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Abstract 

Skin cancer has emerged as the fifth most commonly reported cancer in the world, causing a burden on global health 
and the economy. The enormously rising environmental changes, industrialization, and genetic modification have 
further exacerbated skin cancer statistics. Current treatment modalities such as surgery, radiotherapy, conventional 
chemotherapy, targeted therapy, and immunotherapy are facing several issues related to cost, toxicity, and bioavail‑
ability thereby leading to declined anti‑skin cancer therapeutic efficacy and poor patient compliance. In the context 
of overcoming this limitation, several nanotechnological advancements have been witnessed so far. Among various 
nanomaterials, nanoparticles have endowed exorbitant advantages by acting as both therapeutic agents and drug 
carriers for the remarkable treatment of skin cancer. The small size and large surface area to volume ratio of nanopar‑
ticles escalate the skin tumor uptake through their leaky vasculature resulting in enhanced therapeutic efficacy. In 
this context, the present review provides up to date information about different types and pathology of skin cancer, 
followed by their current treatment modalities and associated drawbacks. Furthermore, it meticulously discusses the 
role of numerous inorganic, polymer, and lipid‑based nanoparticles in skin cancer therapy with subsequent descrip‑
tions of their patents and clinical trials.
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Graphical Abstract

Introduction
Skin carcinoma is one of the most dangerous types of 
cancer that was described by Laennec (melanoma), Jacob 
(basal cell carcinoma), and Bowen (squamous cell carci-
noma in  situ) in the years 1804, 1827, and 1912, respec-
tively [1–4]. As of 2020, skin carcinoma is the fifth most 
commonly reported cancer in the world, according to 
World Health Organization [5]. In 2022, the American 
Academy of Dermatology (AAD) disclosed that approxi-
mately 9,500 people in the United States are diagnosed with 
skin cancer every day. AAD also stated that at least one in 
five Americans would develop skin cancer in their lifetime 
[6, 7]. Other than the United States, the highest incidence 
rate of skin cancer is also perceived in Australia and New 
Zealand, with an average case of 33 per 1,00,000 residents, 
followed by countries like Norway and Denmark (northern 
European countries) [5, 8]. Some of the proven risk factors 
for skin cancer include exposure to ultraviolet radiation 
[9, 10], chemical carcinogens [11, 12], genetic modulation 
[13, 14], fair skin [15], immunosuppression [16–18], etc. 
Based on the cellular origin, skin cancer is categorized into 
two types, i.e., melanoma skin cancer (melanocytes) and 
non-melanoma skin cancer (keratinocytes). Further, based 

on severity, non-melanoma skin cancer is divided into 
basal cell carcinoma (BCC) and squamous cell carcinoma 
(SCC) [19]. Although non-melanoma skin cancer accounts 
for 95% (BCC: 75%, SCC: 20%) of all reported skin can-
cer cases, the vast majority of skin cancer deaths are due 
to melanoma (80% death rate), which is a serious medical 
issue [20].

Currently, the most commonly employed treatment 
strategies for skin cancer during its initial stages include 
excision surgery [21], Mohs surgery [22], radiation ther-
apy [23], curettage and electrodesiccation [24], cryo-
therapy [25], and photodynamic therapy [26]. However, 
in advanced stages where surgery and radiotherapy are 
impossible, immunotherapy (I) [27], targeted therapy 
(T) [28], and chemotherapy (C) [29] are widely utilized. 
Nonetheless, even after surgery and radiotherapy, the 
ITC is preferred chiefly to abolish the recurrence of skin 
cancer sooner or later. But the drawbacks associated with 
immunotherapy and targeted therapy, such as poor bio-
availability and high cost, turn the patient’s eyes towards 
chemotherapy [30–32]. Although chemotherapy dra-
matically reduces the treatment cost of skin cancer, it suf-
fers from poor therapeutic efficacy followed by causing 
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severe side effects due to tumor resistance, inadequate 
solubility and permeability, poor bioavailability, non-
targetability, and so on [33]. Lastly, the American Cancer 
Society states that the five-year survival rate for mela-
noma that spreads to regional and distant lymph nodes 
(advanced stage) is 68% and 30%, respectively, with the 
current treatment strategies [34]. Thus, an immediate call 
needs to be made to devise a groundbreaking treatment 
approach to diminish skin cancer conditions regardless 
of their advanced stages.

Nanotechnology has gained significant attention in 
various biomedical applications, including cancer ther-
apy, due to its ability to deal with materials in size range 
of 1–1000 nm [35–37]. The nano-sized materials possess 
unique physicochemical properties that can immensely 
improvise the efficacy of cancer therapeutics. Many 
nanomaterials such as nanofibers [38], nanosuspen-
sion [39], nanoemulsions [40], and nanoclay [41] have 
been widely exploited for the treatment of skin cancer. 
However, nanoparticles (NPs) have shown exceptional 
supremacy over all other nanomaterials [42]. Further, the 
ability of NPs to act as an anticancer agent (due to their 
intrinsic therapeutic property), encapsulate and safe-
guard therapeutic moieties (hydrophilic and lipophilic), 
target the tumor (via active or passive approach), over-
come the chemoresistance (to enhance the tumor cell 
uptake), control the drug release, and increase the skin 
permeability (to improve the topical/transdermal deliv-
ery of anticancer agents) has made them predominant 
candidates in skin cancer therapy [39, 43].

Nevertheless, nanotechnology in cancer therapy is not 
a modest approach, and already there are few NPs such 
as Doxil® (PEGylated liposome loaded with doxorubicin 
– 1995), Abraxane® (albumin-bound NPs loaded with 
paclitaxel – 2005), Oncaspar® (polymer protein conju-
gated with L-asparaginase – 2006), Marqibo® (liposome 
loaded with vincristine – 2012), Onivyde® (liposome 
loaded with Irinotecan – 2015), and Vyxeos® (liposome 
loaded with Cytarabine/ Daunorubicin – 2017) that 
were approved by Food and Drug Administration (FDA). 
Additionally, NanoTherm® (iron oxide NPs – 2010) and 
Hensify® (hafinum oxide NPs – 2019) are some of the 
inorganic NPs that were approved by European Medi-
cines Agency (EMA). However, they are specifically 
intended for use in breast cancer, ovarian cancer, non-
small-cell lung carcinoma, sarcoma, glioblastoma, pan-
creatic cancer, leukemia, multiple myeloma, and so on, 
but not for skin cancer [44–46]. Thus, many researchers 
and pharmaceutical companies are still striving to come 
up with NP-based treatment modality for efficient treat-
ment of skin cancer by overcoming the toxicity barrier. 
With this contemplate, the present review provides a 
brief insight into various skin cancer types and pathology. 

Further, the authors have summarized the current treat-
ment strategies for skin cancer along with their draw-
backs. In later sections, the ambit of nanotechnology 
and various categories of NPs in skin cancer therapy are 
rigorously canvassed based on the most recent litera-
tures followed by a detailed description of recent patents 
and clinical trials. Although several reviews have already 
elaborated on the role of nanotechnology in skin cancer, 
the originality of the present review lies in the detailed 
classification of NPs, such as inorganic, polymer, and 
lipid-based NPs, which makes it a state-of-the-art review.

Types and pathology of skin cancer
Basal cell carcinoma
Basal cell carcinoma (BCC) is the commonest (accounts 
for 70% of cutaneous malignancies) and least aggres-
sive skin tumor that predominantly occurs in the region 
subject to extreme sun exposure, specifically on the neck 
and head [47]. Since this carcinoma arises from the basal 
layer of cells in epidermis, it has been termed basal cell 
carcinoma. The mutation and inactivation of p53 tumor 
suppressor gene, Ras protein, and sonic hedgehog glyco-
protein caused by ultraviolet B radiation are estimated 
to be the mechanism behind the development of BCC. 
Additionally, its genesis is linked with germ cells of the 
hair follicle [48]. Based on their morphology, risk of 
recurrence, and metastasis, they have been categorized 
into several subtypes, such as nodular, superficial, micro-
nodular, and infiltrative BCC. The nodular BCC tends to 
recur less frequently compared to other subtypes since 
they are clinically known, and the lesion boundary is 
well defined for precise treatment. The superficial BCC 
is characterized by a smooth or red stain in the epider-
mis with limited or nil invasion into the dermis (Fig. 1). 
Unlike other subtypes, which are formed by large aggre-
gates, the micronodular BCC is constituted by the aggre-
gates of small and round basaloid cells. Lastly, as the 
name suggests, infiltrative BCC invades both peripheral 
and deep regions of the skin, even penetrating the der-
mis, making them the most aggressive subtype [49]. 
Some of the individual risk factors for BCC involves 
genetic condition like Gorlin-Goltz syndrome, age, gen-
der, immunosuppression, ultraviolet radiation, Fitzpat-
rick skin types I and II, and so on [50].

Squamous cell carcinoma
Squamous cell carcinoma (SCC) is the second most fre-
quently occurring skin cancer (accounts for 25% of cuta-
neous malignancies) following BCC and is more highly 
invasive than BCC [51]. The cervicofacial regions such 
as ears and lower lip are highly susceptible to developing 
SCC than BCC. Unlike BCC, inactivation of E-cadherin 
protein along with mutation of p53 tumor suppressor 
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gene, Ras protein plays a significant role in developing 
SCC. SCC is distinguished by an atypical proliferation 
of invasive squamous cells that could metastasize into 
various parts of the body (Fig.  1) [52]. The aggressive-
ness of SCC depends on the location, depth, size, and dif-
ferentiation of lesion. For instance, lesions beyond 2 cm 
in diameter and 4 mm in depth have greater chances of 
recurrence and metastasis. With respect to differentia-
tion, a fully-defined SCC has distinct cytology, irregular 
neoplastic keratinocyte infiltration of the dermis, and 
varying degrees of inflammation and fibrosis under-
neath the tumor. However, deeper invasion and increased 
mitotic activity, including blood vessel invasion, are char-
acteristics of moderately-defined SCC. Nevertheless, the 
least-defined SCC commonly invades the hypodermis 
and has negligible keratinization. Similar to BCC, the 
main reason behind the occurrence of SCC is immoder-
ate exposure to ultraviolet radiation. But, other factors 
such as human papillomavirus (HPV), chemical carcino-
gens, genodermatoses, inflammatory conditions, and 
medicaments (tumor necrosis factor—α inhibitors) also 
hold responsible for SCC [53, 54].

Melanoma
Melanoma is the least common type of skin cancer (5% 
of cutaneous malignancies), yet the most aggressive one, 
accounts for about 80% of overall skin cancer deaths 
[55, 56]. Melanoma arises from pigment (melanin) 

producing cells called melanocytes with uncontrollable 
division causing metastatic events (Fig. 1) [57]. During 
the initial stages, the lesion will be flat and pigmented 
with an indistinct shape and also limited to the epider-
mis. At later stages, the tumor growth will be vertical, 
infiltrating into the collagen fibers in the dermal layer. 
Lastly, the tumor infiltrates the subcutis to produce 
nodules and papules [56, 58]. The actual stages of mela-
noma are shown in Table 1 and Fig. 2.

In the United States, patients with advanced stages of 
melanoma have shown survival rates of 3 to 11 months. 
After diagnosis, the five-year survival rate of patients 
with metastatic melanoma was less than < 10%. The 
patients suffering from stage I and II melanoma displayed 
a five-year survival rate of 99.4%, followed by 68.0% and 
29.4% for stage III and IV, respectively [6]. Some risk fac-
tors for melanoma include ultraviolet radiation, genetics, 
fair skin, chemical carcinogens, and immunosuppression. 
In addition, evidence supported that indoor tanning was 
also responsible for melanoma occurrence [59].

Current treatment approaches and their limitations
The optimal treatment strategy for skin cancer is decided 
by the type, size, region, and developmental stage of the 
tumor [60]. Some of the regular techniques adopted to 
eradicate large-sized skin cancer during their initial stages 
are excision surgery, Mohs surgery or radiation therapy, 
along with immunotherapy or targeted therapy. However, 

Fig. 1 Diagrammatic representation of basal cell carcinoma, squamous cell carcinoma, and melanoma
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small-sized skin cancer is eliminated via curettage and 
electrodesiccation, cryotherapy, laser therapy, or photo-
dynamic therapy followed by immunotherapy or targeted 
therapy. The role of immunotherapy and targeted therapy 
is to make sure that the tumor doesn’t recur once they 
have been excised or eliminated via physical techniques. 
During advanced stages of skin cancer, where the tumor 
has metastasized into various organs like the brain, lungs, 

liver, or bone, chemotherapeutic agents via oral, intrave-
nous, or topical routes are greatly recommended [61, 62]. 
A brief description of currently practiced treatment strate-
gies for skin cancer therapy is narrated below (Fig. 3).

Excisional surgery
Excisional surgery is a standard method of treating skin 
cancer. In this technique, the tumor is sliced every 1.5 to 

Table 1 Stages of melanoma as per American Cancer Society

Melanoma 
stage

Description

0 Tumor invades the skin surface (epidermis) with slow mitotic rate. Not spread to nearby lymph or distant tissues/organs. This stage is also 
termed “melanoma in situ.”

I Horizontal expansion of tumor on skin surface. Not more than 2 mm in thickness and might or might not be ulcerated. Not spread to 
nearby lymph or distant tissues/organs

II Vertical expansion of tumor, thickness ranging from minimum 1 mm to more than 4 mm. Ulcerated or non‑ulcerated. Not spread to 
nearby lymph or distant tissues/organs

III A Tumor with not more than 2 mm thickness. Ulcerated or non‑ulcerated. Cancer has spread to 1–3 nearby lymph nodes (can only be seen 
under microscope). Not spread to distant tissues/organs

III B Tumor with not more than 4 mm thickness. Ulcerated or non‑ulcerated. Cancer has spread to 1 nearby lymph node and small areas of 
nearby skin. Not spread to distant tissues/organs

III C Tumor with not more than 4 mm thickness. Ulcerated or non‑ulcerated. Cancer has spread to small areas of nearby skin and 4 or more 
nearby lymph nodes. Not spread to distant tissues/organs

III D Tumor with more than 4 mm thickness and ulcerated. Cancer has spread to small areas of nearby skin and 4 or more nearby lymph nodes. 
Not spread to distant tissues/organs

IV Tumor can have any thickness. Cancer has spread to nearby lymph nodes and distant organs such as brain, liver, lungs, bone, or kidney

Fig. 2 An illustration of melanoma progression
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2 mm in depth and processed for histopathological study. 
The main advantage of this technique is a negligible scar, 
histologic verification of tumor margin, and fast healing/
recovery. However, the limitations are infection, seroma, 
hematoma, and the probability of significant wound for-
mation [63, 64].

Mohs micrographic surgery
Mohs micrographic surgery is a state-of-the-art method 
of excising skin tumors. In this technique, the micro-
scope has been used to visualize and excise the maximum 
possible tumor under local anesthesia. It also helps in 
avoiding unnecessary damage to normal tissues. The hor-
izontal sections obtained in this way furnish a complete 
view of the deep and peripheral margins of the speci-
men. Mohs surgery is more cost-effective than traditional 
surgical methods and impedes the recurrence of BCC or 
SCC [65–67].

Curettage and electrodessication
Curettage and electrodesiccation, also called curettage 
and desiccation, is a specialized technique that destructs 
the cancer lesion and adjacent normal tissues by cauteri-
zation and also scraping with a curette. It can be implied 
only for small-sized skin cancers; however, it is not rec-
ommended for large and high-risk skin tumors. In addi-
tion, the margin evaluation is unachievable due to the 
non-availability of the specimen. Therefore, it is the least 
preferred technique [68–70].

Cryotherapy
Cryotherapy is another treatment strategy that involves 
liquid nitrogen to freeze the small-sized BCC or SCC 
until they reach tumoricidal temperature. The main 
advantage of this technique is that there won’t be any 
complications of bleeding or line scar after completion of 
treatment, along with a high tumor clearance rate. How-
ever, due to a lack of tumor margin determination and 
skilled-professional dependent procedure, this technique 
is rarely adopted in treating skin cancer [71, 72].

Radiation therapy/radiotherapy
Radiation therapy/radiotherapy is an ideal strategy to 
treat older patients with extensive and recurrent skin 
cancer who cannot tolerate surgery or the locations 
where removal of tumors is not possible surgically. This 
therapy is categorized into three major classes such as 
conventional external radiation therapy, superficial x-ray 
therapy, and brachytherapy. The modest technique for 
radiation includes volumetric arc therapy, which helps in 
complex dose distribution and minimizes normal tissue 
involvement. However, their high cost, several rounds of 
visits for therapy, and growth of destructive phenotypes 
in a few recurring tumors are some of the limitations of 
this therapy [73].

Photodynamic therapy
Photodynamic therapy (PDT) is a distinctive non-inva-
sive technique that adopts photosensitizers and lasers 

Fig. 3 Diagrammatic representation of current treatment approaches for skin cancer and their limitations
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to kill skin cancer cells [74]. Initially, the photosensitiz-
ers are administered to make them accumulate on the 
tumor area, followed by irradiation of laser beam to 
generate singlet oxygen and other reactive oxygen spe-
cies from photosensitizers, which finally kills tumor 
cells [75]. Some of the commonly used photosensitizers 
are hematoporphyrin derivative [76, 77], 5-aminolae-
vulinic acid [78, 79], boron-dipyrromethene [80], and so 
on. Studies have shown that the use of topical antican-
cer drugs along with PDT as a combinatorial approach is 
highly effective in skin tumor eradication [81]. The draw-
back associated with the technique is that high-cost and 
deep-rooted tumors are unable to kill effectively [82].

Immunotherapy, targeted therapy, and chemotherapy
Immunotherapy, targeted therapy, and chemotherapy 
are the most promising adjuvant therapies against BCC, 
SCC, and melanoma [83]. Regardless of the surgery, radia-
tion therapy, or PDT, immunotherapy, targeted therapy, 
or chemotherapy are highly recommended as alternative 
therapy for successfully curing skin cancer (advanced 
stage) without recurrence. Additionally, this strategy has 
been proven to increase the survival rate of skin cancer 
patients. However, the drawbacks associated with immu-
notherapy and targeted therapy, such as high cost and low 
patient compliance, are a threat [31]. Subsequently, this 
turns the patients’ eyes towards chemotherapy. Although 
chemotherapy can address the cost-related issues and 
makes the treatment affordable to low and middle-income 
families, the side-effects caused by chemotherapeutic 
agents and chemoresistance exhibited by the aggressive 
tumors are their greatest drawbacks [84, 85]. Therefore, an 
advanced treatment strategy that can overcome the cur-
rent challenges faced by skin cancer treatment approaches 
is highly required to ensure patient compliance. In this 
quest, nanotechnology is a ray of hope for effective treat-
ment against skin cancer.

Nanotechnology in skin cancer therapy
Nanotechnology is an emerging area of science that 
involves the manipulation of various materials in the 
nanometre range [35, 36]. Nanomaterials have remark-
able potential to improvise the performance of cancer 
therapeutics by acting as both drug carriers and thera-
peutic agents [37]. As described in section "Current 
treatment approaches and their limitations", the treat-
ment for skin cancer is often chosen by the tumor type, 
size, region, and development stage. Regardless of sur-
gery and radiation therapy, skin cancer is treated with 
immunotherapy, targeted therapy, and chemotherapy to 
diminish as many cancer cells as possible. However, the 
conventional delivery of chemotherapeutic agents lacks 
tumor targeting leading to inefficient tumor uptake and 

unnecessary distribution of drugs throughout the body, 
thereby causing severe side effects. In addition, the ther-
apeutic agents that possess poor half-life, low solubility 
and permeability, and inadequate stability in physiologi-
cal conditions fail to produce the required therapeutic 
efficacy [85, 86]. In most cases, where skin cancer has not 
been metastasized into other organs like the brain, lungs, 
liver, bone, etc., the direct delivery of therapeutic agents 
into the skin tumor site (topical) could potentially avoid 
the systemic toxicity along with a reduction in the overall 
cost of the treatment [87]. However, the sufficient perme-
ability of the therapeutic agents into the cutaneous region 
of skin tumors is hindered by the skin’s outermost barrier 
stratum corneum. Henceforth, nanotechnology is an apt 
strategy to address all these issues to abolish skin cancer. 
There is a wide range of nanomaterials that are involved 
in the treatment of skin cancer conditions, among which 
the nanoparticles (NPs) have gained significant inter-
est due to their unique properties, such as passive tumor 
targeting via enhanced permeability and retention (EPR) 
effect [88, 89], evading reticuloendothelial system (RES) 
[90], and improved skin permeability [91]. The NPs are 
further classified into three categories, i.e., inorganic 
NPs, polymer-based NPs, and lipid-based NPs (Fig.  4). 
The inorganic NPs are the specialized ones that perform 
both as drug carriers and therapeutic molecules [92], 
whereas polymer and lipid-based NPs are well suited for 
delivering therapeutic molecules of various kinds in a 
controlled manner with enhanced permeability (through 
the skin and other tissues including tumors) [93, 94].

Inorganic nanoparticles for skin cancer therapy
Inorganic NPs have grasped significant attention in 
oncology for their diverse applications like tumor ther-
apy, tumor drug delivery, tumor imaging, and enhance-
ment of radiotherapy. These NPs are derived from metals, 
metal oxides, carbon, ceramics, silica, etc. The unique 
physicochemical properties of inorganic NPs, including 
small size, large surface area, bioactivity, biocompatibil-
ity, and functionalizing ability, have made them the most 
appropriate candidates for skin cancer therapy. Scientists 
have explored that the inorganic NPs possess the intrin-
sic therapeutic property, due to which they can execute 
the cancer cells by themselves [95, 96]. In addition, they 
can also deliver a wide range of therapeutic agents to 
tumor sites via active or passive targeting. Nevertheless, 
they can play the role of photothermal or photosensitiz-
ing agent, which is further employed in photothermal 
or photodynamic therapy (PTT/PDT), respectively [95]. 
Together with intrinsic therapeutic property, drug deliv-
ery ability, and photothermal or photosensitizing trait, 
the inorganic NPs can endow exceptional synergistic 
treatment for skin cancer. A few regular inorganic NPs 
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involved in skin cancer therapy are mesoporous silica 
NPs, gold NPs, carbon nanotubes, silver NPs, platinum 
NPs, zinc oxide NPs, copper oxide NPs, titanium diox-
ide NPs, cerium oxide NPs, and so on. Further, the most 
recent studies of these NPs against skin cancer have been 
thoroughly described in the coming sections.

Mesoporous silica nanoparticles
Mesoporous silica nanoparticles (MSNs) are a unique 
type of NPs distinguished by repeated positioning of 
uniform-sized mesopores whose pore diameters range 
from 2 to 7  nm placed in an organized order of silica 
with an average diameter ranging from 50 to 300 nm as 
per the International Union of Pure and Applied Chem-
istry (IUPAC) [97, 98]. MSNs were first developed by 
the scientists of Mobil corporation in the year 1992 via 
a liquid crystal template mechanism using alumino-
silicate gels as a precursor [99]. The general mechanism 
behind the formation of MSNs involves supramolecular 
assemblies of surfactants to form micelles at a concen-
tration higher than the critical micelle concentration 
(CMC), followed by condensation of silica precursors on 
the surface of micelles, which leads to the formation of 

inorganic–organic hybrid system. Thereafter, the tem-
plate surfactant can be eliminated by calcination or sol-
vent extraction to form mesopores [100]. The obtained 
MSNs can offer a wide range of biomedical applications 
due to their unique properties such as uniform porous 
structure, large specific surface area, pore volume, tune-
able particle size, dual functional surfaces (inner porous 
surface and outer matrix surface), and good biocompat-
ibility and biodegradability. Some of the most significant 
advantages of MSNs in cancer therapy are their high drug 
loading capacity, enhanced skin permeability (by func-
tionalizing with polymers and peptides), non-premature 
release and safeguarding of therapeutics from degrada-
tion in unfavorable physiological conditions, controlled 
release of therapeutic agents through modification with 
stimuli-responsive materials, passive targeting of tumors 
via EPR effect, and active targeting of tumors via ligand-
functionalization [101, 102]. Owing to this supremacy, 
the MSNs can be considered exemplary nanosystems that 
could actively participate in skin tumoral therapy.

Cisplatin (CP) is a potent chemotherapeutic agent 
with several drawbacks such as nephrotoxicity, ototoxic-
ity, hepatotoxicity, acquired tumor resistance, etc. [103]. 

Fig. 4 Schematic representation of utilization of nanoparticles in skin cancer therapy
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In order to diminish its toxicity toward normal cells and 
increase its anticancer effectiveness, SBA-15 (Santa Bar-
bara Amorphous 15) based MSNs impregnated with 
CP were developed by Draca and colleagues [104]. The 
results from MTT assay revealed that the CP@MSNs 
possess an  IC50 value of 0.58 ± 0.11 µM, which was lesser 
than the  IC50 value of free CP (0.72 ± 0.17 µM). In in vivo 
study, the free CP did not inhibit even 5% of tumor 
growth, whereas CP@MSNs substantially declined the 
tumor size. The authors also confirmed that the increased 
antitumoral effect of CP@MSNs is purely because of the 
encapsulated CP and not due to the MSNs, thereby prov-
ing MSNs are inactive drug carriers. In addition, the mice 
group treated with free CP lost their body weight signifi-
cantly (10–15%) and indicated several side effects such 
as heavy breathing, aggravated moving, vocalizations, 
etc. However, no side effects were observed in the mice 
group treated with CP@MSNs apart from mild to negli-
gible nephro- and hepatotoxicity, which did not affect the 
mice to a greater extent, ensuring MSNs are the promi-
nent candidates in effective melanoma treatment without 
involving severe side effects.

Dacarbazine (DTIC) is the only drug approved by the 
USFDA since 1975 as a first-line chemotherapeutic agent 
for the treatment of melanoma [105]. However, it bears 
certain drawbacks such as extreme sensitivity to light and 
temperature, highly cytotoxic in normal cells, unstable in 
solution form (used as drug powder injection), and poor 
half-life; due to which, the overall response rate of DTIC 
in patients with advanced stage of melanoma was found 
to be only 5–20% [106]. Therefore, a recent study by Zhao 
and colleagues developed DTIC@MSNs with a particle 
size of 142 nm in the quest to overcome the drawbacks 
associated with free DTIC [107]. Although the DTIC@
MSNs possess an advantage over free DTIC, such as 
enhanced tumor uptake via the EPR effect, less than 1% 
of DTIC@MSNs reach the tumor site via a passive tar-
geting strategy. This opens the door for active targeting 
of NPs using various targeting moieties such as aptamers, 
peptides, and antibodies. However, it is a tedious process 
due to the involvement of multiple chemical reactions. 
Thus, the authors came up with the idea of coating can-
cer cell membrane (CCM) on DTIC@MSNs via extrusion 
method that resulted in a particle size of 151 nm (Fig. 5). 

Fig. 5 A Diagrammatic representation of dacarbazine (DTIC) imbibed cancer cell membrane camouflaged mesoporous silica nanoparticle 
synthesis process (DTIC@CMSN). B Schematic illustration of antitumor immune response induced by DTIC@CMSN merged with anti‑programmed 
cell death protein 1 antibody (aPD1), reproduced with permission from [107], licensed under CC BY 4.0
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This benefited the nanosystem by lowering the systemic 
clearance (RES uptake) and increasing the targeting abil-
ity, thereby resulting in accumulation of most DTIC@
CMSNs inside the tumor. Further, the coated CCM also 
furnished extra protection to DTIC from leakage before 
entering inside the tumor. The melanoma cancer cell 
lines (B16F10) treated with DTIC@CMSNs induced 40% 
of cell death, twice as compared to free DTIC, which 
caused only 20% of cell death. Finally, the authors used 
anti-programmed cell death protein 1 antibody (aPD1) 
along with DTIC@CMSNs to mitigate the immune’s neg-
ative feedback pathway throughout the action of chemo-
therapeutics (Fig.  5). Overall, DTIC@CMSNs combined 
with aPD1 exhibited both improved tumor inhibition and 
declined systemic adverse reactions, making them inter-
esting candidates in melanoma therapy.

Nowadays, herbal constituents are gaining significant 
attention in cancer therapy due to their ability to not 
cause any potential side effects. One such phytocon-
stituent is resveratrol (RVT), which has shown promis-
ing results in cancer therapy [108]. However, its efficacy 
is hindered by poor solubility in aqueous medium. To 
overcome this issue, the RVT was loaded into MSNs by 
Marinheiro and team to treat the melanoma condition 
[109]. The particle size and drug entrapment efficiency 
of developed RVT@MSNs were found to be 60  nm 
and > 93%, respectively. The loading of RVT into MSNs 
enabled amorphization, due to which the solubility of 
RVT@MSNs is substantially improved than free RVT. 
Exhibiting the pH-dependent drug release (pH 5.2), the 
RVT@MSNs were found to be a suitable delivery sys-
tem in the tumor microenvironment. Further, the RVT@
MSNs exhibited improved cytotoxicity in two different 
melanoma cell lines (A375 and MNT-1) compared to free 
RVT. However, preclinical studies need to confirm these 
results further to accept RVT@MSNs as a suitable system 
for melanoma treatment.

Most of the therapeutic agents that are used in the 
treatment of skin cancer are administered through an 
intravenous route. However, this could lead to unneces-
sary distribution of drug throughout the body, increasing 
the dose required to exhibit minimum therapeutic effi-
cacy. As a solution to this issue, researchers came up with 
dermal/transdermal drug delivery systems for the local-
ized and site-specific delivery of therapeutics into the 
skin tumors. However, the permeability of therapeutic 
agents (molecular weight more than 500 Da, highly lipo-
philic and hydrophilic) through the skin has remained the 
biggest challenge (due to stratum corneum) [87]. Thus, 
a study by Lio and colleagues developed small interfer-
ing RNA (siRNA) (10–20 kDa) loaded MSNs for treating 
squamous cell carcinoma (SCC) via transdermal route 
[110]. Initially, the authors loaded molecular beacon 

(MB) into MSNs as a model drug instead of siRNA to 
optimize the formulation. The MB-loaded MSNs had 
an average particle size of 200  nm and 4  nm mesopore 
size. The developed NPs were negatively charged due 
to the inherited negative charge of MB. However, stud-
ies have depicted that positively charged NPs possess 
greater affinity towards negatively charged skin pores, 
when applied on untreated skin. Therefore, the authors 
coated MB@MSNs with positively charged poly-L-lysine 
(PLL) and further confirmed the charge with zeta poten-
tial study that exhibited + 30  mV. Due to the coating of 
PLL, the size of MB@MSNs-PLL was increased from 
200 to 250 nm. The biodistribution study using a model 
drug (Cy5) indicated that maximum concentration of 
drug accumulated on tumor site after administering via 
intratumor injection followed by topical application 
(Aquaphor® as a vehicle), lastly intravenous injection. 
It was also found that the NPs administered topically 
yielded less distribution of Cy5 in all chief organs (liver, 
heart, kidney, lung, and spleen) compared to intratumor 
and intravenous injection. Finally, the topically deliv-
ered siRNA@MSNs-PLL exhibited the highest rate of 
tumor inhibition in the mouse xenograft model (SCC) 
compared to intratumor and intravenous injection prov-
ing that MSNs in combination with topical delivery is a 
promising approach for the efficient treatment of SCC.

PTT sought to serve as an essential modality in cancer 
therapy due to its fantastic feature of transforming the 
energy of near-infrared light (NIR) into thermal energy 
with the help of distinctive photothermal agents [111]. 
However, the anticancer efficacy can still be improved 
if PTT is combined with chemotherapy. In this view, 
Zhang and co-workers developed manganese-doped 
MSNs loaded with indocyanine green (ICG) (NIR dye) 
and DTIC (chemotherapeutic agent) to treat malignant 
melanoma [112]. The particle size of MSNs was found to 
be 154  nm with a 3.3  nm pore size. Further, the results 
from in  vivo study exhibited maximum tumor reduc-
tion in the nude mice group treated with ICG/DTIC@
MSNs + NIR irradiation (808  nm, 10  min) compared to 
free DTIC, ICG@MSNs + NIR irradiation, ICG/DTIC@
MSNs. These results show hope that chemo-photother-
mal therapy is a promising treatment modality in mela-
noma therapy without significant side effects.

Some of the studies that demonstrated promis-
ing results in skin cancer therapy include Verteporfin/ 
MSNs/ melanoma [113], indomethacin/ MSNs, 3-ami-
nopropyltriethoxysilane alkoxide/ melanoma [114], cur-
cumin/ MSNs, PEG-400/ melanoma [115], ruthenium 
(II)/ MSNs, (2-thienylmethyl) hydrazine hydrochloride 
(H1), (5,6-dimethylthieno[2,3-d] pyrimidin-4-yl) hydra-
zine/ melanoma [116], Verteporfin/ MSNs, aminopro-
pyltriethoxysilane/ melanoma [117], 5-fluorouracil, 
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dexamethasone/ MSNs, 3-aminopropyltriethoxysilane/ 
melanoma [118], siRNA/ nucleic acid NPs, MSNs/ mel-
anoma [119], HGP10025–33, TRP2180–188/ MSNs/ 
melanoma [120], ovalbumin/ MSRs, MSNs/ melanoma 
[121], polydopamine, ovalbumin/ MSNs, ammonium 
bicarbonate/ melanoma [122].

Carbon nanotubes
Carbon nanotubes (CNTs) are cylindrical nanostructured 
carriers constructed by rolling of graphene sheets [123]. 
They were first reported by a Japanese physicist named 
Sumio Iijima in the year 1991 [124]. The CNTs formed 
by a single sheet of graphene are termed single-walled 
CNTs (SWCNTs), whereas several graphene sheets roll 
up to yield multi-walled CNTs (MWCNTs). Although 
the diameter of both SWCNTs and MWCNTs lies in 
the nm range, their length can extend up to several mm. 
The CNTs are estimated to be apt candidates for cancer 
therapy due to their distinct structural, mechanical, elec-
trical, and thermal properties (PTT). The large surface 
area of CNTs allows them to load high concentration of 
anticancer therapeutics either by using disulfides as link-
ers or via adsorption, and further the controlled drug 
delivery can be achieved through modification of CNTs 
with stimuli-responsive materials [125, 126]. Studies have 
also explored the skin permeability potential of CNTs to 
deliver therapeutic agents via the transdermal route. But 
it has been found that the CNTs alone cannot permeate 
through the skin. However, few studies have reported the 
improved skin permeability of CNTs under lipid/polymer 
functionalization and iontophoresis [127]. All these evi-
dences motivate biomedical researchers to explore their 
potential in skin cancer therapy.

Besides their therapeutics delivery ability and pho-
tothermal property, the CNTs also possess intrinsic 
anticancer properties. In a study, Naserzadeh and team 
compared the antimelanoma efficacy of SWCNTs and 
MWCNTs, followed by exploring the mechanism by 
which they kill melanoma cells [128]. From the in  vitro 
results, it has been found that SWCNTs are more cyto-
toxic than MWCNTs in melanoma cell lines. This may be 
due to the smaller size of the SWCNTs. Interestingly, the 
antimelanoma activity CNTs was due to the activation 
of caspase 3 through mitochondria pathway followed 
by ROS generation, which finally leads to mitochondrial 
membrane potential decline and cytochrome c release 
leading to melanoma cell death.

Another study by a Spain-based research group led 
by Fanarraga demonstrated the mechanism of anti-
melanoma activity of MWCNTs [129]. Astonishingly, 
it has been found that the MWCNT filaments translo-
cate inside the melanoma cells and intermingle with the 
protein nanofilaments of the cytoskeleton, obstructing 

with the biomechanics of melanoma cell division, lead-
ing to its death. The exact mechanism is being followed 
by the traditional microtubule-binding anticancer agents 
such as paclitaxel (PTX). What is more interesting is that 
these MWCNTs can induce antitumoral activity even in 
PTX-resistant melanoma cells, making them one of the 
groundbreaking therapeutics carriers cum antimelanoma 
agents exhibiting potential synergistic activity.

Myeloid-derived suppressor cells (MDSC) are a heter-
ogeneous group of immature myeloid cells that possess 
potent immune suppressive abilities leading to tumor 
progression. However, depletion of MDSC was found to 
have a direct relationship with the potential inhibition of 
tumor growth [130]. Thus, targeting MDSC with specific 
chemotherapeutic agents to promote apoptotic cell death 
is a forefront strategy. Nevertheless, conventional deliv-
ery of chemotherapeutic agents is associated with severe 
toxicity and hypersensitivity reactions. In this situation, 
Burkert and co-workers developed PTX-loaded cup-
shaped carbon nanotubes doped with nitrogen (NCNC) 
and stoppered with gold NPs for passive tumor-targeted 
delivery to deplete the active MDSC [131]. The developed 
carbon nanotube cups enzymatically open via degrada-
tion of carbon-based material to deliver the loaded PTX 
at the tumor site with the help of nitrogen and reactive 
oxygen species produced by MDSC. The TEM results 
indicated that PTX@Au-NCNC possess a length of 
550 ± 260 nm along with a width of 55 ± 17 nm. Since the 
MDSC predominantly expresses the oxidative biodegra-
dation reagents, the authors expect these nanosystems to 
disintegrate in MDSC that are circulating and located in 
lymphoid tissue instead taken up by the tumor microen-
vironment via EPR effect. Finally, the results from in vivo 
study indicated maximum tumor growth inhibition in the 
mice group (melanoma bearing C57BL/6 mice) treated 
with PTX@Au-NCNC compared to empty Au-NCNC 
and free PTX. Furthermore, it is interesting to observe 
that the empty Au-NCNC has suppressed tumor growth 
better than free PTX. This could be due to the inherent 
antitumor properties of gold and CNTs.

To overcome the drawbacks of passive targeted drug 
delivery, a study by Das and colleagues reported the fab-
rication of curcumin (CUR) loaded SWCNTs attached 
with α5β1 integrin receptor targeting RGDK (Arg-Gly-
Asp-Lys) tagged lipopeptide for targeted delivery of CUR 
to melanoma [132]. The TEM images of aqueous SWC-
NTs dispersion revealed that the diameter and length of 
CNT are around 3–5 nm and 300–500 nm, respectively. 
In an in  vitro cell line study, it has been found that the 
CUR@RGDK-SWCNTs exhibited declined B16F10 cell 
viability compared to free CUR. After 24  h of IV injec-
tion, the maximum accumulation of CUR@RGDK-SWC-
NTs was found at the tumor site than in other major 
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organs such as the spleen, heart, lung, kidney, and liver 
supporting the tumor-targeting ability of CUR@RGDK-
SWCNTs. Thus, this nanosystem could find promising 
applications in melanoma therapy, specifically in deliv-
ering potent hydrophobic anticancer drugs selectively to 
the tumor tissues.

The CNTs are promising candidates in PTT due to their 
ability to absorb NIR as well as their strong photothermal 
conversion efficiency. However, the intravenously admin-
istered free CNTs lack tumor targeting ability. Thus, in an 
exciting study, Nagai and teammates reported the fabrica-
tion of SWCNTs conjugated with anti-TRP-1 (melanoma 
targeting moiety) using maleimide chemistry for targeted 
PTT without impeding the NIR absorption character-
istics of SWCNTs [133]. Interestingly, in another study, 
Wang and colleagues developed the MWCNTs individu-
ally loaded with both chemotherapy (doxorubicin; DOX) 
and immunotherapy (oligodeoxynucleotides containing 
CpG motifs; CpG ODN) agents for combinatorial photo-
thermal and chemo-immunotherapy of melanoma [134]. 
The diameter CpG@MWCNTs and DOX@MWCNTs 
were found to be 197.3 ± 5.45  nm and 263.8 ± 7.36  nm, 
respectively. Together with the intratumor injection of 
both CpG@MWCNTs and DOX@MWCNTs followed 
by NIR irradiation, the maximum antitumor activity in 
C57BL/6 mice bearing melanoma was witnessed com-
pared to individual treatment approaches. All these stud-
ies suggest that CNTs are noteworthy candidates to take 
part in skin cancer treatment.

AgNPs, MWCNTs, PEG1000/ melanoma [135], AgNPs, 
MWCNTs/ melanoma [136], MWCNTs/ melanoma [137], 
MWCNTs/ melanoma [138], phenylboronicacid, trimesic 
acid, SWCNTs/ melanoma [139] are few of the recent 
investigations for the treatment of skin cancer.

Zinc oxide nanoparticles
Zinc is a transition metal that is a key and profuse trace 
component in the body following iron. It is a pivotal 
component in diverse cell functions and displays its sig-
nificant part in supporting cellular homeostasis [140]. 
Zinc oxide NPs (ZnO NPs) have taken part in many bio-
medical applications due to their inherent nutritional 
benefits and relatively low toxicity compared to other 
metallic NPs. Owing to their large surface area to vol-
ume ratio and small particle size (less than 100 nm), the 
ZnO NPs possess inherent cytotoxicity behavior against 
cancer cells. So far, the most widely reported mechanism 
behind the anticancer activity of ZnO NPs is their abil-
ity to produce a large number of reactive oxygen species 
after entering the tumor cells. Thanks to the semiconduc-
tor property of ZnO NPs, which is a crucial factor behind 
the production of ROS, resulting in cancer cell death via 
apoptosis. ZnO NPs were also found to take part in both 

PTT/PDT [141–143]. Further, they can be functional-
ized with various polymers and peptides to achieve active 
tumor targeting, enhanced skin permeability (cutane-
ous skin tumor targeting), and also can be conjugated 
with numerous therapeutic agents to acquire synergetic 
anticancer activity. Additionally, the larger ZnO is being 
considered as Generally Recognized as a Safe component 
by FDA, making them the safe and appropriate choice for 
skin cancer therapy.

Recently, a study reported by Khan and co-workers 
involved the development of ZnO NPs using cetyltri-
methylammonium bromide (CTAB) (capping agent) and 
varying concentrations of ion-carriers (NaOH) to study 
their physicochemical and biological properties [144]. 
The SEM images displayed that both the NPs were in spi-
der chrysanthemum-like shape. The particle size by TEM 
images revealed 40  nm for ZnO NPs-1 (0.01  M NaOH) 
and less than 20  nm for ZnO NPs-2 (0.005  M NaOH). 
The in vitro cytotoxicity study using human epidermoid 
carcinoma A431 cells (non-melanoma) showed increased 
cell viability in ZnO NPs-1 treated group, concluding 
that ZnO NPs-2 are more cytotoxic. Furthermore, the 
ROS generation and caspase-3 activity was found to be 
higher in ZnO NPs-2 treated group as compared to ZnO 
NPs-1, concluding that smaller-sized ZnO NPs exhibit 
enhanced cytotoxicity against non-melanoma human cell 
line (A431). These NPs need to be further studied in pre-
clinical settings to clarify their antimelanoma properties.

Ras proteins mutations are usual in almost all types of 
cancers, including skin cancer [145]. Ras proteins have 
a principal role in regulating different cellular signaling 
pathways, due to which they are the targets for intracellu-
lar delivery of the Ras binding domain (RBD) [146]. How-
ever, due to the lack of penetrating ability of free RBD 
into tumor cells, there is a need for a delivery system that 
can enhance the anticancer activity of RBD. Therefore, 
Mathew and team devised a strategy to improve the anti-
melanoma efficacy of RBD by conjugating it with ZnO 
NPs [147]. The particle size of plain ZnO NPs was found 
to be 14  nm; however, after attaching it with RBD, the 
size increased to 100 nm. The in vitro cytotoxicity study 
on mouse melanoma cell lines displayed increased cell 
death for RBD@ZnO NPs (100  nm) than free RBD and 
ZnO NPs (14 nm). The promising in vitro results further 
demand investigation in preclinical settings.

Oxidative stress in any cells, including cancer, is 
avowed to cause malfunction of cell organelle via mem-
brane disruption, mitochondrial dysfunction, or Golgi 
and deoxyribonucleic acid fragmentation [148]. In this 
quest, Ghaemi and co-workers developed the Ag@
ZnO NPs to use as a photosensitizer that can generate 
increased ROS inside the melanoma cells leading to its 
death upon UV irradiation (PDT) [149]. In this study, the 
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authors intended to foster the damage of organelle fol-
lowed by the arrest of melanoma cell cycle via boosting 
the ROS level intracellularly, resulting in apoptosis and 
autophagy. The in vitro cell line studies revealed that the 
Ag@ZnO NPs + UV (290–320  nm, 450  W lamp, 40  cm 
field-focus distance, 180  s exposure time) were highly 
cytotoxic in A375 human melanoma cell lines. In con-
trast, they remained unaffected in normal dermal fibro-
blast cell lines. All these evidences encourage Ag@ZnO 
NPs to be a promising PDT agent to eradicate cutaneous 
melanoma.

The siRNA and microRNA (miRNA) are widely 
reported in cancer therapy for targeted hindrance of 
cancer protein translation [150]. Unfortunately, they 
are meant to suppress the function of one gene at once. 
However, a polyinosinic-polycytidilic acid (pIC) (RNA 
with double strand) possess both immunogenic and 
anticancer property [151]. Further, the surface function-
alized NPs were widely used to deliver this RNA mol-
ecule to the tumor site. But, for the first time, a study 
by Ramani and team directly attached the pIC on top 
of ZnO NPs to form RNA corona around the surface of 
NPs without involving any surface modifying agents to 
treat melanoma [152]. The pIC RNA-bound naked ZnO 
NPs possess synergistic antimelanoma activity due to the 
dual inherent anticancer property of both pIC RNA and 
ZnO NPs. The particle size of plain ZnO NPs and pIC@
ZnO NPs were found to be 60–70 nm and 200–240 nm, 
respectively. The developed nanosystem exhibited effi-
cient antimelanoma activity both in in vitro (B16F10 and 
A375 cell lines) and in vivo (melanoma bearing BALB/c 
mice) conditions. This makes them the most unambigu-
ous agents for melanoma therapy.

So far, we have come across various studies involving 
ZnO NPs for different purposes in skin cancer therapy, 
such as chemotherapeutic agents’ delivery, photothermal 
agent for PTT, photosensitizer for PDT, inherent antican-
cer agent, biomolecules delivery, stimuli-responsive ther-
apeutics delivery, and so on. In an exciting study, Zhang 
and colleagues developed a chemotherapeutic agent 
(DOX) loaded on mesoporous silica-coated gold NPs that 
is finally capped with ZnO quantum dots (QDs) [153]. It 
is a 4-in-1 nanosystem that performs as a (i) photother-
mal agent due to the presence of gold NPs, (ii) loads DOX 
due to the suffice pores on coated mesoporous silica, 
(iii) delivers DOX in a pH-responsive manner due to the 
gatekeeping characteristics of ZnO QDs, (iv) further pos-
sess the inherent anticancer property of ZnO QDs. The 
particle size of initial gold NPs was found to be 18  nm, 
that further increased to 72  nm after forming AuNP@
mSiO2 with a pore size of 2.8  nm. On the other arrow, 
the ZnO QDs exhibited a particle size of 5 nm. However, 
the authors do not disclose the overall size of AuNP@

mSiO2@DOX-ZnO nanosystem. The developed AuNP@
mSiO2@DOX-ZnO nanosystem exhibited 60% DOX 
release in pH 5.0 buffer system (acetate), whereas only 
8% DOX release was observed in pH 7.4 buffer system 
(phosphate), indicating the tumor pH-responsive drug 
delivery. Further, the melanoma-bearing C57BL/6 mice 
treated with AuNP@mSiO2@DOX-ZnO + laser irradia-
tion (L) displayed the highest tumor growth inhibition 
and lung metastasis suppression with no significant side 
effects such as tissue damage and loss of body weight. 
The findings suggest that AuNP@mSiO2@DOX-ZnO 
would be a favorable nanosystem for the combined treat-
ment of melanoma.

Few more studies that exhibited favourable results 
against skin cancer include ZnO NPs/ Musa sapientum/ 
squamous cell carcinoma [154], ZnO-CuO NPs/ Sambu-
cus nigra L/ melanoma [155], ZnO NPs/ Alpinia calcar-
ata/ squamous cell carcinoma [156], ZnO NPs/ Bacillus 
cereus PMSS-1/ melanoma [157].

Gold nanoparticles
Gold, in its colloidal form, has taken part in numerous 
medicinal applications for centuries. The first scientific 
piece of work on gold NPs (AuNPs) was presented in 1857 
by Faraday. Since then, several studies have been con-
ducted to explore their biomedical applications. Among 
many, cancer therapy is one of the appealing areas where 
efficient and cost-effective treatment is in urgent need 
[158, 159]. AuNPs have gained much attention on the 
other arrow due to their easy, inexpensive, and reliable 
synthesis methods. Studies have shown that the nano-
sized gold particles (less than 100 nm) are highly efficient 
in selectively targeting and uptake into the tumors [160]. 
The AuNPs were also reported to inhibit angiogenesis, 
which is a critical factor in tumor development. So far, 
the most widely accepted mechanism for inhibition of 
angiogenesis is the interaction of AuNPs with the hepa-
rin-binding growth factors such as vascular permeability 
factor/vascular endothelial growth factor (VPF/VEGF)-
165 and basic fibroblast growth factor (bFGF) thereby 
inhibiting their activity. This hampers endothelial/fibro-
blast cell proliferation via depleting the phosphoryla-
tion rate of angiogenesis accountable proteins [161, 162]. 
Additionally, the AuNPs can be effectively used in PTT 
through their surface plasmon resonance (SPR) effect. 
Their strong optical absorbance permits constructive 
laser therapy against tumors with negligible collateral 
damage to the neighboring healthy tissues [163]. Nev-
ertheless, the AuNPs can be functionalized with various 
polymers, peptides, and therapeutic agents to achieve 
active targeting of tumors, enhanced skin permeability 
(cutaneous skin tumor targeting), controlled delivery of 
therapeutics, and synergistic activity against cancer cells. 
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With respect to all these merits, AuNPs could be consid-
ered a decorous aspirant in treating skin cancer.

Generally, CTAB, a positively charged surfactant, is 
used as a stabilizer in the synthesis of AuNPs, which is 
deemed cytotoxic. Therefore, a recent study by Gon-
calves and teammates synthesized the gum-arabic 
coated gold nanorods (GA-AuNRs) for treating aggres-
sive melanoma conditions without severe toxicity to 
normal cells [164]. The GA is a negatively charged 
polysaccharide that selectively binds and encapsu-
lates the CTAB electrostatically. The TEM micro-
graphs displayed that the resulting GA-AuNRs were in 
the transversal size of 24.5 ± 6.1  nm and longitudinal 
size of 48.3 ± 6.6  nm. In normal fibroblast cell lines, 
the GA-AuNRs exhibited 30% less cytotoxicity than 
CTAB-AuNRs. However, slightly increased toxicity in 
melanoma cell lines was witnessed for GA-AuNRs than 
CTAB-AuNRs. Further, the in vivo study on melanoma-
bearing mice model depicted significant tumor growth 
inhibition in a concentration-dependent fashion. All the 
findings conclude that the intrinsic property of AuNRs 
coated with negatively charged GA is a noteworthy can-
didate to participate in combinatorial antimelanoma 
therapies to explore their synergistic potential.

Angiogenesis enacts a primary part in tumor develop-
ment and its metastasis. VEGF-A and VEGF receptor-2 
(VEGFR-2) are two chief factors in the progression of 
angiogenesis. Sorafenib (Sor) is a multi-kinase inhibi-
tor that has a demonstrated history of targeting VEGFR, 
platelet derived growth factor receptor (PDGF), and Raf 
to inhibit tumor progression [165]. However, the draw-
backs of Sor, such as poor solubility, rapid metabolism, 
and low bioavailability, hinder them from exhibiting 
complete action. Therefore, Huang and team investigated 
the effect of Sor derivatives capped AuNPs on mela-
noma inhibition [166]. The synthesized AuNPs and 
Sor-AuNPs revealed a particle size of 58.2 ± 7.1 nm and 
337.9 ± 13.0 nm, respectively, as confirmed by both DLS 
and TEM. Further, in the melanoma-bearing mice model, 
the orally administered Sor-AuNPs exhibited maximum 
antitumoral activity than free Sor displaying the AuNPs 
could be potential carriers of Sor in antimelanoma 
therapy.

Recently, cell-based drug carriers have emerged 
due to their ability to selectively target the tumor and 
deliver anticancer therapeutics without any adverse 
effects [167]. However, the immunosuppressive behav-
ior of the tumor microenvironment indeed results in 
inefficient uptake of immune cell-based systems into 
the tumor. In order to find a solution to the above prob-
lem, Gao and co-workers reported a unique technique 
to stably hitchhike phagocytic immune cells through 
specific phagocytosis of bacteria-imitating AuNPs 

followed by concurrent self-assembly via a supramolec-
ular mechanism inside the cancer cell (Fig. 6) [168]. In 
this study, the authors have developed β-cyclodextrin 
(β-CD) attached AuNPs and adamantane (ADA), fol-
lowed by coating with vesicles formed by the outer 
membrane of E. coli bacteria (OMVs). The coated 
OMVs induced phagocytosis of AuNPs via intracel-
lular degradation and supramolecular self-assembly of 
AuNPs accelerated by β-CD@ADA interactions. Once 
the AuNPs were accumulated inside the tumor by 
phagocytic immune cells, the PTT treatment induced 
enhanced tumor damage and also accelerated the accu-
mulation of AuNPs aggregates inside the tumor. This 
strategy evidenced the effective antimelanoma PTT/
immunotherapy via a unique bacteria-imitating nano-
system, making them a promising candidate for further 
clinical studies.

Anti-programmed cell death protein-1 (anti-PD-1) 
immunotherapy is considered to be an efficient treat-
ment strategy against melanoma [169]. However, tumor 
resistance to such immunotherapy hinders their thera-
peutic efficacy. Conversely, miRNAs have gained signifi-
cant interest in tumor growth suppression via ferroptosis. 
Altogether, to enhance the effectiveness of anti-PD-1 and 
to improve antimelanoma activity, Guo and team devel-
oped the miR-21-3p-loaded AuNPs and further closely 
studied its effect on anti-PD-1 immunotherapy in mela-
noma mice models [170]. The results from DLS revealed 
that the miR-21-3p@AuNPs were in the size range of 
70–100 nm with a zeta potential of 0 mV (indicates highly 
unstable in solution form). Further, it has been found that 
the miR-21-3p upregulation significantly enhanced the 
efficacy of anti-PD-1 via inducing lipid peroxidation and 
suppressing TXNRD1 gene that ultimately leads to mela-
noma cell ferroptosis. Witnessing this, the AuNPs conju-
gated miR-21-3p could be a promising system to increase 
the efficacy of immunotherapy in the treatment of mela-
noma conditions.

Similarly, other investigations that have endowed a ray 
of hope for efficient skin cancer treatment include AuNPs, 
AD-Acp-FFRKSIINFEKL/ β-cyclodextrin/ melanoma [171], 
AuNPs/ Cassia fistula, human serum albumin/ melanoma 
[172], AuNPs/ L-ascorbic acid, hyaluronic acid, oleic acid/ 
melanoma [173], Au-silica core shell, glucosamine/ mer-
captoecanoic acid, N-hydoxysulfosuccin imide/ melanoma 
[174], AuNPs/ Tasmannia lanceolata, Backhousia citrio-
dora/ melanoma [175], curcumin, AuNPs/ red blood cell 
membrane, platelet membrane/ melanoma [176], AgNPs/ 
oligonucleotides, PEG(polethylene glycol)800-SH/ mela-
noma [177], AuNPs/ melanoma [178], AuNPs/ cysteamine, 
folic Acid/ melanoma [179], AuNPs/ sodium citrate/ mela-
noma [180], AuNPs/ SH- PEG-COOH, cetyl trimethylam-
monium bromide/ melanoma [181].
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Silver nanoparticles
Silver NPs (AgNPs) have attracted increasing inter-
est as potential anticancer agent due to their physico-
chemical properties, such as small particle size, high 
conductivity, chemical stability, and surface plasmon 
resonance (used in PTT) [182]. The biological activity 
of AgNPs has been attributed to the presence of the sil-
ver ion. The small-sized AgNPs (less than 100 nm) tend 
to utilize the leaky vasculature of tumors to enter inside 
at maximum concentration. AgNPs have demonstrated 
exceptional antitumoral activity by inducing oxidative 

stress inside the cancer cells and also by using the 
energy provided by glucose in the media. Studies have 
reported that the most common mechanism by which 
the AgNPs exhibit anticancer activity were apoptosis, 
autophagy, and anti-angiogenesis (VEGF-induced angi-
ogenesis only) [183, 184]. Further, the skin penetration 
ability of AgNPs is lower than other metallic NPs, such 
as gold, since a large percentage of free ions are precip-
itated as silver-sulfide in the skin’s outermost layer stra-
tum corneum [185]. However, studies have evidenced 
the improved skin permeability of AgNPs via coating/

Fig. 6 In vivo construction of immune cell‑based nanomedicine carriers and initial PTT treatment enhance hitchhiking delivery into the tumor 
and improve antitumor immunotherapy. A E. coli OMVs are coated on both CD‑GNPs and ADA‑GNPs to prepare bacteria‑mimetic nanoparticles. 
B Selective phagocytosis of bacteria‑mimetic nanoparticles by phagocytic immune cells induces OMV degradation and subsequent intracellular 
aggregation of GNPs mediated by CD‑ADA host–guest interactions, leading to photothermal property due to the plasmonic effects of GNP 
aggregates. The large size of intracellular GNP aggregates also inhibits the leakage during in vivo cell‑hitchhiking delivery. Because of the 
inflammatory tropism to melanoma, immune cells achieve the targeted delivery of intracellular GNP aggregates to the tumor tissues. C Initial PTT 
treatment of GNP aggregates induces tumor damage that subsequently enhances inflammatory signals and provides positive feedback to recruit 
more immune cells (including the carriers) for enhanced antitumor therapy. Secondary photothermal treatment (PTT) of Mixture induces tumor 
cell immunogenic cell death (ICD) and activates antitumor immune response, further strengthened by immune checkpoint blockage (aPD‑L1), 
reproduced with permission from [168], licensed under CC BY 4.0
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functionalizing with various polymers and peptides, 
which supports their use in skin cancer therapy.

In addition, the AgNPs can be conjugated with many 
other anticancer agents, including other metallic NPs, 
to manifest synergistic activity. One such study by Ruiz 
and colleagues investigated the effect of Ag and platinum 
(Pt) conjugated NPs on human melanoma cell line (A375) 
[186]. The particle size of the Ag-Pt NPs was found to be 
42 ± 11 nm, along with the zeta potential -30 mV. Further, 
the  IC50 value of Ag-Pt NPs was determined to be 50 µg/
ml after incubation for 5 days. However, no cytotoxicity 
was observed in normal fibroblast cell line at the concen-
tration range of 10–50  µg/ml. These results encourage 
them to participate further in preclinical studies.

In order to overcome the drawbacks associated with 
chemical routes of AgNPs synthesis, many researchers 
employed biogenic synthesis methods. The most widely 
exploited components in biogenic synthesis are plants, 
fruits, peels, and seeds-based extracts [35]. However, this 
could afflict the natural and food resources at the global 
level leading to impairing environmental sustainabil-
ity. Therefore, a recent study by Himalini and team syn-
thesized the AgNPs using extracellular fungal extract of 
Fusarium incarnatum to treat skin melanoma [187]. The 
fungus secretes a wide range of proteins and enzymes 
that can be taken part as capping and reducing agents 
in AgNPs formation. With a particle size of 10  nm, the 
synthesized AgNPs rendered maximum cytotoxicity in 
human skin melanoma cell line (SK-MEL-3) with an  IC50 
value of 17.70 µg/ml. The in vitro results exhibited prom-
ising results. However, further investigations on their 
biocompatibility and biodistribution in preclinical set-
tings are much needed to confirm their safety profile.

An interesting study by Capanema and co-workers 
investigated the synergistic antimelanoma activity of 
AgNPs and DOX [188]. The authors synthesized the 
AgNPs in a green route using carboxymethylcellulose 
(CMC) as a capping agent. Further, they conjugated the 
DOX in to the crosslinked network of CMC. Finally, cit-
ric acid was attached (CA) to yield stable nano colloids 
of Ag with 10  nm diameter. The resulting nanosystem 
yielded maximum cytotoxicity in human melanoma cell 
line (A375) than normal human embryonic kidney cell 
line (HEK-293-T), making them suitable systems for mel-
anoma therapy.

So far, we have found many studies exploring the syner-
gistic/combinatorial activity of AgNPs and chemothera-
peutic agents or other metallic NPs against skin cancer. 
Here is a study by Kuang and colleagues that explored 
the synergistic activity of AgNPs and immunotherapy 
against melanoma conditions [189]. In this study, the 
authors have synthesized the sucrose-coated AgNPs 
to enhance their stability for a more extended period. 

TEM analysis displayed that the particle size of plain 
AgNPs was 2.3 ± 0.4  nm; however, it has been shifted 
to 6.7 ± 3.2 nm, followed by sucrose coating. Thereafter, 
the combination of S-AgNPs and anti-PD-1 was tested 
on melanoma-bearing C57BL/6 mice. The in vivo results 
displayed more significant tumor growth inhibition in the 
mice group treated with S-AgNPs and anti-PD-1 com-
pared to free anti-PD-1. Further, the ability of S-AgNPs 
in upregulating tumor PD-L1 was proved by the results of 
quantitative real-time PCR conducted on isolated tumors 
after S-AgNPs treatment alone. Based on this evidence, 
the small-sized S-AgNPs could be considered a potential 
adjuvant for immunotherapy.

It has been widely reported that the anticancer activ-
ity of AgNPs highly depends on their size. For instance, 
the smaller the size greater the transportation, tumor 
accumulation, and cellular uptake. However, plenty of 
controversies are still going on related to the size-medi-
ated uptake of AgNPs. In this regard, Wu and co-workers 
investigated the variation in cellular uptake of different 
sized AgNPs using murine melanoma cell line (B16F10) 
[190]. AgNPs with 100 nm particle size displayed maxi-
mum uptake efficiency than 20 nm AgNPs. Furthermore, 
the migration rate of 100  nm AgNPs through plasma 
membrane was deemed very low compared to 5  nm 
AgNPs. Nevertheless, pre-treatment using chlorproma-
zine hydrochloride (clathrin-based endocytosis inhibi-
tor) declined the uptake of all sized AgNPs (5, 20, 50, 
and 100  nm). Also, the internalization efficiencies of 5, 
20, and 50  nm AgNPs were remarkably reduced due to 
methyl-β-CD (caveolin-mediated endocytosis inhibitor). 
Finally, 50 and 100 nm AgNPs uptake were low due to the 
5-(N-ethyl-N-isopropyl) amiloride (macro-pinocytosis 
inhibitor). All these results suggest that the size of AgNPs 
is not only a factor that affects the efficiency of uptake in 
melanoma cells but also the type of endocytosis that is 
held responsible for the uptake mechanism. Overall, the 
clathrin-based endocytosis might be contemplated as a 
typical pathway for AgNPs uptake in melanoma cells.

Another exciting investigation by Netchareonsirisuk 
and team explored the role of different capping agents 
in AgNPs cytotoxicity using healthy (CCD-986SK) and 
cancer (A375) cell lines [191]. In this study, the authors 
synthesized AgNPs using sodium borohydride  (NaBH4) 
as a reducing agent and alginate (natural) or poly (4-sty-
renesulfonic acid-comaleic acid) sodium salt (PSSMA) 
(synthetic) as a capping agent. The particle size of both 
the AgNPs ranged between 10.5 and 11.5  nm. Further, 
the zeta potential of alginate-AgNPs was found to be in 
the range of -31.3 to -36.0 mV, whereas PSSMA-AgNPs 
displayed -26.4 to -32.0  mV. However, both the zeta 
potential values indicated that the AgNPs were in stable 
form due to suffice repulsion between particles impeding 
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aggregation. Finally, coming to the main part of the 
study, i.e., cytotoxicity in cell lines. The results revealed 
that alginate-AgNPs (natural capping agent) were highly 
toxic to cancer cells than normal skin cells. However, 
unaltered  AgNO3 and PSSMA-AgNPs (synthetic cap-
ping agent) exhibited significant toxicity to both normal 
and melanoma cell lines. Further, the  IC50 values ranged 
from 26–46 µg/ml for alginate and PSSMA-based AgNPs 
in melanoma cells. Overall, it can be concluded that the 
cancer cells (A375) were more sensitive to AgNPs than 
normal cells (CCD-986SK), making them eminent candi-
dates for skin cancer therapy.

AgNPs/ Penicillium citrinum CGJ-C2/ squamous cell 
carcinoma [192], AgNPs/ Annona muricata P/ mela-
noma [193], AgNPs/ Trapa natans/ squamous cell carci-
noma [194], AgNPs/ Rubia cordifolia L/ melanoma [195], 
AgNPs, 5-aminolevulinic acid/ Bacillus licheniformis/ 
melanoma, squamous cell carcinoma [196], AgNPs, 
sodium dichloroacetate/ melanoma [197], Au-AgNPs/ 
starch/ melanoma [198], miR-148b, AgNPs/ squamous 
cell carcinoma [199], AgNPs/ bovine serum albumin/ 
melanoma [200], AgNPs/ Indigofera hirsuta L/ mela-
noma [201], betulin, AuNPs/ polyethylene glycol/ mela-
noma [202] are few more recent investigations that were 
conducted for the treatment of skin cancer condition.

Cerium oxide nanoparticles
Cerium oxide NPs  (CeO2 NPs) are unique kind of metal 
oxides that possess both redox regulation ability and 
enzyme-like activity. They have shown promising results 
in many biomedical applications, including cancer ther-
apy. The enzyme mimetic activity of  CeO2 NPs such as 
superoxide dismutases (SOD), catalase (CAT), photol-
yase, deoxyribonuclease I (DNase I), oxidase, and per-
oxidase furnish them with the ability to modulate the 
ROS levels. Cerium consists of two different oxidation 
states such as  Ce3+ (reduced) and  Ce4+ (oxidized), due 
to which they act as an oxidant in cancer cells (produces 
ROS in acidic pH) and antioxidant in healthy cells (scav-
enges ROS in neutral pH). They display ROS scavenging 
activity due to their self-regeneration cycle of  Ce3+/Ce4+ 
and oxygen vacancy on the cerium oxide surface [203]. 
Multiple studies have been conducted to explore the 
mechanism behind the anticancer activity. For instance, 
a study reported that  CeO2 NPs increased the ROS pro-
duction in tumor cells leading to DNA fragmentation 
and further caused apoptosis through mitochondrion-
mediated apoptosis signaling pathway (confirmed by 
cytochrome c release, activated caspase-3, and caspase-9) 
[204]. Another study revealed that  CeO2 NPs inhibits 
the formation of myofibroblasts (a primary unit of can-
cer progression) in tumor cells resulting in termination 
of tumor invasion. Utilizing this advantage, a study by 

Aplak and team investigated the antimelanoma poten-
tial of  CeO2 NPs in a human melanoma cell line (A375) 
[205]. In this study, the authors purchased the commer-
cially available water-dispersed  CeO2 NPs with a mean 
diameter of 1–10 nm after stabilizing them using sodium 
polyacrylate. Corresponding to the previous studies, the 
 CeO2 NPs induced mitochondrial dysfunction even in 
melanoma cell lines due to their SOD-mimetic activity 
(elevated ROS production), finally yielding cell death. 
An interesting study by Ali and co-workers reported that 
the commercially purchased  CeO2 NPs with a particle 
size of 25 nm induced significant cell death in a human 
melanoma cell line (A375) via DNA damage (measured 
via comet assay) [206]. Another study by Pešic and col-
leagues revealed that the synthesized  CeO2 NPs (4  nm 
particle size) were more toxic to melanoma cells (518A2) 
with an  IC50 value of 125 µM compared to normal cells 
(keratinocytes HaCaT and lung fetal fibroblasts MRC-5) 
[207]. All these evidences encourage the  CeO2 NPs to be 
a promising candidate for the treatment of skin cancer 
conditions, especially melanoma. However, further safety 
and therapeutic efficacy studies in the animal model 
could strengthen the obtained in vitro results.

Miscellaneous inorganic NPs
In previous sections, we discussed different inor-
ganic NPs frequently taken part in skin cancer therapy. 
However, there are still more inorganic NPs yet to be 
explored meticulously for their anti-skin cancer prop-
erties. For instance, bioactive glass NPs [208], terbium 
oxide NPs [209], graphene oxide NPs [210], and so 
on [211] are some of the potential inorganic NPs that 
exhibit significant anticancer activity. However, no 
studies were notably reported on their anti-skin cancer 
properties. This shows that there is a huge research gap, 
where many biomedical researchers can explore the 
potential of the aforementioned inorganic NPs for the 
treatment of skin cancer.

Apart from those unexplored inorganic NPs, a few 
more metallic NPs have shown promising results in skin 
cancer therapy. But many more studies are still required 
to support their current stature in treating skin cancer 
conditions. One such metallic nanomaterial is platinum 
NPs (Pt-NPs). The Pt-NPs are made out of a noble metal 
that possess unique physicochemical properties, includ-
ing surface plasmon resonance (helps in PDT). Reports 
suggest that Pt-NPs can cause DNA strand breakage in 
the soluble form [212, 213]. On the other arrow, plenty 
of platinum-based chemotherapeutic agents (oxaliplatin, 
carboplatin, cis-platin, and phenanthriplatin) are already 
being used in cancer therapy. Owing to this supremacy, 
a recent study by Mukherjee and team investigated the 
combinatorial/synergistic antimelanoma potential of 
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DOX conjugated Pt-NPs in both in vitro and in vivo set-
tings [214]. The particle size of DOX@Pt-NPs analyzed 
by TEM micrographs displayed 5–20  nm. In contrast, 
DLS studies exhibited 50–70  nm particle size for plain 
Pt-NPs, which further increased to 220 ± 8.5  nm after 
conjugating with DOX. The biocompatibility study in 
four normal cell lines (HUVEC, NIH-3T3, ECV-304, and 
EA. hy926) exhibited more than 90% cell viability for Pt-
NPs at 20  µM concentration (24  h incubation). Subse-
quently, the free DOX exhibited an  IC50 value of 2.5 µM, 
whereas DOX@Pt-NPs displayed only 1.25 µM indicating 
the developed nanosystem is highly effective in cancer 
cells than normal cells. Lastly, tumor growth inhibition 
was higher in the melanoma-bearing C57BL6/J mice 
group treated with DOX@Pt-NPs than in free DOX and 
free Pt-NPs treated groups, proving the combinatorial/
synergistic treatment approach is a suitable strategy for 
melanoma therapy.

Copper is another metal that has proved its stance as 
an anticancer agent in nanoform. However, there are 
limited investigations on the anti-skin cancer proper-
ties of copper NPs (CuNPs). Among those few stud-
ies, a research team led by Mita Chatterjee Debnath at 
CSIR-Indian Institute of Chemical Biology, India, have 
reported the effect of CuNPs synthesized using floral 
extract of plant Quisqualis Indica Linn on melanoma 
condition in both in  vitro and in  vivo set-up [215]. The 
SEM analysis showed that the average particle of CuNPs 
was 39.3 ± 5.45 nm. The developed CuNPs display more 
than 80% cell viability in normal fibroblast cell line (NIH-
3T3) (concentration range of 40–120  µg/ml). Contra-
rily  IC50 value of CuNPs in mouse melanoma cell line 
(B16F10) was found to be 102 µg/ml. Based on ROS and 
GSH estimation, oxidative stress was found to be the 
reason behind melanoma cell death. Further, significant 
inhibition of tumor growth was witnessed in melanoma-
bearing BALB/c mice treated with CuNPs than plain 
floral extract of plant Quisqualis Indica Linn, making 
CuNPs an excellent agent in melanoma therapy.

Some of the recent research findings on inorganic NPs-
mediated treatment strategies for skin cancer therapy are 
depicted in Table 2.

Polymer‑based nanoparticles for skin cancer 
therapy
Polymer-based NPs are specialized drug carriers devel-
oped from either synthetic or natural polymers with 
varying sizes of 10–1000 nm [37, 239–241]. The polymer-
based NPs are largely segregated into two groups such as 
nanocapsules (cavities surrounded by polymeric shell/
branch) and nanospheres (solid matrix system). Fur-
ther, they are sub-categorized into different types, i.e., 
micelles, dendrimers, polymersomes, polyplexes, etc., 

based on their shape and polymer properties [87]. These 
NPs are capable of conjugating, adsorbing, entrapping, 
or encapsulating the anticancer agents (hydrophilic and 
lipophilic drugs, monoclonal antibodies, genes, etc.) for 
controlled release, tumor targeting (active/passive), pro-
tection in physiological conditions, and increased tumor 
uptake, which could substantially improve the cancer 
treatment [242, 243]. Thereafter, due to the simple prepa-
ration technique, biocompatibility, biodegradability, and 
less cost, many researchers showed exceptional interest 
in developing anticancer agents loaded with polymer-
based NPs for treating skin cancer conditions. In the 
upcoming sections, we will be thoroughly discussing 
different types of polymer-based NPs, such as micelles, 
dendrimers, and polymeric NPs followed by their appli-
cations in skin cancer therapy.

Polymeric micelles
Polymeric micelles (PMs) are self-assembled colloidal 
particles with a size range of 5–500 nm, generally made 
of amphiphilic di- or tri-block copolymers. At critical 
micellar concentration (CMC), the di-block copolymers 
such as polyethylene glycol (PEG) and polystyrene, graft 
copolymers like G-chitosan and stearic acid, and tri-
block copolymers such as polyethylene oxide rapidly self-
assembles in aqueous medium to form hydrophobic core 
and hydrophilic shell, which is termed as PMs [244, 245]. 
However, there are witnesses of reverse PMs too, with a 
hydrophilic core and hydrophobic shell [246]. One more 
interesting part that makes the PMs a unique drug car-
rier is that the amphiphilic copolymers exert a relatively 
low CMC compared to low molecular weight surfactants. 
Thus, the PMs can remain stable even at very low poly-
mer concentrations being insensitive to dilutions in 
physiological conditions [247]. The hydrophobic core of 
PMs greatly helps in encapsulating numerous lipophilic 
anticancer agents, while the hydrophilic shell furnishes 
a stealth feature to the PMs. The stealth feature denies 
the PMs entry into RES, thereby prolonging their avail-
ability in the systemic circulation, making them available 
at the tumor site. Nevertheless, their small particle size 
supports excellent tumor uptake through the leaky vas-
culature compared to other drug carriers. Owing to these 
excellent specifications, there is a tremendous surge in 
the development of micelles for skin cancer therapy.

Recently, an investigation by Xu and team reported the 
development of PTX-loaded PMs to treat cutaneous mel-
anoma via a topical route [248]. In this study, the authors 
first developed ibuprofen-modified methoxy PEG-PEI-
based micelles loaded with PTX. Next, PTX@PMs were 
incorporated into Carbopol 940 hydrogel to improve the 
skin residence time. The DLS analysis exhibited a particle 
size of 221.7 ± 4.76 nm, a zeta potential of 20.7 ± 0.5 mV, 



Page 19 of 50Zeng et al. Molecular Cancer           (2023) 22:10  

Ta
bl

e 
2 

La
te

st
 in

ve
st

ig
at

io
ns

 o
n 

in
or

ga
ni

c 
N

Ps
‑b

as
ed

 th
er

ap
eu

tic
 a

pp
ro

ac
he

s 
fo

r s
ki

n 
ca

nc
er

Ty
pe

Th
er

ap
eu

tic
 a

ge
nt

Pa
rt

ic
le

 s
iz

e
In

 v
itr

o 
cy

to
to

xi
ci

ty
 s

tu
dy

A
ni

m
al

 m
od

el
Ro

ut
e 

of
 a

dm
in

is
tr

at
io

n
Re

f

M
es

op
or

ou
s 

si
lic

a 
na

no
pa

r‑
tic

le
s

St
im

ul
at

or
 o

f i
nt

er
fe

ro
n 

ge
ne

s 
(S

TI
N

G
)

80
 n

m
 (p

ar
tic

le
 s

iz
e)

/ 
5–

10
 n

m
 

(p
or

e 
si

ze
)

M
ic

e 
m

el
an

om
a 

ce
ll 

lin
e 

(B
16

F1
0)

M
el

an
om

a‑
be

ar
in

g 
C

57
BL

/6
 

m
ic

e
In

tr
at

um
or

al
[2

16
]

M
es

op
or

ou
s 

si
lic

a 
na

no
pa

r‑
tic

le
s

JQ
‑1

 (i
m

m
un

ot
he

ra
py

)/
 P

ol
y‑

do
pa

m
in

e 
(P

TT
)

17
4.

0 
±

 2
.4

 n
m

M
ic

e 
m

el
an

om
a 

ce
ll 

lin
e 

(B
16

F1
0)

M
el

an
om

a‑
be

ar
in

g 
m

al
e 

C
57

BL
/6

 m
ic

e
In

tr
at

um
or

al
[2

17
]

M
es

op
or

ou
s 

si
lic

a 
na

no
pa

r‑
tic

le
s

A
xi

tin
ib

/ 
sg

PD
‑L

1/
 C

RI
SP

R/
Ca

s9
13

5 
±

 8
.7

 n
m

M
ic

e 
m

el
an

om
a 

ce
ll 

lin
e 

(B
16

F1
0)

M
el

an
om

a‑
be

ar
in

g 
fe

m
al

e 
C

57
BL

/6
 m

ic
e

In
tr

av
en

ou
s

[2
18

]

Ca
rb

on
 n

an
ot

ub
es

M
ul

tiw
al

le
d 

ca
rb

on
 n

an
ot

ub
es

 
(P

TT
)

3–
15

 n
m

 (w
al

ls
)/

 5
–2

0 
nm

 
(o

ut
er

 d
ia

m
et

er
)/

 1
–1

0 
µm

 
(le

ng
th

)

M
ic

e 
m

el
an

om
a 

ce
ll 

lin
e 

(B
16

F1
0)

M
el

an
om

a‑
be

ar
in

g 
fe

m
al

e 
C

57
BL

/6
 J 

m
ic

e
In

tr
av

en
ou

s
[2

19
]

Ca
rb

on
 n

an
ot

ub
es

M
ul

tiw
al

le
d 

ca
rb

on
 n

an
ot

ub
es

 
(N

an
oc

yl
™

 N
C

31
00

)
9.

5 
nm

 (d
ia

m
et

er
)/

 1
.5

 µ
m

 
(le

ng
th

)
M

ic
e 

m
el

an
om

a 
ce

ll 
lin

e 
(B

16
F1

0)
M

ic
e

In
tr

at
um

or
al

[2
20

]

Ca
rb

on
 n

an
ot

ub
es

Cy
to

si
ne

‑p
ho

sp
ha

te
‑g

ua
ni

ne
 

ol
ig

od
eo

xy
nu

cl
eo

tid
e/

 A
nt

i‑
C

D
40

 Ig
/ 

O
va

lb
um

in

20
–3

0 
nm

 (d
ia

m
et

er
)/

 
0.

5–
2 

µm
 (l

en
gt

h)
‑

M
el

an
om

a‑
be

ar
in

g 
C

57
BL

/6
 

m
ic

e
In

tr
av

en
ou

s
[2

21
]

Zi
nc

 o
xi

de
 n

an
op

ar
tic

le
s

Zi
nc

 o
xi

de
 n

an
op

ar
tic

le
s

15
4.

41
–1

72
.8

9 
nm

H
um

an
 e

pi
de

rm
oi

d 
ca

rc
i‑

no
m

a 
ce

ll 
lin

e 
(A

43
1)

/ 
H

um
an

 
ke

ra
tin

oc
yt

e 
ce

ll 
lin

e 
(H

aC
aT

)

‑
‑

[2
22

]

Zi
nc

 o
xi

de
 n

an
op

ar
tic

le
s

Zi
nc

 o
xi

de
 n

an
op

ar
tic

le
s

10
–2

0 
nm

H
um

an
 m

el
an

om
a 

ce
ll 

lin
e 

(A
37

5)
‑

‑
[2

23
]

Zi
nc

 o
xi

de
 n

an
op

ar
tic

le
s

Zi
nc

 o
xi

de
 n

an
op

ar
tic

le
s

50
 n

m
H

um
an

 e
pi

de
rm

oi
d 

ca
rc

in
om

a 
ce

ll 
lin

e 
(A

43
1)

‑
‑

[2
24

]

G
ol

d 
na

no
pa

rt
ic

le
s

G
ol

d 
na

no
pa

rt
ic

le
s/

 H
uA

L1
 a

nd
 

C
7H

2 
pe

pt
id

es
27

0 
±

 2
2 

nm
M

ic
e 

m
el

an
om

a 
ce

ll 
lin

e 
(B

16
F1

0)
/ 

H
um

an
 fo

re
sk

in
 

fib
ro

bl
as

t c
el

l l
in

e 
(H

s6
8)

M
el

an
om

a‑
be

ar
in

g 
C

57
BL

/6
 

m
ic

e
‑

[2
25

]

G
ol

d 
na

no
pa

rt
ic

le
s

G
ol

d 
na

no
pa

rt
ic

le
s 

(P
TT

)
15

7 
±

 5
 n

m
M

ic
e 

m
el

an
om

a 
ce

ll 
lin

e 
(B

16
F1

0)
M

el
an

om
a‑

be
ar

in
g 

se
ve

re
 

co
m

bi
ne

d 
im

m
un

od
efi

ci
en

t 
(S

C
ID

) h
ai

rle
ss

 m
ic

e 
(X

en
o‑

gr
af

t‑
A

37
5)

In
tr

at
um

or
al

[2
26

]

G
ol

d 
na

no
pa

rt
ic

le
s

G
ol

d‑
iro

n 
ox

id
e 

na
no

pa
rt

ic
le

s
37

.8
 n

m
‑

M
el

an
om

a‑
be

ar
in

g 
C

57
BL

/6
 

m
ic

e
In

tr
av

en
ou

s
[2

27
]

G
ol

d 
na

no
pa

rt
ic

le
s

Cy
to

si
ne

‑g
ua

ni
ne

 o
lig

od
e‑

ox
yn

uc
le

ot
id

e/
 C

SI
IN

FE
KL

 
(p

ep
tid

e‑
ba

se
d 

tu
m

or
 a

nt
ig

en
 

va
cc

in
e)

14
6.

30
 ±

 1
.9

3 
nm

‑
M

el
an

om
a‑

be
ar

in
g 

fe
m

al
e 

C
57

BL
/6

 m
ic

e
In

tr
av

en
ou

s
[2

28
]

Si
lv

er
 n

an
op

ar
tic

le
s

Si
lv

er
 n

an
op

ar
tic

le
s 

(P
TT

)
10

0 
nm

M
ic

e 
m

el
an

om
a 

ce
ll 

lin
e 

(B
16

F1
0)

M
el

an
om

a‑
be

ar
in

g 
at

hy
m

ic
 

nu
de

 m
ic

e
To

pi
ca

l
[2

29
]

Si
lv

er
 n

an
op

ar
tic

le
s

Si
lv

er
 n

an
op

ar
tic

le
s

35
 ±

 1
5 

nm
M

ic
e 

m
el

an
om

a 
ce

ll 
lin

e 
(B

16
F1

0)
M

el
an

om
a‑

be
ar

in
g 

m
al

e 
C

57
BL

/6
 J 

m
ic

e
Su

bc
ut

an
eo

us
[2

30
]

Si
lv

er
 n

an
op

ar
tic

le
s

Si
lv

er
 n

an
op

ar
tic

le
s/

 S
al
m
on

el
la

15
 n

m
M

ic
e 

m
el

an
om

a 
ce

ll 
lin

e 
(B

16
F1

0)
M

el
an

om
a‑

be
ar

in
g 

BA
LB

/c
 

m
ic

e
In

tr
av

en
ou

s
[2

31
]

Si
lv

er
 n

an
op

ar
tic

le
s

Si
lv

er
 n

an
op

ar
tic

le
s/

 In
do

cy
a‑

ni
ne

 g
re

en
 (P

TT
)

13
1.

5 
±

 2
.7

 n
m

M
ic

e 
m

el
an

om
a 

ce
ll 

lin
e 

(B
16

F1
0)

M
el

an
om

a‑
be

ar
in

g 
at

hy
m

ic
 

nu
de

 m
ic

e
In

tr
av

en
ou

s
[2

32
]



Page 20 of 50Zeng et al. Molecular Cancer           (2023) 22:10 

Ta
bl

e 
2 

(c
on

tin
ue

d)

Ty
pe

Th
er

ap
eu

tic
 a

ge
nt

Pa
rt

ic
le

 s
iz

e
In

 v
itr

o 
cy

to
to

xi
ci

ty
 s

tu
dy

A
ni

m
al

 m
od

el
Ro

ut
e 

of
 a

dm
in

is
tr

at
io

n
Re

f

Ce
riu

m
 o

xi
de

 n
an

op
ar

tic
le

s
Ce

riu
m

 o
xi

de
 n

an
op

ar
tic

le
s

5 
nm

H
um

an
 m

el
an

om
a 

ce
ll 

lin
e 

(A
37

5)
M

el
an

om
a‑

be
ar

in
g 

at
hy

m
ic

 
nu

de
 m

ic
e 

(X
en

og
ra

ft
‑A

37
5)

In
tr

ap
er

ito
ne

al
[2

33
]

Pl
at

in
um

 n
an

op
ar

tic
le

s
Iro

n‑
pl

at
in

um
 n

an
op

ar
tic

le
s/

 
5‑

Fl
uo

ro
ur

ac
il

6 
±

 1
 n

m
H

um
an

 s
ki

n 
fib

ro
bl

as
ts

 c
el

l 
lin

e/
 H

um
an

 b
as

al
‑c

el
l c

ar
ci

‑
no

m
a 

ce
ll 

lin
e

‑
To

pi
ca

l
[2

34
]

Pl
at

in
um

 n
an

op
ar

tic
le

s
Pl

at
in

um
 n

an
op

ar
tic

le
s 

(P
TT

)
12

.2
 ±

 0
.7

 n
m

M
ic

e 
m

el
an

om
a 

ce
ll 

lin
e 

(B
16

F1
0)

‑
‑

[2
35

]

Co
pp

er
 n

an
op

ar
tic

le
s

Co
pp

er
 n

an
op

ar
tic

le
s

60
–8

0 
nm

H
um

an
 m

el
an

om
a 

ce
ll 

lin
e 

(A
37

5)
‑

‑
[2

36
]

Ti
ta

ni
um

 d
io

xi
de

 n
an

op
ar

tic
le

s
Ti

ta
ni

um
 d

io
xi

de
 n

an
op

ar
tic

le
s 

(P
D

T)
20

–9
0 

nm
M

ic
e 

m
el

an
om

a 
ce

ll 
lin

e 
(B

16
F1

0)
‑

‑
[2

37
]

Ti
ta

ni
um

 d
io

xi
de

 n
an

op
ar

tic
le

s
Ti

ta
ni

um
 d

io
xi

de
 n

an
op

ar
‑

tic
le

s/
 G

ol
d 

na
no

cl
us

te
rs

/ 
G

ra
ph

en
e 

(P
D

T)

20
6–

38
4 

nm
M

ic
e 

m
el

an
om

a 
ce

ll 
lin

e 
(B

16
F1

0)
M

el
an

om
a‑

be
ar

in
g 

fe
m

al
e 

BA
LB

/c
 a

th
ym

ic
 n

ud
e 

m
ic

e
In

tr
av

en
ou

s/
 In

tr
at

um
or

al
[2

38
]



Page 21 of 50Zeng et al. Molecular Cancer           (2023) 22:10  

and a 91.98% loading capacity for PTX@PMs. Further, 
based on FT-IR study, it has been found that the micelle 
formulation disorganized the lipid and keratin struc-
ture in the skin, thereby elevating the fluidity of lipidic 
compounds in the skin’s first layer. The positive charge 
of PMs confirmed by the zeta potential study enhanced 
the uptake in murine melanoma cells yielding maximum 
cell death compared to free PTX (Taxol®). However, in 
melanoma-bearing Kunming mice, PTX@PMs gel for-
mulation + free PTX (Taxol®) exhibited more significant 
tumor growth inhibition compared to PTX and PTX@
PMs gel formulation alone. In another investigation by 
Wang and colleagues, a cationic polymer (SCP-HA-PAE) 
was designed by attaching the hyaluronic acid (HA) and 
skin cell-penetrating peptide (SCP) to the amphipathic 
polymer (poly β-amino esters, PAE) [249]. Next, the 
authors used this polymer (SCP-HA-PAE) to develop 
pH-switchable siRNA@PMs (siRNA@SHP) for treating 
cutaneous melanoma via a topical route (Fig. 7). With a 
particle size of 170 nm, the developed siRNA@SHP dis-
played highest antimelanoma activity compared to free 
siRNA in both in  vitro and in  vivo setup. For topical 
melanoma therapy, another research team recently devel-
oped a nucleotide cyclase inhibitor MDL-12,330A20 
loaded polypept(o)ide micelles [250]. The particle size 
was reported to be 76  nm for MDL@PMs; surprisingly, 
the plain PMs exhibited 98 nm, per DLS analysis. Further, 
it has been found that MDL@PMs suppress the cAMP 
formation in tumor tissue and melanoma growth more 
efficiently than free MDL. All these results demonstrate 
that PMs are highly efficient nanocarriers for delivering 
both small and large molecules via a topical route for 
improved melanoma therapy.

Although PTT is an outstanding treatment approach 
for superficial tumors, including melanoma, suitable pho-
tothermal agents with strong light absorbance, decent 
photostability, high photothermal conversion efficiency, 
and biocompatibility are needed to perform this therapy 
without fail and incompetence. Among many photother-
mal agents, aggregation-induced emission luminogens 
(AIEgen) have gained significant interest due to their 
excellent photobleaching resistance properties [251]. 
However, they face solubility issues, due to which they 
are administered via the intravenous route. The problem 
did not end there; further, it takes a minimum of 12 to 
24 h for them to accumulate on the tumors due to their 
long systemic circulation period. This process is highly 
tedious for skin cancer treatment. Thus, to overcome 
these issues, Wei and co-workers developed the AIEgen 
(NIR950) loaded pH-sensitive polymer, i.e., methyl ether 
poly(ethylene glycol)-poly(β-aminoester) (mPEG-PAE) 
based PMs and then concentrated them on the tips of 
dissolving microneedles (MNs) for efficient PTT against 

cutaneous melanoma [252]. The developed PMs were 
found to be in size range of 80 to 125  nm, depending 
upon the varied concentration of loaded NIR950. With 
the help of dissolving MNs, NIR950@PMs rapidly accu-
mulated at the skin melanoma site. Further, in an animal 
model, significant tumor inhibition was observed with 
only single administration of NIR950@PMs@MNs and 
one-time laser irradiation, proving the impact of PMs 
and MNs in efficient PTT against cutaneous melanoma. 
Nonetheless, there are a wide range of stimuli-responsive 
MNs (both internal and external) that could actively take 
part in skin cancer therapy with much more efficiency 
than conventional MNs or NIR triggered MNs [253]. 
These results further indicate significant potential for 
clinical superficial melanoma therapy.

Dendrimers
Dendrimers are hyperbranched polymeric macromol-
ecules with well-defined sizes and shapes consisting of 
innumerable branching from a central core, becoming 
a tree-like structure. The branched layers in dendrimers 
are termed “generations” (G) [254–256]. The first dis-
covery of dendrimers was in 1978 by organic chemist 
Fritz Vogtle. Dendrimers are frequently synthesized by 
either convergent or divergent methods. In a converged 
method, the dendrimer grows inward, beginning with 
end groups, whereas, in a divergent method, the den-
drimer grows outward from a functional core molecule 
in a stepwise manner [257]. Some of their common types 
are poly(amidoamine) (PAMAM) dendrimers [258], 
PEGylated dendrimers [259], polyether-copolyester den-
drimers [260], poly(propylene imine) dendrimers [255], 
peptide dendrimers [261], etc. Although the dendrimers 
are classified under polymer-based NPs, they possess a 
unique structure comprised of three major components 
such as (1) central core, (2) repetitive branching units, 
and (3) terminal groups. The increase in the number of 
repeated branching units regulates the generations of the 
dendrimers, which has a direct relation with dendrimer 
size and globular shape (higher the generation, larger 
the particle size). Further, the terminal groups of den-
drimers are responsible for modifiable surface function-
alities (common terminal functional groups are COOH, 
COONa,  NH2, and OH). These groups specifically enable 
dendrimers to conjugate with various tumor-targeting 
moieties [262, 263]. Nevertheless, all these characteristic 
features allow dendrimers to either conjugate/encapsu-
late the anticancer agents in the core or on the surface, 
devising them as an interesting drug carrier for skin can-
cer therapy without many side effects.

The hedgehog signaling (Hh) pathway is primarily 
active in many cancer conditions, including skin cancer, 
which enacts a critical job in cancer cell multiplication, 
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differentiation, and survival [264]. Thus, the therapeu-
tic agents that potently inhibit the Hh pathway provide 
an efficient treatment opportunity against cancer. In the 
year 2012, FDA approved a potential Hh inhibitor named 
Vismodegib (VDG), a small molecule with a molecular 
weight of 421.3  g/mol for oral administration (150  mg/
day) in patients with a denial of surgery or radiotherapy 
[265]. However, their therapeutic ability is hindered 
due to poor aqueous solubility and side effects such 
as musculoskeletal spasms, alopecia, etc. In the quest 
to overcome these issues in skin cancer therapy (basal 
cell carcinoma; BCC), a research team came up with 
PAMAM-based dendrimers (D) loaded with VDG for 
site-specific delivery via topical route [266]. Further, they 
also studied the effect of two different types of PAMAM-
D, such as 4.0 generation PAMAM-D with terminal pri-
mary amine (DG4.0) and 4.5 generation with carboxylic 
acid termination (DG4.5) skin permeability. It was found 
that VDG@DG4.0 showed better skin penetration in 
an ex  vivo setup. Nevertheless, the developed VDG@
PAMAM-D exhibited non-conventional fluorescence 
that allowed for monitoring of skin penetration result-
ing in the theragnostic potential of dendrimers. Another 
interesting investigation by Wang and colleague devel-
oped cRGD peptide attached pH and redox triggered G4 

PAMAM dendrimers (D) loaded with DOX for targeted 
treatment of melanoma [267]. The developed DOX@
RGD-D presented a particle size of 17.41 ± 0.36 nm. Fur-
ther, in  vitro cytotoxicity study in a murine melanoma 
cell line (B16F10) displayed maximum cell death com-
pared to free DOX and DOX@D. Also, the IC50 value 
DOX@RGD-D was approximately 2–6 folds lower com-
pared to DOX@D. Lastly, the cellular uptake mechanism 
revealed that DOX@RGD-D interacted with the plasma 
membrane of melanoma cells via specific identification 
of RGD peptide with integrin ανβ3 and was eventually 
internalized via clathrin- and caveolin-mediated endo-
cytosis. Thus, it can be concluded that dendrimer-based 
nanocarriers could efficiently participate in skin cancer 
therapy.

PAMAM dendrimers are widely used in drug deliv-
ery applications. However, they lack traceability in their 
original form and also possess intrinsic cytotoxicity 
towards normal cells, which made them poor performer 
in clinical safety studies. Thus, a research team developed 
label-free fluorescent PAMAM dendrimers (D) via modi-
fying their terminal groups using acetaldehyde, which 
produced strong green fluorescence due to the C = N 
bonds of the resulting Schiff Bases and also reduced 
their intrinsic cytotoxicity behavior [268]. Further, the 

Fig. 7 Schematic illustration of the design and therapeutic strategy of SHP. Part I: Synthesis of PAE and preparation of SHP micelle from the PAE, 
HA and SCP. Part II: Topical application of SHP/SiRNA induces survivin slicing in skin melanoma. (1) SHP/SiRNA nanocomplexes penetrate through 
the skin stratum corneum and target to melanoma locates at the interface of epidermis and dermis. (2) SHP/SiRNA‑survivin nanocomplexes are 
uptaken by melanoma cells. (3) SHP/SiRNAsurvivin nanocomplexes escaped from the lysosome, release the siRNA that bind to the targeting RNA, 
followed by slicing survivin, which possesses the great potential to induce the significant apoptosis to melanoma cells in vitro and retard the 
melanoma progression in vivo, reproduced with permission from [249], copyright 2020, Elsevier
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fluorescent PAMAM-D displayed excellent intracellu-
lar tracking in melanoma cells (SK-MEL28) via PEGyla-
tion. It was also witnessed that PEGylated fluorescent 
PAMAM-D exhibited enhanced loading and controlled 
delivery of DOX compared to plain PAMAM-D. Finally, 
the developed dendrimers endowed maximum mela-
noma cell death compared to free DOX due to enhanced 
uptake of PEG-PAMAM-D into cancer cells followed 
by intracellular DOX release. This supports fluorescent 
PAMAM dendrimers to be an efficient nanocarrier for 
melanoma therapy with the additional opportunity of 
trackability. Another study by Smith and co-workers 
explored the efficiency of G5 PAMAM dendrimers and 
poly(d,l-lactic-co-glycolic acid) based nanoformulation 
as an adjuvant melanoma therapy with cancer vaccine 
[269]. The melanoma-bearing C57BL/6  J mice treated 
with adenovirus-based cancer vaccine (Ad5-TRP2) and 
PLGA-PAMAM-D nanoformulation exhibited signifi-
cant enhancement in TAA-specific T cells in the periph-
eral blood with reduced tumor burden. Nevertheless, the 
cell-based pathways suggested that the adjuvant nanofor-
mulation administration created an inflammatory envi-
ronment at the tumor site, which further attracted the 
activated TAA-specific CD8 + T cells to the area of the 
tumor resulting in enhanced vaccine efficacy.

Polymeric nanoparticles
Polymeric NPs are simple and non-complex carrier 
systems that possess the ability to dissolve, disperse, 
encapsulate, or adsorb the anticancer agents for tumor 
targeting, sustained release, protection of therapeutic 
moieties, and so on [87]. Depending upon the method 
of preparation, the structure of NPs can vary from 
nanospheres (matrix system) to nanocapsules (reser-
voir system). In nanospheres, the therapeutic agents are 
simply dispersed throughout the particle–matrix sys-
tem. In contrast, in nanocapsules, therapeutic agents 
are being held in an aqueous or oily cavity surrounded 
by a uni-polymeric membrane [94]. Further, the most 
commonly adopted biodegradable synthetic and natural 
polymers to develop this kind of NPs are poly(lactide-
co-glycolide) (PLGA) [270], polylactide (PLA) [271], 
polycaprolactone (PCL) [272], PLGA-polyethylene gly-
col (PEG) [273], alginate [274], gelatin [275], albumin 
[276], etc. Recently, an investigation by Wang and col-
leagues developed DOX-loaded cRGD-attached reduc-
tion-responsive crosslinked nanotherapeutics based on 
star PLGA-lipoic acid conjugate (cRGD-sPLGA XNPs) 
to achieve targeted delivery to melanoma (Fig. 8) [277]. 
With the particle size of 91  nm, the DOX@cRGD-
sPLGA XNPs displayed maximum accumulation and 
significant cellular uptake in αvβ3 overexpressing 

murine melanoma cells (B16F10) followed by the effi-
cient release of DOX into the nuclei compared to non-
cRGD attached DOX@sPLGA XNPs, which released 
the DOX in the cytoplasm. Further, the  IC5O value of 
DOX@cRGD-sPLGA XNPs was found to be 0.92  µg/
ml, which was 2 and 12.3 folds lesser than the non-tar-
geted variant and Lipo-DOX (marketed PEGylated dox-
orubicin), respectively, indicating the active targeted 
PLGA-based nanosystem is a much-needed treatment 
approach for groundbreaking melanoma therapy.

Studies have displayed upregulation of CD44 recep-
tors in human melanoma cells [278]. Therefore, CD44 
receptor-specific targeting has gained much interest 
in developing a targeted drug delivery system to eradi-
cate melanoma by enhancing the cellular uptake effi-
ciency and tumor-specific distribution. In this regard, 
Chen and team came up with hyaluronan (HA, 49 kDa) 
attached cationic bovine serum albumin (BSA) NPs 
loaded with PTX for CD44 targeted melanoma ther-
apy [279]. The biodistribution study in C57BL/6 mice 
melanoma lung metastasis model displayed maximum 
accumulation of PTX@HA-BSA NPs at the tumor site. 
Nonetheless, the  IC50 value of PTX@HA-BSA NPs was 
found to be 12.96 ± 1.34 µg/ml. In contrast, commercial 
PTX product and non-targeted variant, i.e., PTX@BSA 
NPs endowed 19.04 ± 4.12  µg/ml and 28.34 ± 5.28  µg/
ml, respectively, suggesting CD44 targeted chemother-
apy is an efficient strategy to treat melanoma with low-
cost HA as a targeting moiety.

So far, we have witnessed only chemotherapeutic 
agents deliverable active/passive targeted polymeric 
NPs. However, to manifest synergistic melanoma ther-
apy, the development of a combinatorial system that 
can deliver chemotherapeutic agents and also exhibit 
excellent PTT was reported by Hao and co-workers 
[280]. In this study, the authors first designed a 5-FU 
and ICG (NIR dye for PTT) loaded monomethoxy-
PEGPCL NPs (5-FU-ICG@MPEG-PCL NPs). Next, 
these NPs were loaded into HA-based dissolvable MNs 
(HAMNs) to yield 5-FU-ICG@MPEG-PCL@MNs. The 
MNs immensely helped to piece stratum corneum and 
deliver the NPs directly into the cutaneous melanoma 
region in a controlled manner upon NIR irradiation. 
This developed nano-micro system significantly inhib-
ited the tumor growth compared to their individual 
modalities in melanoma-bearing BALB/c nude mice 
model, presenting the NIR-responsive 5-FU-ICG@
MPEG-PCL@MNs as a noteworthy candidate to treat 
cutaneous melanoma without severe side effects caused 
by unnecessary system exposure of chemotherapeutics.

The latest research reports on skin cancer therapy via 
polymer NPs are enumerated in Table 3.
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Lipid‑based nanoparticles for skin cancer therapy
Lipid-based NPs are distinctive carrier systems that 
contain either lipid monolayer (solid lipid nanoparti-
cles and nanostructured lipid carriers) or lipid bilayer 
(liposomes, niosomes, ethosomes, etc.) along with 
solid lipid core (solid lipid nanoparticles), liquid lipid 
core (nanostructured lipid carriers), or aqueous core 
(liposomes, niosomes, ethosomes, etc.) in which the 
therapeutic agents are either dissolved or dispersed 
to deliver via several routes of administration [296, 
297]. The anticancer agents that are hydrophilic in 
nature face the permeability issue, and hydropho-
bic anticancer moieties lack suffice aqueous solubil-
ity leading to poor therapeutic efficacy. In addition to 

that, chemotherapeutic agents have the tendency to 
destroy both normal and cancer cells when freely pre-
sent in the physiological system. Nevertheless, specific 
anticancer agents are prone to degradation in either 
physiological or external environments (light, tem-
perature, and humidity), deactivating their therapeutic 
properties. In order to overcome all these drawbacks, 
the lipid-based NPs are deemed the most appropriate 
carrier systems due to their unique lipidic composi-
tion, which was made from physiologic and/or biode-
gradable lipids [298]. The supremacy of lipid-based NPs 
includes controlled release, burdenless and easy formu-
lation, compatibility, high drug loading efficiency (both 
hydrophilic and hydrophobic), and last but not least, 

Fig. 8 Illustration of cRGD‑installed reduction‑responsive crosslinked nanotherapeutics from star PLGA‑lipoic acid conjugate (cRGD‑sPLGA XNPs) 
for enhanced DOX delivery to B16F10 melanoma bearing mice in vivo, reproduced with permission from [277], copyright 2019, American Chemical 
Society
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lipid-based NPs are the highest number of nanomedi-
cines that the FDA has approved so far (due to their 
safety profile) [299]. Some lipid-based NPs that have 
shown remarkable results in skin cancer therapy are 

solid lipid nanoparticles (SLNs), nanostructured lipid 
carriers (NLCs), liposomes, niosomes, transferosomes, 
ethosomes, and so on, which will be discussed thor-
oughly in the upcoming sections.

Table 3 Latest investigations on polymer NPs‑based therapeutic approaches for skin cancer

Type Chief 
composition

Therapeutic 
agent

Particle size In vitro 
cytotoxicity 
study

Animal model Route of 
administration

Ref

Polymeric micelles D‑α‑tocopheryl 
succinates/ Chon‑
droitin sulfate

Doxorubicin 137.87 ± 2.32 nm Mice melanoma 
cell line (B16F10)

Melanoma‑bear‑
ing C57BL/6 mice

Intravenous [281]

Polymeric micelles 1,2‑distearoyl‑sn‑
glycero‑3phos‑
phoethanolamine‑
N‑[maleimide‑
(polyethylenegly‑
col)‑2000]

MCP‑1 peptide/ 
KLAKLAK peptide

11.9 ± 2.3 nm Mice melanoma 
cell line (B16F10)

Melanoma‑
bearing male 
C57BL/6 J mice

Intravenous [282]

Polymeric micelles Polyethylene 
glycol/ Hydroxydo‑
decanoic acid

Doxorubicin 200 nm Mice melanoma 
cell line (B16)

‑ Intravenous [283]

Polymeric micelles D‑α‑tocopheryl‑
polyethylene‑
glycol‑succinate

All‑trans‑retinoic 
acid

11.4 ± 0.1 nm Human mela‑
noma cell line 
(BRAFV600)

‑ Topical [284]

Polymeric micelles D‑α‑tocopheryl 
polyethylene gly‑
col 1000 succinate

Imiquimod 13.40 ± 0.16–
14.90 ± 0.13 nm

‑ ‑ Topical [285]

Dendrimers Poly(amidoamine)/ 
Poly (ethylene 
glycol)

Cytosine‑phos‑
phate‑guanine 
oligonucleotides/ 
Doxorubicin

35 ± 4.2 nm Mice melanoma 
cell line (B16F10)

Melanoma‑bear‑
ing C57 mice

Intravenous [286]

Dendrimers Poly(amidoamine) Cytosine‑guanine 
dinucleotides

58–68 nm Mice melanoma 
cell line (B16‑OVA)

Melanoma‑
bearing female 
C57BL/6 mice

Intravenous [287]

Dendrimers Poly(amidoamine)/ 
Iron oxide

Doxorubicin ‑ Mice melanoma 
cell line (B16F10)

Melanoma‑bear‑
ing male C57BL/6 
mice

Intravenous [288]

Dendrimers Poly(amidoamine) Celecoxib/ Fmoc‑
L‑Leucine

‑ Squamous cell car‑
cinoma (SSC‑15)/ 
Human normal 
fibroblast cell line

‑ ‑ [289]

Dendrimers Poly(amidoamine) 5‑Flurouracil 2.45 ± 0.06–
3.75 ± 0.19 nm

Human melanoma 
cell line (A375)

‑ ‑ [290]

Polymeric nano‑
particle

Poly(lactic‑co‑
glycolic acid)

Baicalin/ Hgp 
peptide fragment/ 
CpG fragments

123.6 nm Mice melanoma 
cell line (B16F10)

Melanoma‑bear‑
ing C57BL/6 mice

Intravenous [291]

Polymeric nano‑
particle

Poly(lactic‑co‑
glycolic acid)

Baicalin/ Hgp 
peptide fragment/ 
CpG fragments

168.9 nm Mice melanoma 
cell line (B16F10)

Melanoma‑
bearing female 
C57BL/6 mice

Intravenous [292]

Polymeric nano‑
particle

Poly(lactic‑co‑
glycolic acid)/ 
D‑α‑tocopherol 
polyethylene gly‑
col 1000 succinate

Paclitaxel/ 
PD98059 (MAPK 
inhibitor)

180 nm Mice melanoma 
cell line (B16F10)

Melanoma‑bear‑
ing nude mice

Intravenous [293]

Polymeric nano‑
particle

Bovine serum 
albumin

Curcumin 150 nm Mice melanoma 
cell line (B16F10)

Melanoma‑
bearing male 
C57BL/6 J mice

Intraperitoneal [294]

Polymeric nano‑
particle

Chitosan/ Alginate Doxorubicin 300 nm Mice melanoma 
cell line (B16F10)

Melanoma‑
bearing female 
C57BL/6 mice

Intravenous [295]
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Solid lipid nanoparticles
SLNs were first introduced in the year 1991 as colloidal 
lipid carriers with a typical size range of 50–1000  nm 
[300]. They were made of natural lipids such as fatty 
acids, steroids, waxes, monoglycerides, diglycerides, and 
triglycerides, which remain in a solid form at both ambi-
ent and physiological temperatures. As the name indi-
cates, the core lipid matrix in SLNs is constituted by a 
solid lipid (0.1–30% w/w) that encapsulates either lipo-
philic or hydrophilic drugs depending upon the method 
of preparation followed by stabilization of the core lipid 
matrix using surfactants (0.5–5% w/w) [301]. Neverthe-
less, their ability to encapsulate anticancer agents and 
safely guide them to the tumor site to achieve controlled 
release without involving any permeability and toxicity 
issues has made them the most competing drug carriers 
for skin cancer therapy.

Concerning all these advantages, a study by Valdes 
and team developed 4-(N)-docosahexaenoyl 2′, 2′-dif-
luorodeoxycytidine (DHA-dFdC) encapsulated SLNs 
to enhance the antimelanoma efficacy of DHA-dFdC 
via oral administration [302]. In  vivo pharmacokinetics 
study displayed maximum oral bioavailability for DHA-
dFdC@SLNs compared to free DHA-dFdC. This was fur-
ther confirmed in the melanoma-bearing mice model, 
which exhibited a maximum survival rate for orally 
administered DHA-dFdC@SLNs than free DHA-dFdC. 
In another investigation, Kim and co-workers made an 
attempt to overcome the toxicity of intravenously admin-
istered docetaxel (DTX) by encapsulating it in SLNs to 
achieve sustained delivery for 24 h after oral administra-
tion [303]. Further, the DTX-loaded cationic SLNs were 
coated with glycocholic acid conjugated anionic polymer 
(D-SLN-CSG) to ensure they actively absorb through the 
distal ileum (via interactions with the apical sodium bile 
acid transporter) after oral administration. The in  vivo 
study using C57BL/6 mice bearing melanoma displayed 
maximum inhibition of tumor after oral administration 
of D-SLN-CSG than intravenous administration of free 
DTX, supporting the use of SLNs-based DTX via oral 
route for enhanced antimelanoma efficacy.

Studies have proved that PTX is a more efficacious 
chemotherapeutic agent against melanoma than FDA-
approved DTIC, also called the gold standard for mela-
noma therapy. This is because DTIC does not induce 
cell-surface exposure of calreticulin, a chief biomarker 
for immunogenic cell death. However, this is not the 
case with PTX. However, poor aqueous solubility and 
severe toxicity issues limit their potential application 
in melanoma therapy. Thus, Banerjee et  al. developed 
robust PTX@SLNs attached with Tyr-3-octreotide 
(PST) for active targeted delivery to melanoma sites 
[304]. The results revealed PST exerted more apoptotic 

and anti-invasive effects in the murine melanoma cell 
line (B16F10) than DTIC. Further, the melanoma-bear-
ing mice treated with PST showed the highest num-
ber of CD8 + T cells in their tumor region; due to this, 
PST exerted maximum inhibition of tumor growth 
than DTIC. Nevertheless, the PST potentially reduced 
the number of nodule formations in the lung metasta-
sis model without any severe side effects, making them 
promising candidates for melanoma therapy.

Immunotherapy, targeted therapy, and chemother-
apy are well known for skin cancer treatment despite 
their cost and side effects. In the quest to overcome the 
issues related to cost and side effects, scientists explored 
numerous phytoconstituents (CUR, RVT, quercetin, cou-
marin, etc.) with potential anticancer properties [305]. 
However, their poor physicochemical properties hinder 
their potential application in melanoma therapy. To over-
come this circumstance, Palliyage and co-workers came 
up with CUR and RVT-loaded SLNs as a topical delivery 
system to treat aggressive melanoma conditions [306]. 
With an average particle size of 180.2 ± 7.7 nm, the nega-
tively charged CUR-RVT@SLNs exhibited maximum 
cytotoxicity in the melanoma cell line (SK-MEL-28) with 
improved skin permeability (in vitro study using Franz 
diffusion cell). On the other arrow, an interesting study 
by Valizadeh and colleagues explored the potential anti-
melanoma property of Zataria multiflora’s essential oil-
loaded SLNs [307]. With a particle size of 176 ± 8 nm and 
entrapment efficiency of 67 ± 5%, these SLNs endowed 
less than 13% melanoma cell (A-375) viability at 75  µg/
ml concentration. In contrast, plain essential oil exerted 
more than 50% cell viability. All these reports strongly 
witness the potential of SLNs as eminent drug carriers in 
skin cancer therapy.

Some of the notable investigations on SLNs that 
endowed extraordinary results against skin cancer include 
omega-3 α-linolenicacid/ α-tocopheryl linolenate, sodium 
taurocholate, tween 20/ melanoma [308],Mentha longifo-
lia, Mentha pulegium essential oils/ stearic acid, span 60, 
tween 80/ melanoma [309], octyl gallate/ Astrocaryum 
murumuru (seed butter), tween 80/ melanoma [310], 
doxorubicin/ lecithin, sodium taurodeoxycholate/ mela-
noma, squamous cell carcinoma [311], paclitaxel/ stearic 
acid, egg lecithin/ squamous cell carcinoma [312], micro-
RNA-34a, paclitaxel/ glyceryl monostearate, cholesterol, 
soy phosphatidylcholine, dimethyldioctadecyl ammonium 
bromide/ melanoma [313].

Nanostructured lipid carriers
NLCs are second-generation lipid NPs, which can also be 
considered an upgraded version of SLNs. Unlike SLNs, 
the NLCs are comprised of both solid lipids (fat) and liq-
uid lipids (oil) in a ratio of 70:30 up to a ratio of 99.9:0.1 
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along with surfactants (1.5–5% w/v) [314]. The utilization 
of liquid lipids in NLCs helps overcome the drawbacks 
of SLNs, like low therapeutics loading and poor storage 
stability (expulsion of drug) by circumventing lipid crys-
tallization. Some commonly used liquid lipids in the con-
struction of NLCs are ethyl oleate, isopropyl myristate, 
glyceryl dioleate, and glyceryl tricaprylate. Further, stud-
ies have displayed that the appropriate selection of solid 
lipids, liquid lipids, and surfactants, along with their con-
centration, have a direct impact on particle size, drug 
loading capacity, controlled release ability, permeabil-
ity, toxicity, and long-term stability of NLCs [315, 316]. 
Owing to all these advantages, the scientific community 
is anticipating their application in skin cancer treatment.

Recently, many studies have explored the adjuvant 
anticancer activity of local anesthetics like lidocaine, 
ropivacaine, bupivacaine, etc. It has been reported that 
lidocaine (LDC) can inhibit the growth of cancer cells via 
regulation of ABC transporters, promotion of pro-apop-
totic pathways, regulation of epigenetic changes, prevent-
ing metastasis and angiogenesis [317]. Considering this as 
basement, a recent study by Moura and team investigated 
the synergistic antimelanoma effect of DTX and LDC 
loaded NLCs via topical route [318]. In this work, the 
authors first loaded NLCs with DTX, followed by incor-
porating the DTX@NLCs into lidocaine containing xan-
than-chitosan hydrogel. The particle size of DTX@NLCs 
based on the DLS study was found to be 214.0 ± 10.9 with 
zeta potential and entrapment efficiency of -24.2 ± 0.3 
and 97.3 ± 2.6%, respectively. Further, in  vivo study on 
melanoma-bearing C57BL/6  J mice exhibited significant 
inhibition of tumor growth upon treatment with DTX@
NLCs (intratumorally) + LDC@hydrogel (topically) com-
pared to LDC-DTX@NLCs hydrogel (topically), DTX@
NLCs hydrogel, and LDC @NLCs hydrogel. In addition 
to that, the reported DTX-loaded NLC formulation did 
not exhibit any side effects compared to free DTX. These 
results provide suffice hope to utilize NLCs as a potential 
drug carrier in the treatment of melanoma conditions.

The activation of STAT3 protein is commonly observed 
in many tumors, including melanoma, which plays a 
chief role in regulating tumor cell growth and survival, 
angiogenesis, and evasion of immune surveillance [319]. 
Therefore, scientists came up with a small molecule 
named Stattic to potentially inhibit the functionality of 
STAT3 via dimerization event [320]. Regardless of any 
other therapeutic agent, chemotherapy remains a gold 
standard for the treatment of melanoma. In this con-
spiracy, for the first time, Mohammadian and co-workers 
investigated the synergistic effect of DOX and Stattic in 
a murine melanoma cell line (B16F10) using NLCs as 
nanoplatform [321]. Here, the authors loaded Stattic 
into NLCs via a modified hot homogenization technique 

together with ultrasonication. Further, the in  vitro cell 
line studies revealed maximum melanoma cell death 
upon treating with Stattic@NLCs + DOX compared to 
Stattic + DOX, Stattic, and DOX. Although the synergis-
tic antimelanoma activity was witnessed using Sttatic and 
DOX, it was clearly identifiable that NLCs, as a carrier 
system, greatly enhanced the therapeutic efficacy by tam-
ing the drawbacks of free Stattic.

An interesting study by Imran and colleagues investi-
gated the anti-skin cancer efficiency of RVT and querce-
tin (QUE) loaded NLCs via topical route [322]. The 
particle size of dual drug-loaded NLCs were found to 
be 191 ± 5 nm with a zeta potential -10.00 mV. Also, the 
developed NLCs exhibited 89% and 92% entrapment effi-
ciency for RVT and QUE, respectively. Compared to con-
ventional gel formulation (carbopol 934, 1.5% w/w), the 
NLC gel exhibited 3 folds higher deposition in skin lay-
ers. Nevertheless, the in vitro cytotoxicity study using a 
human epidermoid carcinoma cell line (A431) displayed 
an  IC50 value of 86.50 µM for the NLC gel treated group, 
whereas conventional gel exhibited 123.64  µM. These 
results disclose that NLCs could potentially improvise 
the anticancer efficacy of RVT and QUE via topical route. 
Yet another study by the same research team studied the 
combinatorial effect of RVT and 5-fluorouracil (5-FU) 
loaded NLCs in the same skin cancer cell line (A431) 
[323]. Further, the results of MTT assay displayed an  IC50 
value of 22 μM for NLC gel and 52 μM for conventional 
gel. All these results immaculately suggest NLCs as a 
potential drug carrier that could create a road for promis-
ing skin cancer therapy via topical route.

Liposomes, Niosomes, Transferosomes, and Ethosomes
Liposomes are vesicular drug delivery systems comprised 
of phospholipids and cholesterol to form a self-assembled 
lipid bilayer surrounding an aqueous core. The concept of 
liposome was first described by a British scientist “Bang-
ham” in the early 1960s. Since then, liposomes have been 
widely involved in various biomedical applications as a 
potential drug carrier [324, 325]. Liposomes are catego-
rized into 3 types such as small unilamellar vesicles (20–
100 nm), large unilamellar vesicles (more than 100 nm), 
and multilamellar vesicles (more than 0.5 µm) based on 
their size and lamellarity. The most exciting part about 
liposomes is they seamlessly imbibe both hydrophilic 
(in central aqueous compartment) and hydrophobic (in 
outer lipidic bilayer) molecules at the same time [326]. 
Some commonly used phospholipids in liposome devel-
opment are phosphatidyl serine, phosphatidyl inositol, 
phosphatidyl choline or lecithin, phosphatidyl glycerol, 
phosphatidyl ethanolamine or cephalin, and so on. These 
phospholipids rapidly undergo self-assembly in an aque-
ous environment to yield a lipidic bilayer (one or many) 
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with a central aqueous compartment (one or many). Fur-
ther, the cholesterol will be incorporated to uplift the 
stability of bilayers during their residence in biological 
fluids, thereby avoiding the premature release of thera-
peutics [327]. So far, many studies have elaborated on the 
ability of liposomes in anticancer therapeutics delivery.

No matter what technology we use today, there will 
always be an upgradation to it in the future. Similarly, to 
overcome certain drawbacks of liposomes related to per-
meability, physiological and storage stability along with 
cost, niosomes were introduced in 1970s by a cosmetic 
company L’Oréal. However, their first niosomal product 
was came into market in the year 1987. The only key dif-
ference between noisome and liposome is the usage of 
non-ionic surfactants (Spans, alkyl oxyethylenes, poly-
sorbates, terpenoids, etc.) in the place of phospholip-
ids to form a bilayer with an aqueous core [328, 329]. 
Although niosomes had proved their stance in addressing 
many drug delivery issues compared to liposomes, using 
non-ionic surfactant as a significant ingredient could 
cause potential toxicity issues. Thus, transferosomes 
were introduced by Cevc and Blume in the year 1992. 
Unlike liposomes and niosomes, the transferosomes are 
deformable or elastic vesicles comprised of phospho-
lipids and edge activators (surfactants). The commonly 
used edge activators in transferosomes development are 
deoxycholate, dipotassium glycyrrhizinate, sodium cho-
late, Tweens, and Spans [330]. However, we already know 
that surfactants are prone to induce toxicity. Thus, to 
eliminate the usage of any surfactants, Touitou invented 
a novel vesicular structure named ethosomes. Ethosomes 
are formed by combining phospholipids, ethanol, and 
water to yield a lipid bilayer surrounding an aqueous-eth-
anolic core, where both hydrophilic and lipophilic drug 
can be encapsulated [331–333]. Nevertheless, all the four 
nano-carriers, such as liposomes, niosomes, transfer-
osomes, and ethosomes were extensively studied for their 
anticancer therapeutics’ delivery ability to treat many 
cancer conditions, including skin cancer, without involv-
ing many side effects.

A recent study by Su and colleagues reported the devel-
opment of cationic liposomes loaded with peptide vac-
cine and indoleamine-2,3-dioxygenase (IDO) inhibitor 
for combinatorial melanoma therapy [334]. In this study, 
the authors first loaded 1-methyl-tryptophan (1-MT), 
an IDO inhibitor) into cationic liposomes. Further, they 
complexed (electrostatically) the liposomes with nega-
tively charged epitopes (AE) that were derived from anti-
gens of melanoma followed by conjugation of a strong 
TLR9 agonist, i.e., CpG, to yield a unique tumor vaccine 
(Fig. 9). Interestingly, the IDO inhibitor is a hydrophobic 
molecule, whereas peptide vaccine is a hydrophilic one. 
Regardless of that, the developed liposomal formulation 

efficiently encapsulated both the peptide vaccine and 
1-MT (IDO inhibitor) in an aqueous core and lipid 
bilayer, respectively, and helped to enhance their pres-
entation to DCs via efficient uptake, which effectually 
encouraged the cytotoxic T lymphocyte to eliminate mel-
anoma cells. Overall, the liposomal formulation loaded 
with peptide vaccine and IDO inhibitor displayed a 
significant tumor inhibition than individual liposomal 
components, ensuring the lipo-based combinatorial 
immunotherapy provides a promising melanoma therapy 
platform.

As mentioned earlier in this section, to overcome the 
drawbacks of liposomes, such as poor stability and high 
production cost, Obeid and team developed a cationic 
niosomal formulation loaded with anti-luciferase siRNA 
to treat melanoma conditions [335]. The siRNA, in its 
free form, suffers from poor cell membrane permeabil-
ity and stability. However, siRNA@niosomal formula-
tion significantly suppressed the luciferase expression 
compared to free siRNA in both murine melanoma cell 
line (B16F10) and melanoma induced BALB/c nude mice 
(intratumoral administration). These results suggested 
that the niosomes are the potential drug carriers for 
siRNA delivery in melanoma therapy.

Rose Bengal (RB) is a synthetic dye commonly used 
in ophthalmology as a diagnostic tool. RB has recently 
gained significant attention due to its ability to act as a 
sono-photosensitizer, which can be employed in sono-
PDT to kill cancer cells [336]. However, RB is a hydro-
philic compound with a molecular weight of 1017.64 g/
mol and anionic change in solution form. This charac-
teristic feature of RB hinders its permeability through 
skin layers for treating cutaneous melanoma condi-
tions. In order to surpass this barrier, Demartis and co-
workers came up with an idea to develop transferosomal 
formulation loaded with RB to enhance their skin per-
meability that potentially suppresses the cutaneous mel-
anoma lesion [337]. Here, the authors used a modified 
reverse-phase evaporation method to develop robust 
RB@transferosomes with a particle size of 206 nm, zeta 
potential of -45  mV, and 94% loading efficiency. The 
ex  vivo study evidenced that RB@transferosomes sig-
nificantly enhanced the permeation of RB compared to 
its free form (78.31% vs. 38.31%). Considering the out-
come of the cytotoxicity studies, it can be concluded that 
transferosomes represent as a suitable nanocarrier for 
enhancing the skin permeability of RB to fight against 
cutaneous melanoma lesions.

In another investigation, a novel topical transfero-
some-oligopeptide gel formulation containing PTX and 
cell-penetrating peptide (CPP) (R8H3) was developed 
by Jiang and colleagues to treat cutaneous melanoma 
[338]. In this study, the authors first encapsulated the 
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PTX in CPP-modified transferosomes, which was fur-
ther incorporated into a unique oligopeptide hydrogel 
that acted as a reservoir, providing a prolonged skin 
retention time compared to PTX-CPP@transferoso-
mal solution. The developed formulation efficiently 
extrudes through the channels of the stratum corneum 
into the epidermal layer where the melanoma cells 
are located. Finally, results from both in  vitro cell line 
study and in vivo animal study revealed the PTX-CPP@
transferosomal gel significantly inhibited the tumor 
growth compared to PTX-CPP@transferosomal solu-
tion and free PTX. Approximately 3 years later, another 
study on topical transferosome-oligopeptide gel for-
mulation containing DTX was reported by the same 

research team to overcome the post-surgical melanoma 
tumor recurrence [339]. Corresponding to their previ-
ous study, the authors loaded DTX into CPP-modified 
transferosomes followed by incorporating it into oli-
gopeptide hydrogel. Unlike previous study, here the 
authors have studied the final hydrogel for both paint-
ability and syringeability. Finally, the DTX-CPP@
tranferosomal gel displayed maximum tumor growth 
inhibition compared to DTX@tranferosomal gel and 
DTX-CPP@tranferosomal solution in the melanoma-
bearing mice model, concluding that transferosome-
oligopeptide gel formulation in combination with CPP 
could potentially enhance the skin delivery of PTX and 
DTX to treat cutaneous melanoma condition.

Fig. 9 Schematic illustration of the formation of P/LNV loaded with tumor vaccines and IDO inhibitor (P/LNV@IDO/AE/CpG) and the action 
mechanism for immunotherapy (A) Preparation of P/LNV@IDO/AE/CpG. B Combination immunotherapy induced by P/LNV@IDO/AE/CpG. Naive 
dendritic cells (DCs) are activated and their maturation is induced by the antigens delivered by P/LNV@IDO/AE/CpG, which then present the 
processed peptide antigens to T cells, causing a strong cytotoxic T‑lymphocyte (CTL) response. Tumor cells would be attacked by effector T cells. 
Besides, the presentation of 1‑MT would inhibit the activity of IDO by decreasing the oxidization of tryptophan (Trp) to kynurenine (Krn), which 
further enhanced the antitumor immune response. Together, P/LNV@IDO/AE/CpG resulted in a superior combination immunotherapy against 
melanoma, reproduced with permission from [334], copyright 2021, Royal Society of Chemistry
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Honokiol/ transferosomes/ melanoma [340], melittin/ 
lipoosmes/ melanoma [341], berberine/ transniosomes/ 
skin cancer [342], protein kinase C inhibitor, BRD4 PRO-
TAC/ liposomes/ melanoma [343], hispolon, doxoru-
bicin/ liposomes/ melanoma [344], phenylethylresorcinol/ 
liposomes, transferosomes, invasomes/ melanoma [345], 
brucine/ ethosomes/ melanoma [346], berberine chloride, 
evodiamine/ ethosomes/ melanoma [347], 5-fluoroura-
cil/ ethosomes/ melanoma [348], doxorubicin, Au, TRP-
2, polyinosinic:polycytidylic acid/ liposomes, chitosan, 
poly(lactide-co-glycolic acid)/ melanoma [349] are few more 
investigations of nanovesicles that endowed excellent anti-
skin cancer efficacy.

The lipid-based NPs that have shown exemplary anti-
skin cancer efficacy are summarized in Table 4.

Drug delivery patch for skin cancer therapy
Recently, drug-delivery patches have grasped the inter-
est of many scientists due to their ability to not only 
deliver the therapeutic agents to the systemic circula-
tion but also to the local skin region for prolonged peri-
ods to treat diverse skin conditions, including cutaneous 
cancer [364]. Interestingly, these drug-delivery topical/
transdermal patches can be loaded with either free anti-
cancer drugs or NPs imbibed anticancer drugs for effi-
cient skin cancer therapy. A recent study by Song and 
colleagues developed tumor antigens-loaded ethosomes 
and further imbibed them in a polyvinyl alcohol (PVA) 
and silk fibroin (SF) based nanofibrous patch for treating 
melanoma [365]. In this study, the authors have modified 
the surface of ethosomes with mannosylated polyethyle-
neimine to target dendritic cells. The results revealed that 
the developed nanofibrous patch sufficiently inhibited the 
tumor growth in melanoma-bearing mice model. Further, 
the combination of vaccine patch and anti-PD-1 exhib-
ited synergistic anti-melanoma activity, encouraging 
the combinatorial delivery of vaccine and anti-PD-1 for 
efficient skin cancer therapy. Another study by the same 
team prepared mRNA vaccines and anti-PDL1 siRNA-
loaded ethosomes and then incorporated them into SF-
based electro-spun transdermal patch for melanoma 
therapy [366]. Unlike their previous study, the authors 
have modified the surface of ethosomes with manno-
sylated chitosan to target dendritic cells. The results from 
animal studies showed that the developed nanofibrous 
patch could efficiently and non-invasively treat mela-
noma conditions. A recent investigation by Guadagno 
and teammates developed an Au complex-loaded PCL-
based electro-spun nanofibrous topical patch for the 
treatment of melanoma [367]. The results revealed that 
the developed nanofibers exhibited significant cell death 
within 48 h, encouraging the potential of a metal-based 
topical patch in melanoma therapy. Recently, studies have 

demonstrated the synergistic potential of metallic NPs 
and phytoconstituents to treat skin cancer. In this con-
text, a study by Ekambaram and co-workers synthesized 
green-based titanium dioxide nanorods  (TiO2 NRs) and 
further incorporated them into PVA-based nanofibrous 
patch along with resveratrol (TR@NFs) to treat non-
melanoma skin cancer [368]. The in  vitro cytotoxicity 
study in A431 cell lines exhibited decreased  IC50 value 
for developed TR@NFs compared to free resveratrol. At 
500 µg/ml concentration, TR@NFs showed reduced cell 
viability in A431 cell lines than T@NFs and plain NFs, 
exploiting the synergistic effect of  TiO2 NRs and resvera-
trol in non-melanoma skin cancer.

Although topical/transdermal patches can efficiently 
treat skin cancer conditions, their preparation technique, 
loading dose, and non-customizable size of the patch are 
the most significant drawbacks that need to be poten-
tially addressed. In this contemplate, a recent study by 
Shao et al. investigated a personalized 3D printable topi-
cal patch through the guidance of dermoscopy for treat-
ing diverse skin conditions [369]. Interestingly, both 
hydrophilic and lipophilic drugs can be precisely printed 
on the patterned patch with the help of an inkjet printer 
according to patients’ conditions, i.e., size and location of 
the lesion. With this strategy, the limitations associated 
with conventional patch fabrication can be potentially 
resolved, which indirectly paves the road for efficient skin 
cancer therapy.

Microneedle patch for skin cancer therapy
Microneedles (MNs) are advanced drug delivery patches 
whose needle height ranges from 100 to 2000 µm [370]. 
They are considered third-gen topical/transdermal 
drug delivery systems due to their profound ability to 
overcome the drawbacks of many topical/transdermal 
formulations such as gel, cream, lotion, ointment, con-
ventional patch, spray, etc. [253]. The MN patches are 
capable enough to physically disrupt the skin’s most 
rigid barrier, “Stratum corneum”, to deliver a wide range 
of anticancer drugs or NPs imbibed therapeutic agents 
directly into the dermal layer to treat cutaneous skin 
cancer. However, when there is a skin cancer metasta-
sis, these MNs can be utilized to deliver a wide range of 
drug-loaded NPs into systemic circulation as a substitute 
for invasive techniques (intravenous, subcutaneous, or 
intramuscular injections) [371–373]. Previously, Demar-
tis and colleagues developed Rose Bengal (RB) loaded 
transferosomes (T) for treating cutaneous melanoma by 
overcoming their permeability issue [337]. However, the 
same team further extended their work by loading RB@T 
into PVA-polyvinylpyrrolidone (PVP) based dissolv-
ing MNs to enhance the residence of RB in the cutane-
ous melanoma region compared to plain transferosomal 
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formulation [374]. The developed RB@T was 62  nm 
in size with a zeta potential value of -38.5  mV. Further, 
the RB loading in transferosomal formulation was esti-
mated to be 110%. Thereafter, the RB@T@MNs patch 
consisted of 600 pyramidal needles with an individual 
needle height of approx. 750 µm. The results from drug 
content determination studies revealed that the free RB@
MN patch contained 139 ± 22 µg of RB, whereas RB@T@
MN patch loaded just 64 ± 8  µg of RB. The developed 
MNs exhibited good mechanical strength with not more 
than a 10% reduction in needle height upon application 
of 32 N force. Coming to the insertion studies, the devel-
oped MNs reached the maximum depth of 381 µm in a 
Parafilm skin simulant model. The results from the inser-
tion study of MNs in the ex-vivo model exhibited a pen-
etration depth of 400–450 µm. Finally, the RB@T@MNs 
showed complete dissolution of needles within 5  min 
in an ex  vivo set-up, whereas RB@MNs liquified after 
10 min. The fastest dissolution rate of RB@T@MNs could 
be due to the presence of surfactant (Span 80) in trans-
ferosomal formulation. Nevertheless, the dermatokinetic 
study exhibited that the developed RB@T@MNs could 
be more competent in treating melanoma conditions 
than RB@MNs and RB@T. Considering all these results, 
combining nano- and micro-based drug delivery systems 
could be the most predominant approach to enhance the 
therapeutic efficacy of anticancer agents in cutaneous 
melanoma therapy [374].

BRAF is one of the most commonly mutated genes in 
melanoma. Therefore, researchers have used BRAF siRNA 
(siBraf) as a frontline treatment approach [375]. How-
ever, due to the hydrophilicity and large molecular weight 
(13 kDa), siBraf is facing skin permeability issues in reach-
ing the melanoma site. To overcome this drawback, Ruan 
and teammates, for the first time, developed the siBraf-
octaarginine (R8) (cell-penetrating peptide) based NPs 
(R8-siBraf) and further coated them on stainless steel MNs 
(R8-siBraf@MNs) for the efficient treatment of cutaneous 
melanoma [376]. The size of developed R8-siBraf NPs was 
found to be 353 nm. The coated MNs consisted of 10 × 10 
conical arrays with individual needle heights of approx. 
750  µm. The in  vivo study revealed that the developed 
R8-siBraf@MNs released 90% of siRNA into the skin within 
5 min of insertion. Further, the in vivo insertion depth of 
MNs was found to be approx. 300  µm using Rhodamine 
B coated MNs. The results from in  vitro cell line studies 
using A375 cells exhibited that R8-siBraf NPs can enhance 
the BRAF gene silencing, thereby reducing the cell viabil-
ity compared to polyethyleneimine-siBraf NPs. Finally, the 
developed R8-siBraf@MNs significantly reduced the tumor 
size in melanoma-bearing mice models via inducing apop-
tosis and inhibiting A375 cell proliferation, making them 
the most appropriate candidates for melanoma therapy.

Recently, Qin and co-workers developed nano- and 
micro-based delivery systems to achieve chemo-photo-
thermal therapy in skin melanoma [377]. In this study, 
the authors first developed the PTX (chemo) and IR-780 
(PTT agent) loaded thermo-responsive SLNs (PI@
SLNs) and further incorporated them into a dissolving 
MN system to develop a unique spatiotemporally con-
trolled delivery system that can furnish repeated con-
trolled drug delivery for long-term melanoma therapy. 
Upon application of PI@SLNs@MNs into the tumor 
site, PI@SLNs were released and accumulated in the 
melanoma site. Further, the irradiation of NIR light trig-
gers the IR-780 to convert the light energy into heat, 
resulting in in-situ phase transformation of SLNs, lead-
ing to PTX release. However, under no NIR irradiation, 
the reduced temperature is witnessed, facilitating the 
re-solidification of SLNs, further inhibiting PTX deliv-
ery (Fig. 10). With this system, multiple doses have been 
achieved in a single administration, which exhibited 
significant tumor inhibition (100% tumor eradication in 
30 days) in an in vivo model compared to intratumoral 
and intravenous administration of PTX/IR-780 SLNs. 
These results revealed that nano- and micro-based 
chemo-photothermal therapy is a unique way to treat 
melanoma with relatively less toxicity [377].

Hypericin (Hy) is a natural photosensitizing agent 
(PDT) that has received significant attention due to its 
ability to produce high-efficiency superoxide anions and 
singlet oxygen species upon light irradiation [378]. How-
ever, their therapeutic efficacy has been substantially 
hindered due to the hydrophobicity and poor skin per-
meability. To overcome this issue, Abd-El-Azim and col-
leagues developed Hy-loaded lipid nanocapsules (Hy@
LNs) and further delivered them to the non-melanoma 
skin cancer site through hollow MN (HMN) to improve 
the efficacy of localized PDT [379]. The particle size of 
developed Hy@LNs was 47 nm with negative zeta poten-
tial. The HMN system consisted of a single needle with 
a height of 1300 µm. The optical coherence tomography 
(OCT) analysis revealed that the developed HMN pene-
trated through a depth of 1045 µm, which is approx. 95% 
of total needle height. Upon delivery through HMNs, 
these Hy@LNs enhanced tumor cell uptake, furnishing 
improved PDT therapy in non-melanoma skin cancer 
conditions. Finally, the developed Hy@LNs delivered via 
HMN system exhibited remarkable inhibition of tumor 
growth upon light irradiation (595  nm) in a nude mice 
model. Overall, based on these results, it is witnessed 
that NPs delivered through MNs could furnish remark-
able cutaneous skin cancer therapy than free drug-loaded 
MNs, free drug-loaded conventional topical/transdermal 
formulations, and NPs-based conventional topical/trans-
dermal formulations. Nevertheless, the NPs imbibed 
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MNs could deliver the drugs into the systemic circulation 
to treat metastasized skin cancer by potentially overcom-
ing the drawbacks associated with hypodermic needle-
based injections, such as pain and inconvenience [379].

Some of the recent MNs-based approaches that demon-
strated efficient skin cancer therapy include 5-fluorouracil, 
indocyanine green/ PCL NPs/ HA MNs/ epidermoid car-
cinoma, melanoma [280], Cu-doped polydopamine NPs 
(PDT)/ PVP-PVA MNs/ melanoma [380], STAT3 siRNA/ 
dextran-PVP-HA MNs/ melanoma [381], curcumin, indo-
cyanine green/ HA-alginate-gelatin MNs/ melanoma [382], 
doxorubicin, trametinib/ dextran methacrylate hydrogel 
MNs/ melanoma [383].

Patents and clinical trials
There are many journal publications reporting on inno-
vative nano-based therapeutic approaches for the treat-
ment of skin cancer. However, few researchers have 
protected their inventions/innovations through patents 
with the intention of taking those nano-based therapeutic 
approaches to clinical trials followed by commercializa-
tion. Some recently published patents to treat skin can-
cer via nanotherapeutics are illustrated in Table 5 while 
excluding those patents that made general claims for 
treating all types of cancer conditions without perform-
ing in vitro or in vivo studies on skin cancer models. Out 
of hundreds of patents, few also entered clinical trials, as 
illustrated in Table 6. Further, it is clearly observable that 

most of the clinical trials have been performed for already 
marketed nano-based therapeutics (used for other condi-
tions like breast cancer, pancreatic cancer, etc.) alongside 
different anticancer agents (immunotherapeutic, targeted 
therapeutic, or chemotherapeutic agents) to explore the 
combinatorial/ synergistic effect on skin cancer.

Conclusion
Nanotechnology has opened a new door in the medi-
cal field to overcome several impediments associated 
with conventional skin cancer treatment modalities. 
Due to the ability of nanoparticles to act as antican-
cer agents, drug carriers, tumor-targeting moiety, skin 
permeability enhancers, and so on, they are consid-
ered suitable candidates for efficient skin cancer ther-
apy. As witnessed through numerous research reports, 
nanoparticle-based therapeutic approaches (inorganic, 
polymer, and lipid-based nanoparticles) have endowed 
significant improvement in the skin cancer therapy 
compared to conventional treatment approaches. The 
NPs have changed the outlook of immunotherapy, tar-
geted therapy, and chemotherapy in terms of their 
required dose, therapeutic efficacy, toxicity, stability, 
and so on. Specifically, for expensive cancer treatments 
such as immunotherapy and targeted therapy, improv-
ing the therapeutic efficacy with as low a dose as possi-
ble is highly important in bringing down the cost of an 
overall treatment. Furthermore, the nanoparticles have 

Fig. 10 Diagrammatic representation of spatiotemporally controlled pulsatile release microneedle drug delivery system for the treatment of 
melanoma, reproduced with permission from [377], licensed under CC BY 4.0
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allowed us to treat the most aggressive metastasized 
skin tumors via various routes of administration (intra-
venous, intratumoral, oral, and transdermal). However, 
the initial stages of skin cancer lesions can be simply 
treated with minimally or non-invasive routes such as 
topical (gel, cream, and microneedles) without much 
toxicity complications. Despite all these superiorities, 
it is unfortunate that there are still no commercialized 
nano-based skin cancer therapeutics. With this review, 
it is expected to see commercial nanotherapeutics for 
skin cancer therapy shortly, similar to currently existing 
commercial nanoformulations for other cancers.
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CUR   Curcumin
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