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Abstract 

Abnormal N6-methyladenosine (m6A) modification is closely associated with the occurrence, development, progres‑
sion and prognosis of cancer, and aberrant m6A regulators have been identified as novel anticancer drug targets. 
Both traditional medicine-related approaches and modern drug discovery platforms have been used in an attempt 
to develop m6A-targeted drugs. Here, we provide an update of the latest findings on m6A modification and the 
critical roles of m6A modification in cancer progression, and we summarize rational sources for the discovery of m6A-
targeted anticancer agents from traditional medicines and computer-based chemosynthetic compounds. This review 
highlights the potential agents targeting m6A modification for cancer treatment and proposes the advantage of 
artificial intelligence (AI) in the discovery of m6A-targeting anticancer drugs.
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Introduction
More than 170 types of posttranscriptional RNA modifi-
cations have been discovered since the 1960s [1]. Among 
them, N6-methyladenosine (m6A) is the most common 
modification in eukaryotic messenger RNAs (mRNAs) 
[1]. Accumulating evidence has demonstrated that m6A 
modification plays a critical role in regulating RNA pro-
cessing, splicing, nucleation, translation, and stability, 
which is crucial for the development of multiple human 
diseases, such as cancer [2]. m6A modification is a 
dynamic and reversible process regulated by methylases 
(“writers”) and demethylases (“erasers”). The “writers” 
consist of a complex including methyltransferase-like 3 
(METTL3), METTL14, METTL16, RNA-binding motif 
protein 15 (RBM15) and its paralogue RBM15B, zinc 
finger CCCH-type containing 13 (ZC3H13), vir-like 
m6A methyltransferase-associated protein (VIRMA, 
also named KIAA1429), and Wilms tumor 1 associated 
protein (WTAP), which are responsible for transfer-
ring methyl groups from the donor S-adenosylmethio-
nine (SAM) to adenine [3–5]. Among them, METTL3, 

METTL14, and WTAP are the core members of this 
complex [5]. Then, m6A methylation is recognized by 
binding protein “readers”, such as YTH domain fam-
ily proteins, insulin-like growth factor 2 mRNA-binding 
proteins (IGF2BPs), and heterogeneous nuclear ribonu-
cleoprotein (HNRNP) family proteins [6]. The revers-
ible process of m6A demethylation is also facilitated by 
“erasers”, such as fat mass and obesity-related protein 
(FTO) and alkB homologue 5 (ALKBH5) [3]. An increas-
ing body of evidence shows that the “writer” METTL3, 
“eraser” FTO, and “reader” YTH domain families are 
involved in various stages of many types of hematomas 
and solid tumors and could be promising targets for anti-
cancer therapy.

Continuous efforts are being made to discover 
highly effective and safe lead compounds targeting 
m6A modification [7–9]. Traditional medicine-based 
natural products, which have novel structures, multiple 
biological activities, and proven safety [10–15], are 
considered a valuable resource for drug discovery of 
m6A modulators. Modern drug discovery platforms, 

Graphical abstract
Three stages of m6A-targeting anticancer drug discovery: traditional medicine-based natural products, modern 
chemical modification or synthesis, and artificial intelligence (AI)-assisted approaches for the future.
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which are characterized by the integration of omics 
data, network pharmacology, natural resource-derived 
chemical databases, computer-aided design, and 
chemical modifications, have recently been applied to 
drug discovery [16–19]. Notably, this approach can 
effectively avoid the waste of experimental raw materials 
and laborious efforts, which will help to further evolve 
the discovery process of m6A-targeting drugs.

Although the physiological roles of m6A modulation 
in the development and progression of cancer have been 
wildly studied and some review articles related to m6A 
have been published [2, 3, 20], an update on the academic 
progress of m6A modulation is still necessary since many 
new related findings have been described recently. Here, 
we summarize the advances in m6A modulation and the 
core function of segments of m6A modulators in cancer. 

We also summarize the discovery of m6A-targeting anti-
cancer agents from traditional medicine-based natural 
products and the use of a combination of artificial intel-
ligence (AI) and chemosynthesis for drug exploration.

Molecular composition of the m6A RNA 
methylation regulators
The m6A methylation of RNAs has been revealed 
to regulate numerous steps throughout the RNA 
life cycle, such as RNA splicing, decay/degradation, 
nuclear export, stability, and translation (Fig.  1) [20]. 
The molecular composition of the m6A RNA meth-
ylation regulators includes m6A methyltransferases, 
m6A demethylases, and m6A recognition factors. 
m6A methyltransferases, also called “m6A writers”, 
contain METTL3, METTL14 [21], and WTAP [22]. 

Fig. 1  The underlying mechanisms of m6A modification. The m6A modification of mRNA is mainly catalyzed by the core methylase complex 
METTL3-WTAP-METTL14. RBM15/15B, VIRMA/KIAA1429, and ZC3H13 are newly identified mRNA m6A writers; METTL4, and METTL16 are snRNA 
m6A writhers; and METTL5 and ZCCHC4 are rRNA m6A writers. The m6A modification is removed by FTO, ALKBH5, and ALKBH3. Readers recognize 
m6A and affect various functions of RNAs, and they mainly include members of the YTH domain-containing family, the IGF2BP family, the HNRNP 
family, eIF3, PRRC2A, and FMRP
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METTL3, METTL14 and WTAP form a complex and 
can anchored to the nucleus to catalyze m6A methyl-
transferase [3–5]. As METTL3 and METTL14 are the 
predominant m6A methyltransferases on mRNA, we 
mainly focus on METTL3/METTL14-mediated RNA 
m6A modification in this review. Additionally, it should 
be noted that other multicomponent methyltransferase 
complexes have recently been discovered and character-
ized, such as RBM15/RBM15B, VIRMA (KIAA1429), 
and ZC3H13. RBM15/15B, which interacts with WTAP 
and METTL3, has been identified as an additional com-
ponent of the m6A methylation complex [2, 23]. VIRMA 
(KIAA1429) is associated with the methylation complex 
METTL3/METTL14/WTAP and cooperatively regulates 
m6A modification [24]. ZC3H13 anchors WTAP in the 
nucleus to enhance m6A modification [25]. Moreover, 
there are another identified m6A methyltransferases, 
including METTL16, METTL4, METTL5, and zinc 
finger CCHC-type containing 4 (ZCCHC4). The bind-
ing sites of METTL16 revealed no overlap with those 
of METTL3/METTL14 methylation complex [26], and 
METTL16 can mediate the m6A methylation of U6 
snRNA, noncoding RNAs, and precursor mRNAs (pre-
mRNAs) [27]. ZCCHC4 is an m6A methyltransferase of 
28S rRNA [28] and METTL5 can induce the m6A meth-
ylation of 18S rRNA [29]. METTL4 mediates the m6A 
methylation of U2 snRNA to regulate pre-mRNA splic-
ing [30].

Dynamic m6A methylation can be reversed by m6A 
demethylases in nucleus, also called “m6A erasers”, 
including FTO and ALKBH5. The demethylation of 
m6A modification in nucleic acids by FTO relies on 
the oxidative function of FTO in an Fe(II)- and α-KG-
dependent manner [31]. ALKBH5 is another m6A 
demethylase that regulates the export and metabolism 
of mRNA by demethylating m6A modification [32]. 
In addition, members of the Alkb subfamily, such 
as ALKBH3, are responsible for removing m6A 
modification on tRNA [33].

The m6A recognition factor is known to regulate 
mRNA splicing, nuclear export, decay/degradation, 
translation, and stability and is also called an “m6A 
readers”. The YTH domain-containing family includes 
YTHDF1, YTHDF2, and YTHDF3, which are cytosolic 
m6A readers that regulate m6A degradation and 
translation [34]. YTHDF1 is reported to play a vital 
role in promoting translation in the cytosol, whereas 
YTHDF2 regulates mRNA degradation by mediating the 
lifetime of target transcripts [35, 36]. Nonetheless, gene 
expression, cell death, and survival are associated with 
the YTHDF2-mediated RNA process [37, 38]. YTHDF3 
cooperates with YTHDF1 and YTHDF2 to affect the 
translation and decay of m6A-decorated mRNA, and 

inversely regulates their function [39]. Another YTH 
domain-containing family YTHDC1 regulates RNA 
nuclear export [40] and splicing [41], while YTHDC2 
modulates the translation and abundance of target 
genes [42]. IGF2BPs include IGF2BP1, IGF2BP2, and 
IGF2BP3, and they primarily promote the stability 
and translation of target mRNAs [43]. The RNA-
binding protein fragile X mental retardation protein 
(FMRP), encoded by the fragile X mental retardation 
1 gene (FMR1), can promote the nuclear export [44] 
and stability [45] of m6A-modified RNAs. Eukaryotic 
initiation factor 3 (eIF3) preferentially binds to m6A-
makred mRNA rather than nonmethylated RNA and is 
associated with the process of mRNA translation [46]. 
HNRNP family contains HNRNPA2B1, HNRNPC, and 
HNRNPG [6]. HNRNPA2B1 recognizes m6A-marked 
primary miRNAs (pri-miRNAs) and stimulates miRNA 
processing [47], while HNRNPC recognizes m6A to 
induce splicing in mRNA secondary structures [48]. 
Proline rich coiled-coil 2A (PRRC2A) is a novel m6A 
reader that can bind to a consensus GGACU motif in 
the Olig2 coding sequence to stabilize Olig2 mRNA 
[49].

Aberrant m6A functions and tumor progression
m6A modification is aberrant in various types of can-
cer and is associated with patient prognosis. The dys-
regulation of m6A modification also critically regulates 
malignant behaviors, such as proliferation, metastasis, 
tumor stemness, and drug resistance [50–53]. It has been 
reported that m6A modification regulators can function 
as either tumor promoters or tumor suppressors in dif-
ferent tumor types. The roles of m6A modification reg-
ulators in different types of cancer are summarized in 
Fig. 2.

m6A modification regulators affect the pathogen-
esis and progression of tumors via various mechanisms. 
When a m6A modulator acts as a tumor promotor, it 
promotes tumor progression by upregulating oncogenes 
or downregulating tumor suppressor genes. In contrast, 
when a m6A modulator functions as a tumor suppressor, 
it inhibits tumor progression by suppressing the expres-
sion of oncogenes or upregulating tumor suppressor 
genes. The effects and mechanisms of m6A modifica-
tion regulators on tumor progression are summarized in 
Table 1.

m6A modification regulators function as tumor promoters

m6A modification regulators upregulate oncogenes
METTL3 promoted YAP translation by recruiting 
YTHDF1/3 and eIF3b, and increased YAP expression 
by the MALAT1/miR-1914-3p axis, leading to drug 
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resistance and metastasis in non-small-cell lung carci-
noma (NSCLC) [132]. METTL3 facilitated CRC pro-
gression by stabilizing SOX2 [80], HK2 and GLUT1 [81] 
via an m6A-IGF2BP2/3 pathway, or by activating the 
GLUT1/mTORC1 axis in an m6A-dependent manner 
[79]. METTL14 enhanced BC proliferation and progres-
sion by increasing m6A modification and the expression 
of CXCR4 and CYP1B1 [166]. METTL14 blocked AML 

myeloid differentiation while promoting AML prolif-
eration by upregulating MYB and MYC through m6A 
modification [56]. ALKHB5 upregulation by hypoxia 
decreased the m6A modification of NANOG mRNA and 
upregulated NANOG to induce the phenotype of BC 
stem cells [167]. ALKBH5 promoted the tumorigenicity 
and self-renewal of GBM stem-like cells by maintain-
ing FOXM1 expression though demethylating FOXM1 

Fig. 2  The role of m6A in human cancers. m6A modification regulators affect the progression of different types of human cancers by functioning as 
either tumor promoters or tumor suppressors. Abbreviations: AML, Acute myeloid leukemia; BLC, Bladder cancer; BC, Breast cancer; CRC, Colorectal 
cancer; GC, Gastric cancer; GBM, Glioblastoma; HCC, Hepatocellular carcinoma; HNSCC, Head and neck squamous cell carcinoma; MM, Multiple 
myeloma; LC, Lung carcinoma; OS, Osteosarcoma; OC, Ovarian cancer; PAAD, Pancreatic adenocarcinoma; PRAD, Prostate adenocarcinoma; RB, 
Retinoblastoma; RCC, Renal cell carcinoma
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Table 1  The effects and mechanisms of m6A modification regulators on tumor progression

Cancer Type Type m6A regulator Related factor Function Ref.

AML Writer METTL3 CEBPZ, SP1 Maintains the leukemic state [54]

C-MYC, BAL2, PTEN Inhibits differentiation and increases cell growth [55]

METTL14 MYB, MYC Inhibits myeloid differentiation and enhance self-renewal of 
leukemia stem/initiation cells

[56]

Eraser FTO ASB2, RARA​ Promotes cell transformation and leukemogenesis, and inhib‑
its leukemia cell differentiation

[57]

MYC, CEBPA Induces tumorigenesis [58]

LILRB4 Maintains cancer stem cell self-renewal and contributes to 
immune evasion

[59]

ALKBH5 TACC3 Contributes to poor prognosis, maintenance of AML and self-
renewal of leukemia stem/initiating cells

[60]

Reader YTHDF2 Tnfrsf2 Maintenance of leukemic stem cells [61]

IGF2BP1 LIN28B, let-7a Enhances tumorigenicity [62]

BC Writer METTL3 HBXIP, let-7 g Accelerates cell proliferation in BC and promotes cancer 
progression

[63]

P21 Contributes to worse prognosis and shorter disease-free 
survival and promote proliferation of cancer cell

[64]

Adenylate kinase 4 (AK4) Contributes to tamoxifen resistance [65]

Pri-mi-221-3p Promotes adriamycin resistance [66]

ERRγ, ESRRG​ Induces chemoresistance of cancer cell [67]

Eraser FTO BNIP3 Contributes to poor prognosis, promotes cancer cell prolifera‑
tion, colony formation and metastasis

[68]

MiR-181b-3p, ARL5B Promotes invasion and migration of cancer cell [69]

Reader YTHDF2 MYC Upregulated in TNBC, depletion of YTHDF2 suppresses tumor 
growth, triggers activation of EMT, initiate apoptosis, and 
sensitizes TNBC cells to proteotoxic

[37]

YTHDF3 ST6GALNAC5, GJA1, EGFR Contributes to breast cancer brain metastasis and poor 
survival

[70]

KIAA1429 CDK1 Contributes to shorter overall survival of patients and pro‑
motes cancer cell proliferation and metastasis

[71]

IGF2BP1 LncRNA KB-1980E6.3, c-Myc Maintains the stemness of breast cancer cells and tumori‑
genesis

[72]

HNRNPA2B1 Erα, miR-222-3p Induces acquired endocrine-resistance [73]

BLC Writer METTL3 Pri-miR221/222, PTEN Contributes to poor prognosis of BLC patients and promotes 
tumor cell proliferation

[74]

AFF4, IKBKB, RELA, MYC Promotes cancer progression [75]

METTL14 Notch1 Inhibits bladder tumor initiating cells self-renewal and blad‑
der tumorigenesis

[76]

Reader IGF2BP1 MYC, FSCN1, circPTPRA Promotes BLC growth and aggressiveness in vivo and in vitro [77]
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Table 1  (continued)

Cancer Type Type m6A regulator Related factor Function Ref.

CRC​ Writer METTL3 MiR-1246, SPRED2, MAPK pathway Contributes to tumor metastasis [78]

GLUT1, mTORC1 signaling Contributes to poor survival and promote CRC initiation and 
progression

[79]

SOX2 Contributes to poor prognosis, cell self-renewal, stemness, 
migration, tumorigenesis and metastasis

[80]

HK2, SLC2A1 Drives glycolytic metabolism, promotes tumorigenesis [81]

Circ1662 Promotes CRC cell invasion and migration [82]

METTL14 Pri-miR-375 Inhibits CRC cell growth and metastasis [83]

SOX4 Inhibits CRC cells migration, invasion and metastasis [84]

LncRNA XIST Suppresses proliferation and metastasis [51]

METTL3/METTL14 STAT1, IRF1 Regulates immune responses to anti-PD-1 therapy [85]

Eraser FTO MYC Promotes cancer progression [86]

Reader YTHDF1 FZD9, WNT6 Promotes tumorigenicity and regulates stem cell-like activity [87]

YTHDF2 GASK3β, miRNA-6125 Promotes cancer growth [88]

YTHDF3 YAP, lncRNA GAS5 Contributes to poor overall survival, promotes CRC cell prolif‑
eration, invasion, metastasis

[89]

IGF2BP1 RBRP, c-Myc Promote tumorigenesis [90]

IGF2BP2 LINC00460, DHX9, HMGA1 Promote tumor progression [91]

IGF2BP3 CCND1, VEGF Associates with cancer progression and survival, regulates cell 
cycle and angiogenesis

[92]

EC Writer METTL3/METTL14 PHLPP2, AKT, mTOR Promotes cell proliferation and tumorigenicity [93]

GBM Writer METTL3 SRSF, BCL-X, NCOR2 Promotes the growth and self-renewal of glioma stem cells [94]

ADAR1, CDK2 Contributes to tumorigenesis [95]

SOX2, HuR Induces resistance to γ-irradiation and promotes DNA repair [96]

Eraser FTO – Promotes glioma stem cell (GSC) growth and self-renewal [97]

ALKBH5 FOXM1 Enhances self-renewal and tumorigenesis of GBM stem-like 
cell

[98]

Reader YTHDF2 EGFR, SRC, ERK, LXRA, HIVEP2 Contributes to poor prognosis, promotes GBM cell prolifera‑
tion, invasion, and tumorigenesis.

[99]

GC Writer METTL3 LncRNA ARHGAP5-AS1, ARHGAP5 Promotes chemoresistance [100]

PTEN, TMEM127, pri-miR-17–92 Contributes to poor prognosis and enhance sensitivity to 
everolimus

[101]

HDGF Contributes to poor prognosis, promote cancer cell prolifera‑
tion, liver metastasis, angiogenesis, glycolysis

[102]

BATF2 Promotes tumor progression and metastasis [103]

ZMYM1 Promotes EMT program and metastasis [104]

KIAA1429 C-Jun Promotes cancer cell proliferation [105]

Eraser FTO – Promotes proliferation and migration of cancer cell [106]

ALKBH5 LncRNA NEAT1 Promotes invasion and metastasis [107]

Reader YTHDF1 FZD7 Contributes to aggressive tumor progression and poor overall 
survival, promotes proliferation and tumorigenesis

[108]
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Table 1  (continued)

Cancer Type Type m6A regulator Related factor Function Ref.

HCC Writer METTL3 CTNNB1, Wnt/β-catenin pathway Promotes tumor progression [109]

LINC00958 Promotes tumor progression [110]

SOCS2 Contributes to poor prognosis of patients with HCC, pro‑
motes HCC growth

[111]

METTL14 DGCR8, miRNA 126 Inhibits tumor metastasis [112]

WTAP HuR, p21/27, Ets-1 Contributes to poor prognosis and contributes to the pro‑
gression of HCC

[113]

KIAA1429 GATA3, lncRNA GATA3-AS Contributes to poor prognosis, promote tumor growth and 
metastasis

[114]

Eraser FTO SIRT1 Inhibits cancer tumorigenesis [115]

ALKBH5 LYPD1, IGF2BP1 Suppresses cancer cell proliferation and invasion [116]

Reader YTHDF1 HIF-1α, ATG2A, ATG14 Contributes to poor prognosis, promotes autophagy and 
autophagy-related malignancy

[117]

EGFR Promotes cell viability and metastasis [118]

YTHDF2 MiR-145 Contributes to malignancy of HCC [119]

IL11, SERPINE2 Suppresses tumor growth, vasculature remodeling and 
metastasis

[120]

HNSCC Writer METTL3/METTL14 LNCAROD Promote malignant development in HNSCC [121]

METTL3 CircCUX1 Contributes to radiotherapy resistance in HSCC [122]

ZNF750 Modulates NPC progression [123]

YTHDF1, c-Myc Promotes the proliferation, invasion, migration tumor growth 
in OSCC progression

[124]

BMI1 Contributes to poor prognosis, promotes OSCC proliferation, 
self-renewal, tumor growth and metastasis

[125]

RBM15 TMBIM6, IGF2BP3 Contributes to unfavorable prognosis, promotes the prolifera‑
tion, invasion, migration, and apoptosis of LSCC

[126]

Reader HNRNPA2B1 LINE-1, TGF-β1, Smad2, Slug Contributes to poor overall survival, promotes OSCC tumori‑
genesis and metastasis

[127]

YTHDC2 IGF1R, AKT, S6 Promote radiotherapy resistance in NPC [128]

YTHDF1 TFRC Promote HSCC tumorigenesis [129]

LC Writer METTL3 LncRNA LCAT3 Modulates LC progression [130]

MiR-143-3p Promotes brain metastasis of LC [131]

MALAT1-miR-1914-3p-YAP axis Contributes to drug resistance and metastasis [132]

TAZ, EGFR Promotes LC growth, survival, and invasion [133]

Reader IGF2BPs CircNDUFB2 Promotes tumor progression and metastasis, modulates 
immune responses

[134]

HNRNPA2B1 LncRNA 01234 Promote cancer cell growth and inhibit apoptosis [135]

YTHDF1 Keap1-Nrf2-AKR1C1 axis Contributes to hypoxia adaptation and pathogenesis of 
NSCLC

[136]

MEL Eraser FTO IFNγ, PD-1, CXCR4, SOX10 Promotes tumorigenesis and anti-PD-1 resistance [137]

Reader YTHDF1 HINT2 Inhibits tumor progression [138]

YTHDF2 PER1, TP53 Accelerates tumorigenesis of ocular MEL [139]

MM Eraser FTO HSF1 Promotes MM proliferation, migration, and invasion [140]

Reader HNRNPA2B1 AKT3, ILF3 Contributes to unfavorable prognosis, promotes tumor 
progression

[141]
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nascent transcripts [98]. FTO-induced m6A demeth-
ylation decreased YTHDF2-mediated mRNA decay of 
programmed cell death protein 1 (PD-1), CXCR4, and 
SOX10, which enhanced melanoma tumorigenesis and 
anti-PD-1 resistance [137]. YTHDF3 enhanced the trans-
lation of m6A-marked ST6GALNAC5, GJA1 and EGFR, 
leading to brain metastasis of BC [70].

m6A modification regulators downregulate tumor 
suppressor genes
METTL3 inhibited the expression of SOCS2 via an 
m6A/YTHDF2 mechanism, which resulted in HCC 
tumorigenicity and metastasis [111]. METLL3 was 
downregulated in sorafenib-resistant HCC, and 
METTL3 inhibition conferred autophagy-related 
sorafenib resistance in HCC by decreasing the expression 
of FOXO3 in an m6A/YTHDF1 manner [168]. The 

Table 1  (continued)

Cancer Type Type m6A regulator Related factor Function Ref.

OC Writer METTL3 PTEN, PI3K, Akt, mTOR, miR-126-5p Promotes the progression and tumorigenesis [142]

WTAP MAPK, AKT Contributes to worse survival outcome and promote tumor 
progression

[143]

Eraser FTO cAMP signaling Inhibits tumorigenesis and ovarian cancer stem cell self-
renewal

[144]

ALKBH5 NANOG Promotes tumor progression [145]

Reader YTHDF2 FBW7, BMF Promotes tumor progression [146]

IGF2BP1 SRF1, PDLIM7, FOXK1 Promotes tumor progression and correlates with poor 
prognosis

[147]

YTHDF1 EIF3C Contributes to adverse prognosis, promotes tumorigenesis 
and metastasis

[148]

OS Writer WTAP HMBOX1 Promotes osteosarcoma growth and metastasis [149]

Eraser ALKBH5 YAP, pre-miR-181b-1 Suppresses cell growth, migration, invasion, and triggers cell 
apoptosis.

[150]

PAAD Writer METTL3 PHLPP2, Akt, miR-25-3p Promotes the initiation and progression of cancer [151]

METTL14 PERP Promotes cancer cell proliferation and migration [152]

WTAP WTAPP1, Wnt signaling Induces malignant phenotypes of cancer [153]

Eraser FTO PJA2 Suppresses the proliferation, invasion, and metastasis [154]

ALKBH5 PER1, YTHDF2 Inhibits cancer cell proliferation, migration, invasion, tumor 
growth

[155]

WIF-1, Wnt pathway Sensitizes to chemotherapy and inhibits cancer cell prolifera‑
tion, migration and invasion

[156]

Reader YTHDC1 MiR-30d Contributes to favorable prognosis, and represses pancreatic 
tumorigenesis

[157]

IGF2BP2 LncRNA DANCR Contributes to poor outcome and promotes cancer cell 
proliferation

[158]

PRAD Writer METTL3 GLI1 Promotes cell proliferation, survival, colony formation, and 
invasion

[159]

MYC Contributes to poor prognosis, promote development and 
progression of cancer

[160]

Reader YTHDF2 LHPP, NKX3–1 Contributes to poor prognosis and inhibit proliferation and 
migration of cancer

[38]

RB Writer METTL3 PI3K, AKT, mTOR, P70S6K, 4EBP1 Promotes tumor progression [161]

RCC​ Writer METTL14 BPTF METTL14 deficiency promoted RCC metastasis [162]

Eraser FTO SLC1A5 Contributes to the growth and survival of cancer cell [163]

Reader IGF2BP3 DMDRMR, CDK4, COL6A1, LAMA5, FN1 Contributes to poor outcomes and promotes cell prolifera‑
tion

[164]

TGCT​ Writer VIRMA – Contributes to tumor progression and cisplatin resistance [165]

EC Endometrial cancer, GSC Glioblastoma stem cell, HSCC Hypopharyngeal squamous cell carcinoma, LSCC Laryngeal squamous cell carcinoma, MEL Melanoma, NPC 
Nasopharyngeal carcinoma, NSCLC Non-small-cell lung carcinoma, OSCC Oral squamous cell carcinoma, TGCTs Testicular germ cell tumors, TNBC Triple negative breast 
cancer
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METTL3/YTDHF2 axis has been found to induce 
β-catenin and PCNA upregulation by inhibiting the 
expression of YPEL5, which enhances tumorigenicity and 
metastasis in CRC [169]. METTL4 promoted the growth 
and metastasis of PAAD by decreasing the expression of 
PERP via m6A modification [152]. METTL14 inhibited 
skin tumorigenesis by promoting global genome 
repair through DDB2 m6A methylation and YTHDF1-
mediated translation [170]. WTAP promoted the 
posttranscriptional suppression of Ets proto-oncogene 
1 (Ets-1), contributing to HCC progression though the 
HuR/Ets-1/p21/p27 pathway [113]. ALKBH5 promoted 
the development and maintenance of AML and enhanced 
the self-renewal of leukemia stem/initiating cells by 
downregulating TACC3 [60]. YTHDF2 promoted the 
decay of UBXN1 mRNA via METTL3-mediated m6A 
modification, which induced the activation of the NF-κB 
pathway and promoted glioma progression [171].

m6A modification regulators function as tumor 
suppressors
m6A modification regulators downregulate oncogenes
METTL14 inhibited CRC proliferation and metastasis by 
downregulating the oncogenic lncRNA XIST in an m6A-
YTHDF2 manner [51]. The METTL14/YTHDF2 axis 
decreased SOX4 mRNA expression and inhibited CRC 
epithelial to mesenchymal transition (EMT) and metas-
tasis [84]. METLL14 was downregulated in RCC and led 
to the stability of bromodomain PHD finger transcription 
factor (BPTF) via m6A modification, which promoted 
metastasis and glycolytic reprogramming in RCC [162]. 
Downregulation of METTL3 and METTL14 increased 
the expression of TRIM7 via an m6A-YTHDF2 manner 
and thus promoted OS tumorigenesis and chemoresist-
ance by the ubiquitination of breast cancer metastasis 
suppressor 1 (BRMS1) [172]. ALKBH5 impaired the sta-
bility of LYPD1 through an m6A-IGF2BP1 mechanism 
and inhibited the malignant behaviors of HCC [116]. 
FTO reduced the m6A modification and the stability of 
PDE1C and PDE4B that promoted cAMP hydrolysis, 
which inhibited cAMP signaling and suppressed the self-
renewal of ovarian cancer stem cells [144]. YTHDF2 can 
inhibit HCC proliferation and growth by binding to m6A-
modified EGFR mRNA and degrading EGFR in HCC cells 
[173]. YTDHC2 promoted the decay of SLC7A11 in an 
m6A-dependent manner and consequently suppressed 
the tumorigenesis of lung adenocarcinoma by targeting 
SLC7A11-mediated antioxidant function [174].

m6A modification regulators upregulate tumor suppressor 
genes
METTL14 inhibited CRC progression by regulating 
the processing of miR-375 that targeted YAP1 and SP1 

[83]. METTL14 interacted with DGCR8 to suppress 
the metastasis of HCC by promoting the processing of 
miR-126 in an m6A-dependent manner [112]. ALKBH5 
promoted the expression of PER1 in an m6A-YTHDF2 
manner and inhibited PAAD progression by reacti-
vating the ATM-CHK2-P53/CDC25C pathway [155]. 
ALKBH5 prevented the progression and increased the 
sensitivity of BLC to cisplatin via the m6A-casein kinase 
2 (CK2) α-glycolysis pathway [175]. FTO decreased the 
m6A modification of praja ring finger ubiquitin ligase 2 
(PJA2) and upregulated PJA2 to inhibit the Wnt path-
way, thereby suppressing the progression of PAAD [154]. 
m6A modification was decreased in ocular melanoma 
due to METTL3 downregulation and ALKBH5 upregula-
tion, which promoted YTHDF1-mediated translation of 
histidine triad nucleotide-binding protein 2 (HINT-2), a 
tumor suppressor of ocular melanoma [138].

Drug discovery of m6A modulators
Natural products from traditional medicines targeting 
m6A regulators
Natural products from traditional medicine could be 
used as a chemical library for m6A-targeting anticancer 
drug discovery. In this section, we focus on mechanistic 
insight into natural products derived from traditional 
medicines targeting m6A regulators and their current 
findings in cancer treatment.

Phenols
Curcumin (Fig.  3A), a natural phenolic compound, 
reduced the expression of ALKHB5 and induced 
higher m6A-modified TNF receptor-associated factor 
4 (TRAF4) mRNA that was bound by YTHDF1, lead-
ing to enhanced translation of TRAF4 [176]. Resveratrol 
(Fig.  3A) is a natural polyphenol with antioxidant, anti-
inflammatory, heart-protective and anticancer properties 
[177]. Combining resveratrol with curcumin effectively 
improves growth performance and intestinal mucosal 
integrity by decreasing m6A as evidenced by enhanced 
YTHDF2 in the ileum [178].

Flavonoids
Quercetin (Fig. 3B) is commonly used as a dietary supple-
ment and has many biological functions, including anti-
cancer activities. Fluorescence quenching measurements 
indicated that among the 3 flavonoids (quercetin, api-
genin, and naringenin), quercetin showed the strongest 
binding with FTO through hydrophobic interactions and 
hydrogen bonds [179]. In addition, quercetin has a syner-
gistic effect with cisplatin on inhibiting the proliferation, 
migration and invasion of HeLa and SiHa cells by inhib-
iting the expression of METTL3 [180]. Baicalin (Fig. 3B) 
is widely found in the traditional Chinese medicine 
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(TCM) Huang Qin, and it possesses significant antitumor 
effects in many cancers [181]. The baicalin hydrate inhib-
ited tumor growth in NPC both in  vivo and in  vitro by 
influencing the genomic stability and affecting the splic-
ing of Suv39H1 by upregulating m6A RNA methylation, 
as evidenced by increased METTL3 and METTL14 and 
decreased FTO and ALKBH5 [182]. Epigallocatechin gal-
late (EGCG, Fig. 3B) is a tea flavonoid with powerful anti-
oxidant, anti-inflammatory and anticancer effects, which 
may be associated with the regulation of cyclin A2 and 
CDK2 in an m6A-dependent manner mediated by inhib-
iting the expression of FTO and increasing expression of 
YTHDF2 [183].

Alkaloids
Betaine (Fig.  3C) is rich in the roots of Beta Vulgaris 
and acts as a methyl donor in the transformation of 
homocysteine to methionine [184]. As methionine is a 
substrate for SAM, an essential methyl group donor for 
mRNA m6A modification, betaine is likely to play an 
important role in m6A methylation. Zhang et al. found that 
betaine suppressed the expression of the m6A methylases 
METTL3 and METTL14 but facilitated the expression of 
the demethylases FTO and ALKBH5 in HepG2 cells [185]. 
In addition, clausine E (Fig. 3C) and camptothecin and their 
analogs (Fig. 3C) exhibited direct FTO-targeting bioactivity 
[186, 187]. Among them, clausine E dose-dependently 

inhibited the demethylation activity of FTO with an half 
maximal inhibitory concentration (IC50) value of 27.79 μM 
[186]. Meanwhile, clausine E inhibited FTO with a 
dissociation constant Kd value of 4.59 ± 1.51 μM, and the 
binding constant Ka (L mol− 1) between camptothecin and 
FTO was 3.74 × 10− 4 [186, 187].

Anthraquinone
Rhein (Fig.  3D), an anthraquinone rich in Rheum 
rhabarbarum [188], was identified as the first cell-active 
reversible and competitive inhibitor of FTO [189, 190]. 
Molecular modeling combined with biophysical tech-
niques revealed that the inhibition of FTO by rhein 
occurred through directly binding to nucleic acids, com-
petitively binding to the 2-oxoglutarate (2-OG) cofactor 
at the active site, or both [189].

Terpenoids
Saikosaponin is a classical triterpenoid that is extracted 
from Radix Bupleuri (Chinese name: Chaihu) and 
possesses anti-inflammatory and anticancer activities 
[191]. Saikosaponin D (Fig. 3E) inhibited FTO to rescue 
m6A hypomethylation in MYC and RARA. These 
actions in turn disrupted the stability of MTHFR and 
BCL2, thus sensitizing MV4–11- or Kas-1-resistant 
human myeloid mononuclear leukemia cells to tyrosine 
kinase inhibitors [192].

Fig. 3  The chemical structures of natural products regulating m6A modification. A Phenols, B flavonoids, C alkaloids, D anthraquinone, E 
terpenoids, and F other natural products
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Other natural products targeting m6A regulators
Apart from the natural products mentioned above, 
other active natural products have been shown to pos-
sess biological activities against m6A and to exert 
anticancer activity. Fusaric acid (Fig.  3F) is a myco-
toxin produced by Fusarium species [193]. It caused a 
decrease in p53 expression in HepG2 cells by downreg-
ulating m6A methylation of p53 mRNA, as indicated by 
the decreased expression of METTL3 and METTL14. 
In addition, the translation of p53 was simultaneously 
blocked by downregulating YTHDF1, YTHDC2, and 
YTHDF3 [194]. Radicicol (Fig.  3F) was isolated 
from the fungus Monosporium bonorden [195]. 
The crystal structure showed that the 4-Cl-1,3-diol 
group was an essential structure in radicicol 
responsible for binding to the FTO protein with an 
IC50 value of 16.04 μM [196]. Simvastatin (Fig.  3F) 
is a synthetic modification of a fermentation prod-
uct derived from Aspergillus terreus [197], and it 
inhibited the migration and invasion of A549 cells 
by reducing m6A enrichment and its methyltrans-
ferase METTL3 in EZH2 mRNA, thus inhibiting the 
interaction between IGF2BP2 and EZH2 [198]. Sul-
foraphane (Fig.  3F) was identified as an epigenetic 
modulator by diminishing m6A methylation levels 
in BC cells to induce cell cycle arrest, autophagy 
and apoptosis [199].

Lead compounds targeting m6A regulators 
from integrating AI technology and chemosynthesis
Modern approaches that integrate AI technology and 
chemosynthesis into the field of drug discovery have 
advantages such as speed, ease of use, and cost saving. 
Here, we summarize the anticancer m6A modulators that 
have been discovered with the help of modern technolo-
gies in recent years.

Targeting demethylases
Since FTO was the first recognized m6A modification 
demethylase, targeting FTO is currently the most popu-
lar direction in research on m6A regulation. Cai-Guang 
Yang and coworkers developed a series of FTO inhibi-
tors by applying AI-based approaches. The crystal struc-
ture of FTO was used in docking studies to screen the 
inhibitor of FTO from the drug-like SPECS database 
that contains 100,000 compounds. The natural product 
rhein (1; Fig.  4A) was identified as the first cell-based 
FTO inhibitor, which also inhibited ALKBH2 activ-
ity with a IC50 value on the same order of magnitude as 
FTO (IC50 = 21 μM) in 2012 [189]. To avoid competition 
with the AlkB subfamily, a high-throughput fluorescence 
polarization (FP) assay was applied to screen selective 
inhibitors of FTO from an older drug library containing 
900 drugs. The anti-inflammatory drug meclofenamic 
acid (2; Fig.  4A) was identified as an inhibitor of FTO 

Fig. 4  The chemical structures of lead compounds targeting m6A regulators from AI-based approaches. A Compounds targeting FTO derived from 
MA. B Compounds targeting FTO derived from the structure-based strategy. C Compounds targeting ALKBH5. D Compounds targeting METTL3
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(IC50 = 17.4 μM) instead of ALKBH5 in 2014 [200]. Fur-
thermore, 8 fluorescein molecules, which have structures 
similar to those of 2, were designed and synthesized. 
The structure-activity relationships of these fluorescent 
FTO inhibitors are elucidated through the X-ray crystal 
structures of FTO/fluorescein complexes. Among these 
fluorescein derivatives, FL1 (3) and FL2 (4) (Fig. 4A) were 
selected as bifunctional molecules for selectively inhib-
iting and specifically photoaffinity labeling of FTO with 
IC50 values of 6.65 and 1.72 μM in HeLa cells, respectively 
[201]. In 2019, Yang et  al. employed a structure-based 
rational design and achieved a promising FTO inhibitor 
FB23 (5) and it inhibited FTO-mediated demethylation 
with an IC50 value of 0.06 μM, which is 100-fold more 
active than that of 2. Due to the poor permeability of 5 
against AML cells, FB23–2 (6; Fig. 4A) with significantly 
improved antiproliferative activity and cellular efficacy 
was synthesized. Both 5 and 6 display high selectivity 
toward FTO but no effect on ALKBH5 demethylation 
in vitro. Mechanistically, 6 directly bound to and inhib-
ited FTO, upregulating the expression of RARA and 
ASB2 and downregulating the expression of MYC and 
CEBPA to exert antileukemia therapeutic effects on a 
series of AML cell lines, patient-derived primary leuke-
mia cells and patient-derived xenograft (PDX) mouse 
models [202]. In 2021, Yang et al. published a new find-
ing that tumors exploit FTO-mediated regulation of gly-
colytic metabolism to evade immune surveillance. They 
developed a new potent FTO inhibitor Dac51 (7; Fig. 4A) 
based on 5/6. It exerted promising inhibitory activity on 
FTO and inhibits the glycolytic capacity of B16-OVA and 
LLC cell lines via the FTO-m6A-Jun/Cebpb signaling 
pathway [203]. Moreover, 7 may exert antitumor effects 
mediated by T cells to prevent tumors from recurring 
through the memory T cell response in patient-derived 
organoids and a mouse model of diverse cancer types. 
Impressively, a combination treatment of 7 and anti-pro-
grammed death-ligand 1 (PD-L1) blockade could enhance 
therapeutic outcomes [203]. Inspired by the bind-
ing sites of FTO in 2, a combination of structure-based 
drug design and molecular docking with Schrödinger 
software was applied to screen FTO inhibitors, FTO-02 
(IC50 = 2.2 μM) and FTO-04 (8; IC50 = 3.39 μM). How-
ever, only the anticancer ability of 8 was validated; it 
was found to inhibit neutrosphere formation in multi-
ple GSC cell lines and significantly increased m6A levels 
[204]. This work represented an important step forward 
by combining structure-based drug design and a high-
throughput in vitro inhibition assay system to identify a 
new chemical class of FTO inhibitors with tightly defined 
physicochemical properties.

FTO is a 2-OG-dependent N-methyl nucleic acid 
demethylase, and approximately 150 2-OG analogs are 

screened by differential scanning fluorometry- and liq-
uid chromatography-based assays [205], among which 9 
(Fig. 4B) have been used in clinical studies and have also 
shown inhibitory activity against FTO [205]. Further-
more, 10 (Fig. 4B) was generated with distinct selectivity 
for FTO (IC50 = 0.81 μM) against other AlkB subfami-
lies and 2-OG oxygenases [206]. A prototype example of 
AI-based approaches was applied in the discovery of the 
FTO inhibitor entacapone (11; Fig. 4B) from a library of 
FDA-approved drugs. Huang et  al. combined multiple 
methodologies, including structure-based hierarchical 
virtual screening strategies, biochemical experiments, 
in vivo experiments, and transcriptome sequencing anal-
yses, to identify entacapone as an FTO inhibitor with an 
IC50 value of 3.5 μM [207]. In 2020, through structure-
based virtual screening, Chen et  al. found two potent 
FTO inhibitors, CS1 (12) and CS2 (13) (Fig.  4B). They 
shared similar key biological pathways with 6, which 
directly bound to FTO and efficiently suppressed its 
m6A demethylase activity, with IC50 values of 142.6 nM 
and 712.8 nM, respectively. Nonetheless, 12 and 13 tar-
geting FTO might exert antileukemic activity by sup-
pressing AML stem cell maintenance, sensitizing cancer 
cells to T cell cytotoxicity, and overcoming immune 
evasion [59]. Diacerein (14; Fig. 4B) was another potent 
FTO inhibitor identified by a single quantum dot-based 
fluorescence resonance energy transfer (FRET) sensor. 
Rather than being a chelator of metal ions or a structural 
mimic of 2-oxyglutarate, diacerein directly bound to FTO 
(IC50 = 1.51 μM) to inhibit the demethylation activity of 
FTO in HeLa cells [208].

The FTO inhibitors mentioned above provide small 
molecular tools for the study of m6A modification and 
the biological function of FTO. In addition, other potent 
m6A demethylase ALKBH5 inhibitors, such as 15 and 16, 
were identified from a library of 144 000 compounds, and 
most of them showed strong anticancer properties [209–
211]. Among them, MV1035 (17; Fig. 4C), selected by 3D 
proteome-wide scale screening, was recently recognized 
as a ALKBH5 inhibitor that possessed potent anticancer 
activity against U87 glioblastoma cells [211]. Miao et  al. 
found that the HSP90 inhibitor ganetespilb facilitates the 
translation of DNAJB4 by m6A modification at A114 site 
by increasing the expression of YTHDF3 in M14 cells [212].

Targeting methylases
As epitranscriptomic writers for m6A methylation, 
the m6A methylases METTL3 is involved in various 
stages of multiple hematoma and solid malignancies, 
including tumor stemness, immune microenvironment, 
drug resistance, metastasis and recurrence [85, 96, 132]. 
Therefore, METTL3 has been recognized as one of the 
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most promising therapeutic targets for anticancer drug 
discovery. In an effort to explore a specific inhibitor of 
METTL3, a virtual screening of ZINC and DrugBank 
4.0 databases identified 4 compounds (18–21; Fig.  4D) 
with piperidine or piperazine rings, and they functioned 
as METTL3/14-WTAP activators to facilitate RNA 
methylation, which increased the mRNA m6A levels to 
shift the cell cycle to G0 and G1 phase without cytotoxic 
effects at 100 μM [213]. Another METTL3 and WTAP 
inhibitor was chidamide (22; Fig. 4), which downregulates 
c-MET expression by suppressing m6A methylation, 
as evidenced by the downregulation of METTL3 and 
WTAP in NSCLC to increase the therapeutic efficacy 
of crizotinib [214]. Meanwhile, by screening a library of 
4000 analogs and derivatives of the adenosine moiety 
of SAM accompanied by the high-throughput docking 
assay, two adenine derivatives, 23 and 24 (Fig.  4) were 
selected as METTL3 inhibitors. They have been validated 
to bind to METTL3 by X-ray crystallography [215]. In 
addition, a high-throughput screen of 250,000 diverse 
drug-like compounds was performed. Among these 
candidates, STM2457 (25; Fig.  4) was validated to bind 
to the METTL3-METTL14 heterodimer specifically 
and directly in the SAM site by X-ray crystallography. 
As the first METTL3 inhibitor, 25 has been validated 
to increase cell differentiation and apoptosis by 
reducing m6A enrichment in METTL3-dependent core 
leukemogenic m6A substrates, such as HOXA10 and 
MYC. As a result, 25 exerts a potent therapeutic effect 
on multiple AML mouse models by affecting the AML 
stem cell or leukemia propagating compartment [9]. The 
effects of STM2457 in other tumor types are now being 
investigated by STORM, which is aiming to put STM2457 
in phase trials in 2022 [8]. By screening an adenine-based 
library with a homogenous time-resolved fluorescence 
(HTRF) enzyme inhibition assay, a potent and selective 
METTL3 inhibitor, UZH1a (26; Fig.  4) was identified. 
It was further validated to selectively bind to METTL3 
by X-ray crystallography, and it slightly suppresses the 
expression of METTL3 but significantly reduces m6A 
levels in the mRNA fraction in the leukemia cell line 
MOLM-13 and human osteosarcoma U2OS cells [216].

In contrast to conventional inhibitors, photoactivated 
compounds have been creatively constructed. With the 
assistance of computational docking, Lan et al. identified 
a caged molecule activator of METTL3/14, photocaging 
substituent-linked MPCH (27 and 28) (Fig.  4). It 
activates METTL3/14 and results in considerable m6A 
hypermethylation after short UV light exposure in 
different cells. Owing to the rapid uncaging of MPCH by 
light radiation, the side effects are minimal and can be 
controlled. As the release of medicine could be swiftly 
initiated by short light irradiation, it might be suitable for 

utilization in living systems instead of depending on the 
addition or deletion of endogenous enzymes [217]. The 
above small molecules targeting METTL3 showed potent 
therapeutic effects in tumor treatment, indicating that 
METTL3 could be the most promising target. However, 
since METTL3 is widely involved in the expression 
of various genes, the in  vivo side effects of METTL3-
targeted agents should be strictly tested. In addition 
to the inhibitors of METTL3 mentioned above, some 
other METTL3 inhibitors are now being investigated 
by Accent Therapeutics and Gotham Therapeutics. 
These companies are aiming to put their own METTL3 
inhibitors into phase I trials in 2022 [8].

Conclusions and perspectives
Epigenetic regulation has become a hot topic in recent 
decades and RNA m6A modification in cancer research 
has been developed into one of the most popular fields 
in recent years. Epigenetic regulation inhibitors, such as 
azacytidine and decitabine, which are two inhibitors of 
DNA methylation, have shown great anticancer effects in 
clinical use. The dysregulation of m6A modification fre-
quently occurs in many types of cancers and m6A modifi-
cation regulates the malignant phenotypes and behaviors 
primarily by controlling the expression of oncogenes and 
tumor suppressor genes. Notably, aberrant m6A modifi-
cation is critically associated with tumor progression and 
cancer patient prognosis. Therefore, targeting m6A mod-
ification regulators might also be a potential and promis-
ing therapeutic strategy for cancer treatment.

There are many advantages in using traditional medi-
cines or natural products to screen the inhibitors and 
activators of m6A medication regulators. First, the effi-
cacy and safety of traditional medicines and natural 
products have been validated by generations through 
the repeated experiences of countless rounds of trial and 
error over thousands of years. Moreover, many bioac-
tive small molecules derived from traditional medicines 
and natural products have novel chemical structures 
and multiple biological activities, and more than 60% of 
anticancer drugs are natural origins or contain the phar-
macophores of natural products [218]. These powerful 
advantages make traditional medicines and natural prod-
ucts reliable sources for the discovery of new therapeutic 
agents targeting m6A modification.

AI-assisted techniques have been widely used for the 
discovery and development of drug candidates [219, 
220] and several online databases related to traditional 
medicines or natural products have been developed. 
The TCM Systems Pharmacology Database and Analy-
sis Platform (TCMSP), is a comprehensive phytochemi-
cal database for drug discovery from herbal medicines, 
and it includes 29,384 ingredients of approximately 500 
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Chinese herbal medicines, more than 3, 000 targets, and 
837 related diseases [221]. Indian Medicinal Plants, Phy-
tochemistry, And Therapeutics (IMPPAT) is a database 
containing 9596 phytochemicals, 1742 Indian medicinal 
plants, and 1124 therapeutic uses spanning 27,074 plant-
phytochemical associations and 11,514 plant-therapeutic 
associations [222]. Therefore, it would be more efficient 
to develop novel and effective therapeutic agents that 
inhibit m6A modification-mediated tumor progression 
by combining traditional medicines and natural prod-
uct databases with AI-based drug discovery approaches. 
Additionally, we present a framework for m6A-targeting 
drug discovery through integration of AI and traditional 
medicines and natural products (Fig.  5). Specifically, 
we could collect and organize data from protein data-
bases related to m6A modification regulators, and com-
pound libraries (e.g., TCMSP, IMPPAT) that contain the 
natural origins, chemical structures, physicochemical 
properties, pharmacological activities, side effects and 
toxicities, and pharmacokinetic parameters of natural 
products and active small molecules derived from tradi-
tional medicines. Then, AI-based methods were used for 
high-throughput virtual screening of lead compounds 
through target protein structure-based approaches (e.g., 
molecular docking simulation), ligand-based approaches 
(e.g., quantitative structure-activity relationship (QSAR) 
models) and drug-target interaction data. With a range of 

AI techniques, we can better screen and predict potential 
compounds, develop the modification and optimization 
of chemical structures, and assess the druggability of lead 
compounds targeting m6A modification.

Although more than 20 m6A modification regulators 
have been identified, only a few of them have been con-
firmed to be druggable and could serve as therapeutic 
targets for cancer treatment. Meanwhile, many inhibitors 
and activators of m6A modification have been reported, 
but none of them have been approved for cancer treat-
ment in the clinic. The currently developed m6A modi-
fication inhibitors and activators might have poor target 
specificity, therapeutic efficacy, safety, and pharmacoki-
netics [202, 204]. It takes several years, or even decades, 
to develop an anticancer drug from the laboratory to the 
clinic and incurs high costs. The current m6A modifica-
tion inhibitors and activators must be investigated thor-
oughly in a series of preclinical and clinical trials before 
approval for clinical use. These obstacles critically hinder 
the development of current m6A modification inhibi-
tors and activators into drugs for clinic use. Currently, 
revolutionary AI-assisted approaches to drug discovery, 
design, and development have been developed, and we 
could take full advantages of AI to develop m6A inhibi-
tors and activators with better specificity, efficacy, safety, 
and pharmacokinetics, which will reduce the cost and 
shorten the time of drug development related to m6A 

Fig. 5  A framework for the m6A-targeting drug discovery through integration of AI and traditional medicines and natural products. The data 
collected and organized from protein databases and compound libraries were performed with high-throughput virtual screening, followed by 
screening and predication, modification and optimization of chemical structures, and assessment of druggability of lead compounds that target 
m6A modification
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modification by AI. We therefore believe that an increas-
ing number of novel, specific, and effective m6A modi-
fication inhibitors and activators will be developed and 
approved for clinical use in the near future.
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