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Abstract 

Early detection can benefit cancer patients with more effective treatments and better prognosis, but existing early 
screening tests are limited, especially for multi-cancer detection. This study investigated the most prevalent and 
lethal cancer types, including primary liver cancer (PLC), colorectal adenocarcinoma (CRC), and lung adenocarcinoma 
(LUAD). Leveraging the emerging cell-free DNA (cfDNA) fragmentomics, we developed a robust machine learning 
model for multi-cancer early detection. 1,214 participants, including 381 PLC, 298 CRC, 292 LUAD patients, and 243 
healthy volunteers, were enrolled. The majority of patients (N = 971) were at early stages (stage 0, N = 34; stage I, N = 
799). The participants were randomly divided into a training cohort and a test cohort in a 1:1 ratio while maintaining 
the ratio for the major histology subtypes. An ensemble stacked machine learning approach was developed using 
multiple plasma cfDNA fragmentomic features. The model was trained solely in the training cohort and then evalu-
ated in the test cohort. Our model showed an Area Under the Curve (AUC) of 0.983 for differentiating cancer patients 
from healthy individuals. At 95.0% specificity, the sensitivity of detecting all cancer reached 95.5%, while 100%, 94.6%, 
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Main text
The global cancer burden is increasing rapidly, and nearly 
19.3 million new cases and 10.0 million cancer deaths 
were estimated in 2020 [1]. Over 60% of newly diagnosed 
cases and 70% of cancer mortality can be attributed to 
10 common cancer types [1]. Among them, liver cancer, 
colorectal cancer, and lung cancer rank the top three 
causes and account for over one-third of cancer deaths 
[1]. Although cancer identified early is more likely to 
have a favorable prognosis [2], only limited early screen-
ing programs have been made available for specific can-
cer types [3]. Furthermore, detection limits, radiation 
exposure, fear of pain, monetary cost, etc., of existing 
screening programs are also obstacles in their implemen-
tation [4–6]. Therefore, exploring accurate and affordable 
biomarkers is needed for promoting early detection.

As a new class of biomarkers for cancer detection, cell-
free DNA (cfDNA) in circulation is released from apop-
tosis and necrosis, and contains molecular signatures of 
its origin [7, 8]. For instance, tumor somatic mutations 
can serve as a classifier to distinguish circulating tumor 
DNA (ctDNA) shed from tumor cells and nontumorous 
cfDNA [9]. Epigenetic modifications such as DNA meth-
ylation and fragmentomic signatures such as fragmenta-
tion patterns and end motifs have also been utilized for 
identifying cancer [10–14]. However, assays based on sin-
gle cfDNA features often yield inadequate detection abil-
ity, especially for stage I cases of prevalent cancer types 
[12, 14–16]. As identification at stage I often provides a 
better chance for the cure than later stages, developing 
more robust methods is critical to promote cancer early 
detection.

More recently, multi-dimensional predictive models 
that combine multiple fragmentomic and genomic fea-
tures and even incorporate clinical information have 
improved their detection power for specific cancer types 
[12, 17]. Particularly, Ma et al. have leveraged the ensem-
ble stacked strategy to integrate multiple fragmenomic 
features with machine learning algorithms and success-
fully built an ultrasensitive model for detecting stage 0/I 
colorectal adenocarcinoma [18]. Given the potential of 
the ensemble stacking strategy, we attempted to develop 
a multi-dimensional model using cfDNA fragmentom-
ics from WGS data for multi-cancer detection and origin 
localization. Owing to their high prevalence and substan-
tial impact, we built the model targeting liver, colorectal, 
and lung cancers in a cohort of the Chinese population. 
Our model demonstrated ultrasensitivity for cancer 
detection and accurately differentiated cancer origins, 
ideal for promoting cancer screening programs.

Results and discussion
Participant characteristics and disposition
We included 1,214 participants with previously untreated 
diseases: 381 primary liver cancer (PLC), 298 colorec-
tal cancer (CRC), 292 lung adenocarcinoma (LUAD), 
and 243 healthy volunteers without cancer (Fig.  1A). 
This study was approved by the Ethnic Committees and 
in accordance with the ethical standards as laid down 
in the 1964 Declaration of Helsinki and its later amend-
ments. Written informed consents were provided by all 
participants. Details about enrollment information are in 
Supplementary Materials and Methods. The participants 
were subject to WGS and fragmentomic feature extrac-
tion and randomly split into the training and test datasets 

and 90.4% for PLC, CRC, and LUAD, individually. The cancer origin model demonstrated an overall 93.1% accuracy for 
predicting cancer origin in the test cohort (97.4%, 94.3%, and 85.6% for PLC, CRC, and LUAD, respectively). Our model 
sensitivity is consistently high for early-stage and small-size tumors. Furthermore, its detection and origin classification 
power remained superior when reducing sequencing depth to 1× (cancer detection: ≥ 91.5% sensitivity at 95.0% 
specificity; cancer origin: ≥ 91.6% accuracy). In conclusion, we have incorporated plasma cfDNA fragmentomics into 
the ensemble stacked model and established an ultrasensitive assay for multi-cancer early detection, shedding light 
on developing cancer early screening in clinical practice.

Keywords:  Multi-cancer early detection, Cell-free DNA, Fragmentomics, Machine learning

(See figure on next page.)
Fig. 1  Schematic diagram of the study design. A The training cohort (N = 608) included 191 primary liver cancer (PLC), 149 colorectal cancer (CRC), 
146 lung adenocarcinoma (LUAD) patients, and 122 healthy controls, which were used to train the cancer detection and cancer origin models. The 
test cohort (N = 606), which included 190 PLC, 149 CRC, 146 LUAD, and 121 healthy controls, was used to evaluate model performances. B Plasma 
samples were collected from PLC, CRC, LUAD patients, and healthy volunteers. The cfDNA was extracted from the participant’s plasma sample and 
subject to whole-genome sequencing (WGS). Five different feature types, including Fragment Size Coverage (FSC), Fragment Size Distribution (FSD), 
EnD Motif (EDM), BreakPoint Motif (BPM), and Copy Number Variation (CNV), were calculated. For each feature type, a base model was constructed 
based on the ensemble learning of five algorithms- GLM, GBM, Random Forest, Deep Learning, and XGBoost. The base model predictions were then 
ensembled into a large matrix, subsequently used to train the final ensemble stacked model
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Fig. 1  (See legend on previous page.)
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in a 1:1 ratio. We took the whole training dataset to build 
the first-level cancer detection model and then the cancer 
samples in the training dataset to train the second-level 
cancer origin model. The workflow of model construc-
tion is described in Fig. 1B and Supplementary Materials 
and Methods. Briefly, we extracted five distinct features 
covering cfDNA fragmentation size, motif sequence, 
and copy number variation from the WGS data, namely 
Fragment Size Coverage (FSC), Fragment Size Distribu-
tion (FSD), EnD Motif (EDM), BreakPoint Motif (BPM), 
and Copy Number Variation (CNV). The fragmentomic 
features implemented five machine learning algorithms, 
including Generalized Linear Model (GLM), Gradient 
Boosting Machine (GBM), Random Forest, Deep Learn-
ing, and XGBoost, and integrated to establish the ensem-
ble stacked model. It is worth noting that the model was 
built solely in the training dataset, while the test dataset 
remained untouched until the model was finalized. We 
evaluated the cancer detection model in the test data-
set and then took the true-positive cases to validate the 
cancer origin model. Healthy and cancer participants’ 
demographics and characteristics (Table S1) are compara-
ble between the training and test datasets. More impor-
tantly, the cancer samples are highlighted by the majority 
of early-stage diseases [PLC: stage IA/IB 117/191 (61.3%) 
in the training cohort and 126/190 (66.3%) in test cohort; 
CRC: stage 0/I 149/149 (100.0%); LUAD stage IA/IB 
146/146 (100.0%)].

Differentiating cancer and non‑cancer subjects 
by the cancer detection model
We reached a superior AUC value of 0.983 (95% CI: 
0.975-0.992) for detecting all cancer subjects in the 
test dataset (Fig.  2A). The PLC group has the highest 
AUC (0.999, 95% CI: 0.975-0.992), followed by the CRC 
(0.974, 95% CI: 0.955-0.993) and LUAD (0.973, 95% 
CI: 0.957-0.989) groups. Healthy subjects have lower 
cancer scores than cancer subjects, and the three can-
cer types showed similar score distribution (Fig.  2B). 

The cancer score of 0.39 rendered a 95.0% specific-
ity (95% CI: 89.5-98.2%). The corresponding sensi-
tivities are 95.5% (95% CI: 93.2-97.1%) for all cancer 
subjects (Fig.  2C), and 100.0% (95% CI: 98.1-100.0%), 
94.6% (95% CI: 89.7-97.7%), and 90.4% (95% CI: 84.4-
94.7%) for PLC, CRC and LUAD, respectively (Table 
S2). We observed an upward trend from the early to 
later stages for the distribution of cancer scores in all-
cancer, PLC, and CRC classes (Fig. S1). A propensity 
score matching analysis balanced the age and sex fac-
tors between cancer and non-cancer groups in the test 
dataset. The resultant subset consisting of 113 PLC, 
73 CRC, 85 LUAD, and 85 age and gender-matched 
healthy controls remained high performance in dis-
tinguishing cancer patients from non-cancer controls 
(AUC: 0.988, 95% CI: 0.980-0.996, Fig. S2A). We also 
performed 10-fold cross-validation during training to 
evaluate model overfitting. The 10-fold cross-validation 
AUCs for all-cancer and individual cancer types were 
equally high compared to the independent test dataset 
(Fig. S2B), reassuring that overfitting was not a major 
concern.

Our model exhibited ultrasensitivity in detecting can-
cers at various stages (Fig.  2D). The sensitivity is above 
90% for stages 0 and I, and elevated to nearly 100% for 
stages II and III. Furthermore, we used patient demo-
graphics and clinical characteristics to categorize disease 
subgroups for evaluation (Table S3 and Figs. S3-S5). The 
model’s detection sensitivity was consistently high even 
in the challenging categories, such as MIA and <1 cm 
tumors of LUAD. We assessed the model’s robustness 
by gradually down-sampling the coverage to 1× (Fig. 2E 
Table S4). Despite a slight dip, the model remained sta-
ble with over 91.5% sensitivity for all-cancer. Even for the 
least detectable class of LUAD, the sensitivity at 1× is still 
above 87%.

Furthermore, the cancer detection model was assessed 
in a preliminary at-risk patient cohort and showed an over-
all specificity of 92.4% (Table S5, details in Supplementary 
Results).

Fig. 2  Performance and robustness valuation for the ensemble stacked model. A ROC curves evaluating the cancer detection model in 
distinguishing cancer patients from healthy volunteers in the test cohort, and further categorized into each cancer type class. B Violin plots 
illustrating cancer score distribution in the healthy, all cancer, primary liver cancer (PLC), colorectal cancer (CRC), and lung adenocarcinoma (LUAD) 
groups in the test cohort predicted by the cancer detection model. The 95% specificity cutoff for cancer score was 0.39, as shown by the dotted 
line. C Performance of the cancer detection model in identifying all cancer patients. D Dot plot of sensitivity in cancer detection by each cancer 
type and/or stage, at 95% specificity. The error bars represented the 95% confidence interval. E Robustness test for the cancer detection model 
using test cohort with downsampled coverage depth (4×-1×). The error bars were calculated based on five repeats for each coverage. F Confusion 
matrix of the selected test cohort by cancer detection model for the cancer origin model. G Violin illustrating cancer origin score distribution in the 
PLC, CRC, and LUAD groups in the selected test cohorts predicted by the cancer origin model. H Dot plot illustrating robustness test for the cancer 
origin model using the selected test cohort with downsampled coverage depth (4×-1×). I Heatmap illustrating the detailed results of each patient 
for the robustness test of the cancer origin model

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Locating cancer at its origin by the cancer origin model
All test dataset patients correctly identified as "Cancer" by 
the cancer detection model were subsequently analyzed 
in the cancer origin model. The model correctly identified 
the cancer origin for 431 patients (accuracy 0.931, 95% CI: 
0.900-0.950) for the three cancer types (Fig. 2F and Table 
S6). The sensitivities for individual cancer types were 
97.4% (95% CI: 94.0-99.1%), 94.3% (95% CI: 89.1-97.5%), 
and 85.6% (95% CI: 78.4-91.1%) for PLC, CRC, and LUAD, 
respectively. We plotted the cancer origin scores of each 
type for all patients (Fig.  2G). Generally, the top scores 
matched the true cancer types. Such consistency is the 
most compelling for the PLC patients, followed by the CRC 
patients, while the LUAD group has more erroneous CRC 
predictions (Fig. 2F and G). We further inspected the origin 
scores of the misinterpreted patients (Fig. S6). The score 
differences between the true origin and the misinterpreted 
class were minimal (≤ 0.05) for potential improvement. 
The cancer origin model is robust with lower coverage 
WGS data (Fig. 2H and Table S7). The accuracies for PLC, 
CRC, and LUAD at 1× coverage are 97.7%, 92.4%, and 
90.6%, respectively, whereas the predictions of each patient 
at different sequencing coverages were listed in Fig. 2I, H.

Our study has several limitations. First, we per-
formed the proof-of-concept study using liver can-
cer, colorectal cancer, and lung cancer for their 
high prevalence. Targeting a broader population 
and more cancer types, including the less preva-
lent ones, would be necessary to develop the assay 
and eliminate cancer treatment inequity. Second, 
we are expanding our current cohort size to enable 
independent validation and improve the estima-
tion accuracy of relatively small-size subgroups 
(e.g., cHCC-ICC, MIA, stage IB LUAD).

Conclusions
By integrating multiple fragmentomic features from 
cfDNA WGS data, our ensemble stacked model exhib-
ited superior detection and localization power for the 
prevalent cancer types of PLC, CRC, and LUAD even 
at stages 0 and I. The robustness of our model is con-
sistently high using as low as 1× sequencing coverage 
depth, suitable for developing accurate and affordable 
early detection assays for clinical practice.

Abbreviations
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tic; WGS: whole-genome sequencing.
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