Pokhrel et al. Mol Cancer (2021) 20:133
https://doi.org/10.1186/512943-021-01420-9

Molecular Cancer

RESEARCH Open Access
()]

Check for
updates

AMPK promotes antitumor immunity
by downregulating PD-1 in regulatory T cells
via the HMGCR/p38 signhaling pathway
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Abstract

Background: AMP-activated protein kinase (AMPK) is a metabolic sensor that maintains energy homeostasis. AMPK
functions as a tumor suppressor in different cancers; however, its role in regulating antitumor immunity, particularly
the function of regulatory T cells (Tregs), is poorly defined.

Methods: AMPKa 1" Foxp3"F7C Foxp3"™C¢ Rag1~/~, and C57BL/6 J mice were used for our research. Flow cytom-
etry and cell sorting, western blotting, immuno-precipitation, immuno-fluorescence, glycolysis assay, and gRT-PCR
were used to investigate the role of AMPK in suppressing programmed cell death 1 (PD-1) expression and for mecha-
nistic investigation.

Results: The deletion of the AMPKa1 subunit in Tregs accelerates tumor growth by increasing the expression of PD-1.
Metabolically, loss of AMPK in Tregs promotes glycolysis and the expression of 3-hydroxy-3-methylglutaryl-CoA reduc-
tase (HMGCR), a key enzyme of the mevalonate pathway. Mechanistically, AMPK activates the p38 mitogen-activated
protein kinase (MAPK) that phosphorylates glycogen synthase kinase-3f3 (GSK-3p), inhibiting the expression of PD-1 in
Tregs.

Conclusion: Our study identified an AMPK regulatory mechanism of PD-1 expression via the HMGCR/p38 MAPK/
GSK3 signaling pathway. We propose that the AMPK activator can display synergic antitumor effect in murine tumor
models, supporting their potential clinical use when combined with anti-PD-1 antibody, anti-CTLA-4 antibody, or a
HMGCR inhibitor.
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Background

Tumor cells reprogram several metabolic pathways to
meet their bioenergetics/biosynthetic demands [1]; this
leads to changes in the tumor microenvironment (TME),
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affecting tumor-infiltrating cells [2]. Regulatory T cells
(Tregs) are a major barrier to antitumor immunity [3].
In the TME, Tregs also undergo metabolic reprogram-
ming, where glycolysis is inhibited, but fatty acid oxida-
tion (FAO) and oxidative phosphorylation are promoted,
thereby enhancing Treg-mediated immunosuppression
and promoting tumor progression [4]. However, contrary
to Tregs, cytotoxic CD8" T cells play an important role
in antitumor immunity through the production of inter-
feron (IFN)-y and granzyme B (GZB) [5]. Notably, T cell
activation also depends on metabolic pathways, including
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aerobic glycolysis, amino acid metabolism, glutami-
nolysis, and de novo fatty acid synthesis [6]. Since these
pathways are equally important for the proliferation and
survival of tumor cells, T cells and tumor cells compete
for nutrients. Therefore, cellular metabolism actively reg-
ulates tumorigenesis.

AMP-activated protein kinase (AMPK) is an evolu-
tionarily conserved serine/threonine kinase acting as an
energy sensor for the maintenance of energy homeosta-
sis [7]. AMPK activation by the tumor suppressor Liver
kinase B1 (LKB1) supports the hypothesis that AMPK
is also a tumor suppressor [8]. Recent studies have
shown that AMPK mediates the inhibition of cell prolif-
eration and growth of tumor cells [9]. Notably, studies
have shown that the AMPK activators metformin and
5-aminoimidazole-4-carboxamide 1-B-D-ribofuranoside
(AICAR) inhibit tumor progression [10, 11]. AMPK also
inhibits the expression of Glutl and glycolysis in Tregs by
inhibiting mTORCI1 signaling [12]. As glycolysis and lipid
metabolism are the primary pathways underpinning the
survival of tumor cells, we can speculate that AMPK and
Tregs are metabolically linked in cancer. However, the
potential role of AMPK in Tregs in cancer has not been
studied yet.

Programmed cell death 1 (PD-1) is an inhibitory mol-
ecule expressed on the surface of Tregs and effector T
cells that serves as a major immune checkpoint in antitu-
mor responses [13]. In fact, anti-PD-1-mediated immune
checkpoint blockade is used as first-line therapy against
lung cancer [14]. Interestingly, a recent study showed
that the inhibition of glycogen synthase kinase-3 beta
(GSK3p) decreases the expression of PD-1 on CD8" T
cells and is as effective as anti-PD-1/anti-PD-L1 antibod-
ies for controlling BI6F10 melanoma [15]. Thus, although
the regulatory mechanism of PD-1 expression in Tregs is
unclear, GSK3p could serve as a potential target for the
modulation of PD-1 in cancer.

In the present study, we addressed the role of AMPK
in Tregs in cancer by generating Treg-specific AMPKal-
knockout mice. We showed that AMPK loss in Treg cells
accelerated tumor growth by increasing the expression
of PD-1. Our results indicate that AMPK regulates the
expression of PD-1 via the HMGCR/P38 MAPK/GSK3[3
signaling axis, suppressing tumor progression.

Materials and methods

Mice

C57BL/6], Ragl~'~, AMPKa 1", CD4°™ and Foxp3Yf?-Cr
mice were purchased from the Jackson Laboratory (Bar
Harbor, ME, USA). AMPKa1"" mice were crossed with
Foxp3™7-C mice or CD4<™ to generate AMPKa 1" Fox-
p3FCre offspring (referred to as AMPKYFoxp3-Cre
mice hereafter or also denoted as AMPK-KO in figure)
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or AMPKa1"CD4™ offspring (referred to as AMPKY
CD4-Cre mice hereafter) respectively. AMPKa1"%Fox-
p3YFPCre mice were used at 6-10weeks of age unless
otherwise specified. Age- and sex-matched littermate
Foxp3° control mice were used as controls and referred
to as wild type (WT) hereafter. All mice were main-
tained under specific pathogen-free conditions in the
animal facilities of the Kangwon National University and
the Yeungnam University. All animal experiments were
approved by the Institutional Animal Care and Use Com-
mittees (IACUC) of the Kangwon National University
(Permit Number: KW-190729-1) and the Yeungnam Uni-
versity (Permit Number: 2017-034).

Tumor models

AMPKa 1" Foxp3'™C  and  Foxp3Y™™, Ragl™"~,
and C57BL/6] mice were injected subcutaneously with
2.5%x10° B16F10 melanoma cells. WT and AMPKY
Foxp3-Cre mice were injected subcutaneously with
1x10° TC-1 cervical cancer cells and 2.5x 10° MC38
colon cancer cells. Tumors were measured every day with
a digital caliper in two dimensions (length and width);
tumor volume (mm?®) was determined using the formula
V=W?x L/2, where W and L are the shortest and longest
diameters in mm, respectively. Checkpoint blockade mon-
oclonal antibodies were administered every 3days start-
ing from day 8 post-tumor challenge until the end of the
experiment. Anti-mouse PD-1 (Clone#RPM1-14; BioXcell,
Lebanon, NH, USA) and anti-mouse cytotoxic T-lympho-
cyte associated protein 4 (CTLA4) (Clone#9D9; BioXcell)
were administered intraperitoneally (i.p.; 200 pg/mouse
and 100 pg/mouse, respectively). AICAR (500 mg/kg) was
injected i.p. daily either alone or in combination with anti-
PD-1 or anti-CTLA4. Statin (15mg/kg) was injected i.p.
daily into C57BL/6] mice either alone or in combination
with AICAR. Mice were assigned into different groups in a
randomized fashion based on their ear tag number.

For the isolation of tumor-infiltrating lymphocytes,
tumor tissues were harvested and minced using ster-
ile razor blades. Cleared tumor pieces were digested
using an enzyme mixture containing 0.5mg/mL Col-
lagenase D (Cat#11088866001, Roche Dagnostics
GmBH, Mannheim, Germany) and 0.02mg/mL DNase I
(Cat#10104159001, Sigma Aldrich, St. Louis, MO, USA)
in RPMI 1640 at 37°C for 45min and passed through
70 uM cell strainers (BD Biosciences, Franklin Lakes, NJ,
USA). A Percoll gradient (Cat#17-0891-01, GE Health-
care, Chicago, IL, USA) was then used to separate cancer
cells and enrich lymphocytes as described previously [16].

Flow cytometry and cell sorting
Single cell suspensions were prepared from spleens,
peripheral lymph nodes, and mesenteric lymph nodes.
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Cells were then lysed on ice with red blood cell lysis
solution (Sigma Aldrich, St. Louis, MO, USA), washed
with RPMI, and suspended in complete media (RPMI
1640 containing 10% fetal bovine serum and 1% strep-
tomycin and penicillin antibiotics). Fluorescence-labeled
anti-CD3 (17A2), anti-CD4 (GK1.5), anti-CD8 (SK1),
anti-CD39 (Duha59), anti-CD73 (TY/11.8), anti-ICOS
(7E.17G9), anti-PD-1 (RPM1-30), anti-CD304 (Nrpl,
3E12), anti-CD357 (GITR, DTA-1), anti-OX40 (OX-86),
anti-IFN-y (XMG1.2), anti-IL-17 (TC11-18H10.1), anti-
T-bet (4B10), and anti-IL-10 (JES5-16E3) antibodies
were purchased from Biolegend (San Diego, CA, USA)
and used at 1:100 dilution. For intracellular staining, cells
were stimulated for 4-6h with phorbol 12-myristate
13-acetate Protein 3 (50ng/mL, Sigma Aldrich) plus
ionomycin (750ng/mL, Sigma Aldrich) in the presence
of 10pug/mL Golgistop (BD Biosciences). After incu-
bation, cells were surface-stained with anti-CD4 and
anti-CD8 antibodies followed by fixation and permeabi-
lization using a commercial buffer (BD Cytofix/Cytop-
erm’", BD Biosciences, Franklin Lakes, NJ, USA). For
Foxp3 staining, cells were fixed and permeabilized using
the Foxp3/Transcription Factor Staining Buffer (eBiosci-
ence, Waltham, MA, USA). IFN-y" Thl cells, IL-17A™
Th17 cells, and CD8tGZB™ cells were determined by
flow cytometry as described previously [17]. YFPTCD25%
Tregs were sorted using the BD FACSJazz' cell sorter
(BD Biosciences). Flow cytometry data were acquired
using a BD FACS Verse flow cytometer (BD Biosciences)
and analyzed using the FlowJo software, version 10.2
(FlowJo LLC, Ashland, OR, USA).

Chemical reagents

C57BL/6] mice were treated daily with AICAR (2840,
500mg/kg) purchased from Tocris Bioscience (Abing-
don, UK), compound C (Cat#171260, 2.5 mg/kg), GSK-3p
inhibitor (Cat#$3442, 200pg/kg), p38 MAPK inhibi-
tor (Cat#S8307, 2mg/kg), GGPP (Cat#G3278, 10mg/
kg), mevalonate (Cat#90469, 10 mg/kg), and cholesterol
(Cat#C5951, 5mg/kg) purchased from Sigma Aldrich
(St. Louis, USA) and Simvastatin (Cat#10010344, 15mg/
kg) purchased from Cayman Chemical Company (Ann
Arbor, MI, USA) ip. To assess the effect of the treat-
ments, mice were euthanized, and single cell suspen-
sions were prepared from their spleens. The expression
of several surface markers including PD-1, CTLA4, Nrp1,
ICOS, GITR, CD73, CD39, and OX40 was analyzed in
Foxp3™ Tregs by flow cytometry.

Western blotting

Sorted YFPTCD25" Tregs from WT or AMPKYFoxp3-
Cre mice were stimulated with anti-CD3/CD28 anti-
bodies followed by treatment with AICAR (2mM),
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compound C (20uM), GSK-3p inhibitor (20 uM), or
p38 MAPK inhibitor (2 and 5uM), and were lysed
with radio immunoprecipitation buffer containing
proteasome inhibitors. The protein concentration was
measured via the bicinchoninic acid method. SDS-
PAGE was performed as described previously [18].
Immunoblotting was performed using primary anti-
bodies against PD-1 (Cat#BE0146, BioXcell, Leba-
non, NH, USA), AMPKal (Cat#2795), AMPKal
Thr172-p (Cat#50081S), HMGCR (Cat#sc-271,595,
Santa Cruz Biotechnology, Dallas, TX, USA), Foxo3a
Ser253 (Cat#9466), Foxo3a (Clone#D19A7), ACC
Ser79  (Clone#D7D11), ACC  (Clone#C83B10),
SREBP1 (Clone#2A4, Santa Cruz Biotechnology),
B-catenin (Cat#8480), B-catenin Ser675 (Cat#11887),
GSK-3p (Cat#12456), GSK-3p Ser9 (Cat#5558), LKB1
(Clone#D60C5), p38MAPK Thr180 (Clone#D3F9),
p38MAPK (Clone#D13E1), T-bet (Clone#D698B), Erk
1/2 Thr202/Tyr204 (Cat#4370), Erk 1/2 (Cat# 9102),
JNK (Cat# 9252), JNK Thr 183/Tyrl85 (Cat# 9255)
and B-actin (Cat#sc-47778, Santa Cruz Biotechnol-
ogy). Blots were incubated with primary antibodies at
a 1:1000 dilution overnight at 4°C. On the next day,
the blots were incubated with secondary antibodies
at 24°C for 1h. Protein bands were visualized using a
chemiluminescence kit (Cat#34580, Pierce, Appleton,
W1, USA).

Immunoprecipitation

Tregs were harvested from WT mice and lysed in IP
lysis buffer (Cat#87787, Pierce, Appleton, WI, USA).
Immunoprecipitation was performed using anti-
AMPK, anti-p38, anti-GSK3p, and anti-HMGCR anti-
bodies (Cell Signaling Technology) in 200 pL of total
cell lysate mixed with 25uL protein G agarose beads
(Cat#22851, Pierce), followed by overnight incubation
at 4°C. The immunoprecipitated proteins were then
washed 3-5 times with lysis buffer and analyzed by
western blotting.

Glycolysis assay

YFPTCD25" Tregs sorted from WT and AMPK-KO
mice were seeded into 96-well plates at a density of
5x 10° cells/well, followed by incubation overnight
in a 5% CO, atmosphere at 37°C. On the next day,
a CO, purge was performed by incubating cells in a
CO,-free incubator at 37°C for 3 h. Cell suspensions
were then harvested and washed with respiration
buffer. The glycolysis assay reagent (Cat#ab197244,
Abcam, Cambridge, UK) was then added. Fluo-
rescence intensity was measured at the excitation
and emission wavelengths of 380nm and 615nm,
respectively.
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In vitro Tregs suppression assay

Naive CD47CD25~ T cells were labeled with carboxy-
fluorescein diacetate succinimidyl ester (CFSE, Ther-
moFisher Scientific) and co-cultured with an increasing
ratio of sorted Tregs for 4days in the presence of anti-
CD3 (1pg/mL) and irradiated splenocytes. The suppres-
sive activity of Tregs was analyzed by measuring the
proliferation of activated effector T cells based on CFSE
dilution as described previously [19].

In vivo cytotoxic T lymphocyte (CTL) activity

To assess CTL responses in vivo, splenocytes were iso-
lated from naive C57BL/6 mice, divided into equal
quantities and stained using a low concentration
(0.5uM) or a high concentration (5pM) of cell trace vio-
let (Cat#C34571, Invitrogen, Waltham, MA, USA) for
15min at 37°C. Then, 5uM CTV-stained splenocytes
were pulsed with 5pg/mL of E6,,_s,[EVYD-FAFRDL)]
and E7, -,[RAHYNIVTE] peptides (TC-1 tumor-spe-
cific epitopes) for 1h at 37°C. Afterward, stained cells
were mixed at a 1:1 ratio; 2 x 107 cells were then intrave-
nously injected into each mouse. Mice were euthanized
24 h later. Lymphocytes were prepared from the spleen
and inguinal lymph nodes and analyzed by flow cytome-
try. The specific lysis ratio was calculated as r (ratio) =(%
CTVheh / CTVI™), and the percent lysis (%) was calcu-
lated as lysis % =[1 - (rynpyised / Tpuisea)] X 100.

Immunofluorescence

Paraffin-embedded TC-1 tumor tissues were sliced with
a microtome into 4 um-thick sections; the sections were
then placed on slides, deparaffinized, and rehydrated.
Antigen retrieval was conducted by microwaving with
sodium citrate buffer. Blocking was conducted with PBS
containing 1% BSA for 1h at 20°C. FITC-conjugated
anti-mouse/human GZB antibodies (1:100) and rat anti-
mouse CD8 antibodies (1:100) used to probe the sections
overnight at 4°C. Then the sections were incubated with
Alexa Fluor 647-conjugated anti-rat IgG antibody for 2h
at 20°C. Then, 4, 6 '-diamidino-2-phenylindole was used
to counter-stain the nuclei. Stained sections were visual-
ized by confocal microscopy (LSM880 NLO, Carl Zeiss,
Jena, Germany).

RNA isolation and real-time PCR

Total RNA was extracted from sorted YFPTCD25%
Tregs using the ReliPrep”™ RNA Cell Miniprep System
(Cat#Z6011, Promega Corporation, Madison, WI, USA),
and cDNA was synthesized using the Goscript Reverse
Transcription system (Cat#A5001, Promega Corpora-
tion). mRNA expression was measured by real-time PCR
using the QuantiTect SYBR Green PCR kit (QIAGEN).
25uL of the mixture, containing 10ng of the total RNA
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sample, was used for real-time PCR which was per-
formed on a CFX96 thermal cycler (Bio-Rad, Hercules,
CA, USA) using the following thermal cycle: 60 min at
42°C (for reverse transcription), 15min at 95°C (for heat
inactivation or pre-denaturation), and 40 cycles for 15s at
95°C, 30s at 58°C, and 30s at 72°C, each. All data analy-
ses were performed using the comparative C; method,
and the fold change was calculated using the 2 AACM
equation, as previously described [20].

2 AACMD - [(CT of gene of interest — C1of internal control)Sample A

—(Cy of gene of interest — C of internal control)Sample B)]

Melting curve analysis was performed to check for
non-specific amplification and to confirm that a single
amplicon was generated by qPCR. The PCR efficiency
was >90%. The PCR target genes and primer sequences
are listed in supplementary table.

Statistical analysis

Statistical analysis was performed using GraphPad Prism
9 (GraphPad Software Inc., San Diego, CA, USA). The
unpaired two-tailed student’s ¢-test was used for compar-
isons between two groups. Tukey’s multiple comparisons
test was used for multiple comparisons. Data are pre-
sented as the mean + standard deviation (SD). Statistical
significance was defined as p < 0.05.

Results

AMPK deficiency in Tregs promotes tumor growth
Although the T cell-specific deletion of AMPK promotes
tumor growth in mice [21], the specific role of AMPK
in Tregs in antitumor immunity is still controversial.
Interestingly, we found that the AMPK expression lev-
els were markedly reduced in Tregs from tumor tissues
and draining lymph nodes in tumor-bearing mice, com-
pared to those of peripheral Treg cells in tumor-free
mice, whereas the levels of LKB1, an upstream regulator
of AMPK, remained unchanged (Fig. 1A). Likewise, the
transcription of AMPK also decreased in Tregs in tumor-
bearing mice, compared to that in WT tumor-free mice
(Fig. 1B). To determine whether the correlation between
AMPK and PD-1 expression was also evident in cancer
patients, we analyzed gene expression profile from public
database such as TCGA and GEO [22, 23]. In single-cell
RNA-seq dataset which was originated from melanoma
tissue (GSE72056), we downloaded the TPM dataset file
and sorted any values more than 3 TPM for cells that
highly expressed Foxp3 transcripts and excluded invalid
TPM values for Pdcdl and Prkaal expression. There was
a significant negative correlation between the transcripts
of Prkaal and Pdcd1 at the single-cell level (r =—0.627,
p =0.012; Fig. S1A). In addition, the gene expression
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Fig. 1 AMPK deficiency in Tregs promotes tumor growth. B16F10 melanoma cells were injected subcutaneously into C57BL/6J mice and analyzed
after 22 days. A Analysis of total LKB1 and AMPK in Tregs obtained from tumor-free and tumor-bearing C57BL/6 J mice by western blotting. B
Detection of the mRNA expression of the prkaal gene by real-time PCR in Tregs isolated from tumor-free and tumor-bearing C57BL/6J mice. The
C tumor volume and D Tumor weight in WT and AMPK""Foxp3-Cre mice injected s.c. with B16F10 melanoma cells. E Flow cytometric analysis of
the percentage of CD4* and CD8™ T cells; CD4*Foxp3* Tregs and Tregs cellularity in the tumors of WT and AMPK" Foxp3-Cre mice. F Analysis of
IFN-y-producing CD4* and CD8* T cells percentage in tumors from WT and AMPK"Foxp3-Cre mice by flow cytometry. G Flow cytometry analysis
of GZB-producing CD8* T cells in tumors from WT and AMPK"Foxp3-Cre mice. H Evaluation of in vivo cytolytic activity in the spleen and draining
lymph node of WT and AMPK"Foxp3-Cre mice. The data are presented as the mean = standard deviation (SD); n=5 mice per group. *P< 0.05;

profiles of Prkag2 and Pdcdl were analyzed in resident
Tregs in patient cancer specimens using the available
datasets (GSE89225) (r =—0.621, p =0.0034; Fig. S1B).
Further analysis also revealed that Pdcdl was nega-
tively correlated with AMPK subunit mRNAs including
Prkaal, Prkaa2, and Prkagl in TCGA database obtained
from prostate, melanoma, and breast cancer patients
(Fig. S1C). These results suggest that Tregs with lower
levels of AMPK expression exhibited higher levels of
PD-1 expression in patients with cancer, indicating the
importance of AMPK in the regulation of PD-1 expres-
sion in Tregs.

To address the specific role of AMPK in tumor-asso-
ciated Tregs, we crossed mice carrying loxP-flanked
Prkaal alleles (AMPKYY) with Foxp3YT*-C™ (referred to
as Foxp3-Cre) mice [24] to generate progeny in which
AMPK alleles are conditionally deleted in Treg cells,
but not in other T cells (hereafter referred to as AMPKY
fiFoxp3-Cre mice; AMPK '+ Foxp3-Cre mice were used as
control (WT)). AMPK"Foxp3-Cre mice (also denoted
as AMPK-KO in the figure) were born at the expected
Mendelian ratios and seemed grossly normal. There was
no differences between the size of the spleen and lymph
nodes of WT and AMPK" Foxp3-Cre mice (data not

shown). AMPK" Foxp3-Cre mice exhibited no significant
change in the number and percentage of CD4%, CD8" T
cells, effector T, Th1, Th17 and Treg cells in spleen, MLN
and PLN (Fig. S2A-E). Next, we inoculated several kinds
of syngeneic tumor cells into AMPKY1Foxp3-Cre mice
and into WT control mice. Interestingly, we found that
tumors formed by B16F10 melanoma, TC-1 cervical can-
cer, and MC38 colon cancer cells grew more rapidly in
AMPKYFoxp3-Cre mice than in WT mice (Fig. 1C, D
and Fig. S3A-C).

Moreover, we found that the levels of effector T cells
(CD4" and CD8") in the tumors and draining lymph
nodes (dLNs) of AMPKY ﬂFoxpS’-Cre mice were sig-
nificantly reduced (Fig. 1E and Fig. S4A). Additionally,
although the frequencies of Foxp3™ Tregs in the tumors
and dLNs were unchanged (Fig. 1E and Fig. S4B), cel-
lularity and proliferation were higher in Tregs from
AMPKYFoxp3-Cre mice (Fig. 1E and Fig. S4C), suggest-
ing that the proliferation and survival of Tregs might be
regulated by AMPK. In addition, IFN-y-producing CD4"
and CD8* T cells and GZB-producing CD8" T cells were
significantly decreased in tumors and dLNs from AMPKY
fFoxp3-Cre mice (Fig. 1F, G, and Fig. $4D, E). In addi-
tion, we confirmed that GZB-producing CD8" T cells
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in tumors were found to be reduced in AMPKYFoxp3-
Cre mice (Fig. S5). Next, we assessed the tumor-antigen-
specific cytotoxic T cell response using an in vivo CTL
assay, and we observed that cytolytic activity of CD8"
T cells in the spleen and lymph nodes was significantly
decreased in AMPK"#Foxp3-Cre mice (Fig. 1H), suggest-
ing that AMPK supports the cytotoxic effect exerted by
CD8" T cells. Thus, these findings suggest that the loss
of AMPK in tumor-associated Tregs promoted tumor
growth in mice via the impact on antitumor T cells and
their functions.

AMPK-deficient Tregs show high expression of PD-1

Tregs express various inhibitory receptors on their sur-
face [25]. We found that AMPK-KO Tregs expressed
higher levels of PD-1, Nrp1, and ICOS than Tregs from
WT mice in both tumor-free and tumor-bearing mice
(Fig. 2A, B). However, other receptors associated with the
suppressive function of Tregs, including CTLA4, GITR,
and OX40, were not differentially expressed (Fig. 2A, B).
The expression of CD39 and CD73, which contribute
to energy depletion in the TME, was also not changed
(Fig. 2A, B).

To confirm whether the expression of PD-1, Nrpl,
and ICOS in Tregs was regulated by AMPK, we treated
WT mice with compound C, a pharmacological inhibi-
tor of AMPK. We found that the expression of PD-1 was
significantly upregulated in Tregs after treatment with
compound C, whereas no significant alterations were
detected in the levels of ICOS and Nrp1 (Fig. 2C). Con-
versely, treating WT mice with a pharmacological acti-
vator of AMPK, AICAR, decreased the expression of
PD-1 in Tregs (Fig. 2D). Similar results were obtained
with another AMPK activator, metformin (Fig. S6), sug-
gesting that AMPK could restrict the expression of PD-1
in Tregs. Western blot analysis further confirmed that
the expression of PD-1 in WT Tregs was reduced after
AICAR treatment and increased after compound C treat-
ment in a time-dependent manner (Fig. 2E). We also
found that AMPK-KO Tregs inhibited the proliferation
of T cells more potently than WT Tregs in a co-culture
system (Fig. 2F). Notably, AMPK-KO Tregs expressed
higher levels of IL-10 and TGF-p at both the mRNA and
protein levels (Fig. 2G, H) than WT Tregs. Collectively,
these findings suggest that AMPK suppresses the expres-
sion of PD-1 in Tregs, attenuating their immunosuppres-
sive potential.

We also observed that PD-1 expression was higher in
CD4" T cells from tumor-bearing mice than tumor-
free mice (Fig. S7A). In tumor-free mice, PD-1 expres-
sion was comparable between AMPK-deficient CD4"
T cells and WT CD4" T cells (Fig. S7B, C). In contrast,
in tumor-bearing mice, PD-1 expression was higher in
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AMPK-deficient CD41 T cells, but not in CD8" T cells
(Fig. S7D, E). Therefore, we can presume that AMPK
negatively regulates PD-1 expression in CD4" T cells as
well as in Tregs.

Immune checkpoint blockade reduces tumor growth
in AMPK"Foxp3-Cre mice and synergizes with AMPK
activation for antitumor immunity
We reasoned that the increased expression of PD-1 in
Tregs might be responsible for the increased tumor
growth in AMPKYFoxp3-Cre mice; therefore, we treated
tumor-bearing WT and AMPKYFoxp3-Cre mice with an
anti-PD-1 antibody. Remarkably, the growth of B16F10
tumors in anti-PD-1-treated AMPKYFoxp3-Cre mice
was significantly reduced, compared to that in anti-PD-
1-treated WT mice (Fig. 3A, B). Infiltration by CD4™" and
CD8" T cells was highly increased in AMPKYFoxp3-
Cre mice after anti-PD-1 treatment, whereas no differ-
ence was observed for Foxp3™ Tregs (Fig. 3C). Similarly,
the counts of GZB- and IFN-y-producing CD8" T cells
were highly increased in AMPKYFoxp3-Cre mice after
anti-PD-1 treatment (Fig. 3D). Further, we assessed the
expression of IL-10 in Tregs, a hallmark of immunosup-
pression [26], and found that the counts of IL-10"Foxp3™*
T cells were significantly decreased in AMPKYFoxp3-
Cre mice following anti-PD-1 treatment (Fig. 3E). Nota-
bly, anti-PD-1 antibody treatment also significantly
limited the expression of ICOS and Nrpl in AMPK-KO
Tregs (Fig. 3F), suggesting that this antibody may work by
direct binding to Tregs and by rescuing exhausted T cells.
Overall, anti-tumor immunity was more enhanced in
AMPKY Foxp3-Cre mice after anti-PD-1 antibody treat-
ment compared to WT mice, indicating that AMPK is
expected to have other functions besides regulating PD-1
expression. When we analyzed Tregs in anti-PD-1 anti-
body-treated mice, the CD25 expression levels decreased
in AMPK-KO Tregs compared to WT Tregs (Fig. S8A).
To confirm this, we stimulated anti-CD3/anti-CD28 anti-
bodies-treated Tregs with IL-2 in vitro. Before stimula-
tion, CD25 expression levels were comparable between
WT and AMPK-KO Tregs. However, after treatment
with anti-PD-1 antibody, CD25 expression levels were
slightly reduced in AMPK-KO Tregs (Fig. S8B). Thus, the
enhanced anti-tumor immunity in AMPKYFoxp3-Cre
mice after PD-1 treatment may be associated with the
regulation of CD25 expression in AMPK-KO Tregs.
Studies have shown that AMPK activators, including
AICAR and metformin, can be used to effectively treat
several cancers [10, 26]. Given that the activation of
AMPK results in the downregulation of PD-1 in Tregs,
we next assessed the antitumor effect of combination
therapy with AICAR and anti-CTLA4 antibodies. AICAR
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treatment reduced B16F10 tumor growth in immune-
competent mice (Fig. S9A). Additionally, AICAR treat-
ment increased the frequency of CD4" and CD8™ T cells
in B16F10-bearing C57BL/6] mice without affecting
the percentage of Treg cells (Fig. S9B). The downregu-
lation of PD-1 was also observed in Tregs isolated from
tumor tissues following AICAR treatment (Fig. S9C),
and combination therapy with AICAR with anti-CTLA4
antibody significantly reduced the tumor growth due to
increased antitumor T cell activity in comparison with
AICAR monotherapy (Fig. SOA-C). To confirm whether

the antitumor effect of AICAR is dependent on T cells,
we used immune-deficient Ragl~~ mice. AICAR had
no effect on B16F10 tumor growth in immune-defi-
cient mice (Fig. S9D), which confirmed that the antitu-
mor effect of AICAR was mainly dependent on T cells.
Next, we assessed the combination therapy of AICAR
with anti-PD-1 antibody. Similar to the treatment with
AICAR and anti-CTLA-4 antibody, the combination
therapy with AICAR and anti-PD-1 antibody significantly
reduced tumor growth due to increased anti-tumor T
cell activity in comparison with AICAR monotherapy or
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anti-PD-1 antibody treatment alone (Figure S10). These
findings suggest that the AMPK activation increases the
efficacy of anti-CTLA-4 or anti-PD-1 antibody therapy
via the potentiation of antitumor immune responses.

Loss of AMPK in Tregs disrupts metabolic process

and enhances the expression of HMGCR

As AMPK is essential for energy homeostasis, AMPK
deficiency in Tregs may contribute to the alteration of
energy metabolism. We found that the mitochondrial
potential and content were significantly reduced in
AMPK-KO Tregs (Fig. S11A), suggesting a mitochon-
drial defect; therefore, we measured the ATP levels in
these cells. Although the ATP levels were significantly
reduced in AMPK-KO Tregs (Fig. S11B), glycolysis was
elevated compared to that in WT Tregs (Fig. S11C). As
AMPK was reported to inhibit glycolysis in Tregs by
inhibiting mTORC1 signaling [27], we examined CD71
and CD98, key nutrient receptors regulated by mTORC1
[28]. The expression levels of CD71 (p =0.13) and CD98
(p =0.37) were not significantly different between W'T

and AMPK-KO Tregs (Fig. S11D). Regarding the acti-
vation of p70S6 kinase (S6K) and phosphoinositide
3-kinase (PI3K), the phosphorylation levels of S6K and
PI3K were markedly increased in WT Tregs, but not
in AMPK-KO Tregs after TCR stimulation (Fig. S11E),
suggesting that the upregulation of glycolysis in AMPK-
deficient Tregs is not mTORC1-mediated. Further, we
analyzed the expression of the mTOR complex and of
several enzymes associated with energy metabolism.
Interestingly, the expression of HMGCR, one of the
primary rate-limiting enzymes of the mevalonate path-
way, and glycolytic signature genes, including GlutI and
Ldha, was significantly upregulated in AMPK-KO Tregs
(Fig. 4A). Western blot analysis revealed that the accu-
mulation of the dephosphorylated form of HMGCR (the
active form) was increased in AMPK-KO Tregs, com-
pared to WT Tregs, whereas the expression of phospho-
rylated-HMGCR (the inactivated form) was decreased,
indicating HMGCR activation (Fig. 4B). However, the
expression of ACC, SREBP1, and Foxo3a was not mark-
edly increased in AMPK-KO Tregs compared to WT
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Tregs after TCR stimulation (Fig. 4B). In addition, the
phosphorylated-HMGCR increased, whereas dephos-
phorylated-HMGCR decreased following AICAR
treatment (Fig. 4C), suggesting that HMGCR is a down-
stream substrate of AMPK in Tregs. Furthermore, we
found that AMPK could bind to HMGCR using an
immunoprecipitation assay (Fig. 4D). These results sug-
gest that AMPK deficiency induces metabolic changes
in Tregs, favoring glycolysis, and that an increase in the
HMGCR expression occurred, which may be the under-
lying reason for the increased tumor growth in AMPKY
Foxp3-Cre mice. Altogether, these findings suggest
that AMPK negatively regulates HMGCR activation in
Tregs.

Statin, a specific HMGCR inhibitor, was reported to
exert antitumor effects in different cancers [29]. Thus,
we assessed the antitumor effect of statin in combination
with AICAR; WT mice transplanted with B16F10 tumors
were treated with AICAR, statin, or both. We observed
that the combination therapy led to a reduction in tumor
growth, with increased frequencies of CD4" and CD8"
T cells and no change in Tregs (Fig. 4E and Fig. S12A).
However, reduced tumor growth was not observed in
Ragl™~ mice (Fig. 4F), suggesting that the antitumor
effect of this combination therapy depends on T cells and
B cells. Indeed, GZB- and IFN-y-producing CD8" T cells
were highly increased after AICAR and statin co-treat-
ment in tumor-bearing C57BL/6] mice (Fig. S12B). Also,
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the expression of PD-1 in Tregs was significantly reduced
after combination therapy (Fig. 4G). These findings sug-
gest that the activation of AMPK synergizes with the
inhibition of HMGCR to suppress tumor growth via the
downregulation of PD-1.

HMGCR regulates the expression of PD-1 via p38 MAPK

We determined the mechanism underlying HMGCR-
mediated PD-1 regulation. We hypothesized that
HMGCR might regulate the expression of PD-1 through
the mevalonate pathway. Therefore, we assessed the
expression of PD-1 in vitro in Tregs treated with the
byproducts of the mevalonate pathway, including meva-
lonate, GGPP, and cholesterol. However, there was no
significant difference in the expression of PD-1 after
treatment with these byproducts in vitro (Fig. 5A) and
in vivo (Fig. S13), suggesting that the HMGCR-mediated
regulation of the expression of PD-1 occurs in a meva-
lonate pathway-independent manner.

Since previous findings suggested that p38 MAPK is
involved in the regulation of cholesterol metabolism [30],
we investigated whether the canonical MAPK pathway
was responsible for the HMGCR-mediated regulation
of PD-1. We found no changes in the levels of the phos-
phorylated and total forms of ERK and JNK, whereas
the phosphorylation of p38 was decreased in AMPK-KO
Tregs (Fig. 5B). In addition, the level of phosphorylated
p38 was increased by treating Tregs with AICAR (Fig. 5C)
and decreased by treating with compound C (Fig. 5D),
suggesting that AMPK positively regulates p38. Further,
the phosphorylation of p38 was significantly increased in
Tregs after statin treatment in a dose-dependent manner,
whereas no changes were observed in the expression of
ERK and JNK (Fig. 5E, F), suggesting that HMGCR nega-
tively regulates the phosphorylation of p38.

We also investigated whether p38 regulates the expres-
sion of PD-1. The expression of PD-1 in WT Tregs was
significantly increased after treatment with a p38 inhibi-
tor (SB203580) in vitro (Fig. 5G) and in vivo (Fig. 5H).
Furthermore, the p38 inhibitor led to increased B16F10
melanoma tumor growth in WT mice in vivo (Fig. 5I,
J). Remarkably, the expression of PD-1 in tumor-iso-
lated Tregs was significantly upregulated by SB203580
(Fig. 5K), suggesting that p38 could regulate the expres-
sion of PD-1 both in tumor-free and in tumor-bearing
mice. Thus, these findings suggest that HMGCR regu-
lates the expression of PD-1 via p38 MAPK.

Degradation of GSK3p by p38 is involved in the regulation
of PD-1

We identified the likely downstream targets of p38 MAPK
regulating the expression of PD-1. Since p38 MAPK
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regulates the Wnt-p-catenin signaling via the inactiva-
tion of GSK3p [31, 32], we first checked the expression of
GSK3p and B-catenin in WT and AMPK-KO Tregs. We
found that the total form of GSK3p (the active form) was
highly increased, whereas phosphorylated GSK3p at Ser9
(the inactivated form) was reduced in AMPK-KO Tregs
(Fig. 6A). In accordance, the levels of phosphorylated
B-catenin were highly increased, whereas the expression
of total B-catenin was decreased in AMPK-KO Tregs,
suggesting the degradation of -catenin and the activa-
tion of GSK3p (Fig. 6A). To disclose the potential role
of AMPK, we treated WT Tregs with AICAR and com-
pound C. The degradation of GSK3p was enhanced, as
evidenced by the increase in the expression of the phos-
phorylated form after AICAR treatment (Fig. 6B). Con-
versely, compound C increased the level of total GSK3p
and decreased that of phosphorylated GSK3p in Tregs
(Fig. 6C). Additionally, the levels of total B-catenin
increased after AMPK activation (Fig. 6B) and decreased
after AMPK inhibition (Fig. 6C), indicating that AMPK
positively regulates the expression of B-catenin and nega-
tively regulates that of GSK3p.

To understand whether p38 MAPK is an upstream reg-
ulator of GSK3p, we treated WT Tregs with SB203580.
As expected, SB203580 treatment reduced phospho-
rylated GSK3p, resulting in the accumulation of total
GSK3p. Notably, AMPK and HMGCR remained unaf-
fected (Fig. 6D), suggesting that p38 MAPK is an
upstream regulator of GSK3p and a downstream effector
of AMPK and HMGCR. Furthermore, we observed that
p38 MAPK binds to GSK3p (Fig. 6E). Thus, these data
suggest that AMPK in Tregs regulates GSK3p via p38
MAPK, thereby inhibiting the expression of PD-1.

To determine whether the increased levels of GSK3p in
AMPK-KO Tregs are directly responsible for the upregu-
lation of PD-1 expression, we treated AMPK-KO Tregs
with SB216763, a GSK3p inhibitor. Inhibition of GSK3p
reduced the expression of PD-1 in WT and AMPK-KO
Tregs, compared to their untreated counterparts, albeit
AMPK-KO Tregs still exhibit a substantially higher level
of PD-1 than WT Tregs, suggesting that AMPK regulates
PD-1 expression via both GSK-dependent and -independ-
ent mechanisms (Fig. 6F). Previous findings suggested
that the inhibition of GSK3p enhanced the expression of
T-bet, thereby downregulating the expression of PD-1 in
CDS8" T cells [33]. Here, we found that T-bet was down-
regulated in AMPK-KO Tregs (Fig. 6G). Notably, we
confirmed this phenotype depended on GSK3p as the
expression of T-bet was significantly increased in WT
and AMPK-KO Tregs treated with SB216763 (Fig. 6G).
Thus, these findings suggest that GSK3B promotes the
expression of PD-1 in Tregs through the inhibition of
T-bet.
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Discussion

T cell activation is associated with metabolic changes to
address the increased energy demand for effector func-
tions. Especially, activated Thl and Th17 cells mainly
depend on glycolysis, controlled by the energy sensor
AMPK coordinating energy homeostasis [6, 34]. In can-
cer cells under metabolic stress, lowered expression of
AMPK is associated with increased energy demand,
probably due to the low oxygen levels in the TME and the

consequent shift toward glycolysis. In this respect, T cells
lacking AMPKal1 also display reduced mitochondrial bio-
energetics and cellular ATP levels in response to glucose
deprivation or to pathogens [2]. Likewise, AMPK is also
crucial to maintain the function of Tregs [35]. However,
Tregs mainly depend on FAO to survive and function [4,
35]. In this study, we found that the ablation of AMPK
in Tregs increased glycolysis and the expression of PD-1,
suggesting that AMPK may be modulated in Tregs to
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promote tumor suppression. Although the regulatory
mechanism underlying the expression of PD-1 under
conditions of metabolic stress is not fully understood, we
suggest that AMPK regulates the expression of PD-1 via
the HMGCR/P38 MAPK/GSK3 axis in Tregs.

Tregs are a major barrier to antitumor immunity in
various cancers [36]; for instance, they secrete immu-
noregulatory cytokines, including IL-10 and TGE-p.
In addition, Tregs express several inhibitory surface
receptors including PD-1, ICOS, and Nrpl in tumors,
mediating immunosuppression [25]. Notably, PD-1 is
also expressed in exhausted T cells [37]. In fact, PD-1
blockade is used to treat cancer patients not respond-
ing to classical chemotherapy agents, promoting the
restoration of the effector functions of exhausted T
cells [38, 39]. However, despite the importance of
PD-1 in immune regulation, the role of PD-1 in Tregs
remains controversial [39, 40]. A recent study sug-
gested that PD-1 expression in Tregs was amplified by
PD-1 blockade; consequently, PD-1 blockade acceler-
ated tumor growth [40, 41]. This contradicts our results

which shows that the PD-1 blockade in Tregs sup-
presses tumor growth. However, since antitumor CD4™"
and CD8* T cells were restored by the PD-1 blockade
in our study, it is highly plausible that our phenotype
depends mainly on the PD-1 expression in Tregs. In this
regard, we presume that the enhanced tumor growth in
AMPKYFoxp3-Cre mice is associated with high levels
of PD-1 in Tregs. Notably, the PD-1 blockade exhib-
ited profound anti-tumor effects in murine syngeneic
tumor models, particularly in AMPKY Foxp3-Cre mice.
Although anti-PD-1 antibody is expected to act on both
Tregs and exhausted T cells, it profoundly exhibited
antitumor effects in AMPKYFoxp3-Cre mice com-
pared to WT mice, suggesting that the increased anti-
tumor immunity is due to the PD-1 blockade in Tregs,
which is increased in the absence of AMPK signaling.
Despite the importance of PD-1 as a negative feed-
back regulator of T cell effector functions, the upstream
pathway involved in the downregulation of PD-1 is yet
unknown. Here, we discovered that AMPK regulates the
expression of PD-1 through the HMGCR/p38 MAPK/
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GSK3p axis. Given that p38 MAPK is regulated by AMPK
and by statin, an HMGCR inhibitor [42, 43], we found
that HMGCR in Tregs could be regulated by AMPK.
Consistently, we found that the inhibition of HMGCR
by statin activates p38 and suppresses the expression of
PD-1 in Tregs, suggesting that HMGCR is an upstream
regulator of p38MAPK. However, the detailed mecha-
nism underlying the HMGCR-mediated regulation of p38
MAPK needs to be further explored. Additionally, previ-
ous studies suggested that p38 MAPK inactivates GSK3[
via phosphorylation [32]. We also found that p38 MAPK
interacted with GSK3p and promoted its phosphoryla-
tion, suppressing the expression of PD-1; these data sug-
gest that GSK3p is a downstream substrate of p38 in
Tregs. Interestingly, our data suggest that GSK3p upreg-
ulates the expression of PD-1 in Tregs via the inhibition
of T-bet, in line with data reported in CD8" T cells [36].
Notably, GSK3p-mediated phosphorylation enhanced
the proteasomal degradation of B-catenin, a key media-
tor of Wnt signaling [44]. Activated Tregs increased the
expression of p—catenin, but it was attenuated in LKB1-
deficient Tregs [45]. In this regard, the decreased levels of
[-catenin detected in AMPK-KO Tregs may explain the
increased expression of PD-1; However, it is still unclear
how GSK3pB regulates PD-1 expression directly. One
hypothesis is that GSK33-mediated ER stress can induce
PD-1 expression. GSK-33 inhibition increases IREla-
dependent XBP1 splicing, which directs the transcription
of several genes involved in the functional and structural
expansion of the endoplasmic reticulum (ER) and genes
associated with the ER-associated degradation (ERAD)
pathway in order to reduce ER stress and restore ER
homeostasis [46]. In addition, another study reported that
activated XBP1 binds to the Pdcd1 promoter and 2B4 pro-
moter to regulate the expression of inhibitory receptors in
CD8* T cells [47] however, the level of PD-1 expression
was not changed in XBP1-deficient CD4" T cells [48].
Our preliminary data suggested that the expression of the
spliced form of XBP1 was increased in AMPK-deficient
CD4 T cells (data not shown). However, the mechanism of
XBP1-mediated PD-1 expression is still unclear and fur-
ther studies are needed to elucidate the mechanism.

LKB1 is a master kinase that functions upstream of
AMPK, along with TAK1 and CaMKKp, which acts as a
potent tumor suppressor that directly phosphorylates and
activates AMPK [8]. However, our previous study sug-
gested that the phenotype of Treg-specific AMPK" Foxp3-
Cre mice differs from Treg-specific LKB1-KO mice, as
only Treg-specific LKB1-KO mice developed spontane-
ous autoimmune inflammation [49]. Interestingly, LKB1-
KO Tregs showed hyperactivation of mTORCI1 signaling
[45], while AMPK-KO Tregs did not. Moreover, the loss
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of LKB1 in Tregs reduced HMGCR expression [45], but
the loss of AMPK in Tregs increased HMGCR expression.
Thus, we presumed that the role of AMPK is distinct from
that of LKB1 in CD4* T cells. Additionally, AMPK expres-
sion was significantly reduced in tumor-infiltrating Tregs
of WT mice, whereas there was no significant change in
LKBI1 levels. This finding suggests that AMPK exerts a
tumor-suppressive effect independent of LKB1 in Tregs.
Collectively, it can be presumed that AMPK attenuates
the immune suppressive function of Tregs in the TME,
thereby potentiating antitumor immunity”

Inhibitory immune checkpoint blockade using anti-
PD-1 and anti-CTLA4 antibodies has provided substan-
tial benefits to certain cancer patients [50]. However, the
monotherapy clinical outcomes are not satisfactory yet.
Several approaches are therefore being considered to
improve the efficacy of these immune checkpoint inhibi-
tors. For instance, combined therapy with existing anti-
cancer therapies, such as chemotherapy, radiotherapy,
and targeted therapy, was proposed [51]. However, such
combined therapy could induce severe toxicity and side
effects. Our findings showed that the AMPK activator,
AICAR, exhibited synergistic antitumor effects when
combined with anti-PD-1 and anti-CTLA4 antibodies,
suggesting that AMPK activators could be considered
to complement anti-PD-1 and anti-CTLA4 therapy to
improve the outcomes of cancer patients. In addition,
HMGCR inhibitors have been widely used as cholesterol-
targeting drugs in clinical studies in cancer patients [29].
In our study, a synergistic effect was observed when statin
was combined with AICAR, suggesting that AMPK acti-
vation combined with the inhibition of HMGCR could be
a potential combination therapy for cancer treatment.

Conclusion

In conclusion, we demonstrated the role of AMPK in
Tregs in regulating antitumor immunity: AMPK pro-
motes antitumor immunity due to the downregulated
expression of PD-1 via the HMGCR/P38 MAPK/GSK3p
axis. The activation of AMPK combined with anti-PD-1
and anti-CTLA4 antibodies or with a HMGCR inhibitor
exhibited synergic anti-cancer activity in murine tumor
models, supporting their potential clinical use. Altogether,
our findings provide support for the notion that AMPK in
Tregs acts not only as a crucial regulator maintaining met-
abolic homeostasis, but also as a potent tumor suppressor.
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