. This consideration
involves sharing research protocols, methods, and data openly, making research findings
accessible for scrutiny and replication, and adhering to best practices in research design,
statistical analysis, and reporting to ensure the reliability and validity of scientific findings

Refers to the balance between commercial interests and ensuring accessibility of iPSC
technologies and therapies. This consideration involves addressing issues related to afford-
ability, affordability, and fair pricing of iPSC-based products, as well as implementing meas-

(50]

(52]

ures to ensure that essential iPSC research tools and technologies are widely available

for scientific advancement
Governance and Oversight

Refers to establishing appropriate governance and oversight mechanisms for iPSC (53]

research. This consideration involves defining responsible conduct guidelines, establishing
research ethics committees or institutional review boards, and monitoring compliance
with ethical and legal standards to ensure the responsible and accountable conduct

of iPSC research
Social and Cultural Considerations

Refers to recognizing and addressing social and cultural factors in iPSC research. This con-  [45]

sideration involves engaging with diverse stakeholders, including communities affected
by the research, to understand and address potential cultural, social, or value-based con-
cerns. It includes respecting cultural practices, beliefs, and societal norms in the design,
implementation, and dissemination of iPSC research

treatments. The iPSCs have also been used to develop
immunotherapies, which have shown great promise in
the treatment of certain types of cancer. Immunothera-
pies work by harnessing the power of the patient’s own
immune system to attack cancer cells. iPSCs can be used
to generate immune cells that can be used in these thera-
pies, providing a potential source of unlimited immune
cells for cancer treatment. Furthermore, iPSCs offer
a unique platform for drug screening and the develop-
ment of new cancer treatments. By using iPSCs to gen-
erate different types of cells, researchers can test the
efficacy and safety of potential new cancer drugs before
testing them in animal models or human clinical trials.
While iPSCs hold great promise in the field of cancer
research and treatment, there are still many challenges
that need to be overcome. One of the major challenges
is the tumorigenic properties of iPSCs, which can lead
to the formation of teratomas or other types of tumors.
Additionally, the efficiency of iPSC generation needs to
be improved, and the safety and efficacy of iPSC-based
therapies need to be thoroughly evaluated. Continued
investment in iPSC research is crucial to unlocking the
full potential of these cells. Funding for iPSC research
will allow for the development of new technologies and
methods for generating iPSCs and for evaluating their
safety and efficacy. In addition, continued investment in
iPSC research will enable the development of new cancer
therapies and the optimization of existing therapies. The

iPSCs offer a powerful tool for studying tumorigenesis
and for developing new cancer therapies. While signifi-
cant progress has been made in iPSC-based tumorigen-
esis research, there are still many challenges that need to
be overcome. Continued investment in iPSC research is
crucial to unlocking the full potential of these cells and
to realizing their promise in the field of cancer research
and treatment. Some recommendations for future
research include developing new methods for generating
iPSCs that are safer and more efficient, improving the
safety and efficacy of iPSC-based therapies, and devel-
oping new immunotherapies that utilize iPSC-generated
immune cells. In addition, further research should focus
on understanding the molecular changes that occur dur-
ing cancer development and progression using iPSCs
as a model. This will provide valuable insights into the
mechanisms underlying tumorigenesis and help identify
potential targets for therapeutic interventions. Moreo-
ver, it is important to explore the potential of iPSCs in
combination with other treatment modalities. Com-
bining iPSC-based therapies with existing cancer treat-
ments, such as chemotherapy or radiation therapy, may
enhance their effectiveness and improve patient out-
comes. Additionally, investigating the synergistic effects
of iPSC-derived immune cells with other immunothera-
peutic approaches could lead to more robust and durable
anti-cancer responses. Ethical and legal considerations
surrounding iPSC research should also be addressed. As
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iPSCs can be derived from a patient’s own cells, there
are fewer ethical concerns compared to other types of
stem cells. However, careful regulation and guidelines
should be in place to ensure responsible and ethical use
of iPSCs in research and clinical applications. In conclu-
sion, iPSCs have demonstrated remarkable potential in
the field of cancer research and therapy. The advance-
ments made in iPSC-based tumorigenesis research have
shed light on the complex processes involved in cancer
development and have opened up new avenues for per-
sonalized medicine and innovative treatment strategies.
However, there is still much work to be done to fully
unlock the potential of iPSCs. Continued investment in
iPSC research, both in terms of funding and collabora-
tion between researchers and clinicians, is essential. This
will enable further advancements in iPSC generation
techniques, enhance our understanding of cancer biol-
ogy, and facilitate the translation of iPSC-based thera-
pies into clinical practice. With concerted efforts and
ongoing research, iPSCs have the potential to revolu-
tionize cancer treatment, improve patient outcomes, and
ultimately contribute to the goal of eradicating cancer.
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