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Abstract 

Circulating tumor cells are tumor cells with high vitality and high metastatic potential that invade and shed into the 
peripheral blood from primary solid tumors or metastatic foci. Due to the heterogeneity of tumors, it is difficult for 
high-throughput sequencing analysis of tumor tissues to find the genomic characteristics of low-abundance tumor 
stem cells. Single-cell sequencing of circulating tumor cells avoids interference from tumor heterogeneity by compar-
ing the differences between single-cell genomes, transcriptomes, and epigenetic groups among circulating tumor 
cells, primary and metastatic tumors, and metastatic lymph nodes in patients’ peripheral blood, providing a new 
perspective for understanding the biological process of tumors. This article describes the identification, biological 
characteristics, and single-cell genome-wide variation in circulating tumor cells and summarizes the application of 
single-cell sequencing technology to tumor typing, metastasis analysis, progression detection, and adjuvant therapy.
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Introduction
Circulating tumor cells (CTCs) are tumor cells with high 
vitality and high metastatic potential that originate from 
primary or metastatic tumors of epithelial origin and 
shed into the blood circulation system. CTCs are one 
of the important components of liquid biopsy, and pro-
vide a window to monitor tumor progression in real time 
[1–3]. Generally, high-throughput sequencing analysis of 
tumor tissue is based on the analysis of a mixed sample 
of millions of cells, which reflects the overall genomic 
characteristics of the cell but ignores the heterogeneity of 
the tumor cell, resulting in the dilution of genetic mate-
rial from CTCs and cancer stem cells (CSCs) and other 
low-abundance but functionally important cells. How-
ever, the emergence of single-cell sequencing technology 

has solved this problem well [4–6]. Single-cell sequenc-
ing of CTCs can be used to compare the differences 
between single-cell genomes, transcriptomes and epige-
netic groups in peripheral blood CTCs, tumor primary 
and metastatic foci, and metastatic lymph nodes, reduc-
ing interference from tumor heterogeneity. Single-cell 
sequencing provides a new perspective for understanding 
the biological process of tumor occurrence and develop-
ment [7–9] and has been used in breast cancer, colorectal 
cancer, malignant melanoma, lung cancer and prostate 
cancer and other tumor research [10–14]. This article 
reviews the progression of research into the analysis of 
the genomic variation in CTCs in the peripheral blood of 
solid tumors using single-cell sequencing technology.

Tumor heterogeneity and single‑cell sequencing 
analysis
Tumor heterogeneity refers the genomic, proteomic, and 
gene expression differences in daughter cells that occur 
during the growth process of the tumor after multiple 
divisions and proliferation; these differences can induce 
differences in phenotypes and features, such as growth 
rate, invasion ability, drug sensitivity and prognosis. 
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Heterogeneity is a characteristic of malignant tumors. 
Tumor heterogeneity can allow tumor cells to adapt to 
changes in the tumor microenvironment and promote 
tumor resistance and progression.

In general, tumor heterogeneity consists of two types: 
intratumor heterogeneity, composed of differences in 
genes and phenotypes between different cells within a 
tumor, and intertumor heterogeneity composed of dif-
ferences in genes and phenotypes between cells in dif-
ferent tumors. Intratumor heterogeneity refers to the 
presence of different cancer cell subpopulations in the 
same tumor. The genomics of different tumor cell sub-
sets (such as genome, somatic mutation and epigenetic 
modification, etc.) and tumor biology (transcriptome, 
proteome, metabolome, etc.) are significantly different 
[15]. Not only tumor cells but also the tumor microen-
vironment (such as lymphocyte infiltration and MHC 
molecular types, etc.) and the interaction between 
tumor cells and the tumor microenvironment are differ-
ent [16]. Heterogeneity within the tumor allows tumor 
cells to have both temporal heterogeneity (the primary 
tumor is different from the secondary tumor) and spa-
tial heterogeneity (the same tumor differs in different 
regions). It is currently believed that heterogeneity in 
tumors is related to the randomness of gene mutations 
and the heterogeneity of environmental factors and their 
effects [17]. The clonal evolution theory speculates that 
normal cells in an organism become cancer cells through 
various genetic mutations, in which clones multiply and 
form identical copies, and each copy has the same onco-
genic ability (Fig.  1) [18, 19]. Heterogeneity between 
tumors refers to the difference between tumors of the 
same origin in different patients. These tumor subgroups 
have special molecular markers and different biological 
behaviors, thus causing different effects on clinical prog-
nosis [20]. Heterogeneity between tumors stems from 
different tumor phenotypes caused by differences in 
the responses of tumor cells to genomic and epigenetic 
modifications and different tumor cell subsets originat-
ing from different tumor stratifications [21]. In addition, 
tumor interstitial heterogeneity is also related to the 
abnormal regulation of cells and extracellular matrix in 
the tumor microenvironment. For example, the tumor 
interstitium contains different tumor-associated fibro-
blasts, macrophages, and tumor-infiltrating lympho-
cytes. All these factors play an important role in the 
malignant transformation of tumors [22].

Studies have revealed that there are multiple levels of 
heterogeneity in the primary tumor, metastatic lymph 
nodes, metastases, and different metastases, includ-
ing genomic variation, RNA transcription, and protein 
expression profiles. In 2012, Vermaat et  al. [23] used a 
customized "Cancer Mini-Genome" chip to sequence the 

exome of 1264 genes in tumor-related signaling path-
ways in primary colorectal cancer and liver metastasis 
samples. The results showed that the number of variants 
affecting protein function in the primary tumor was far 
greater than that in liver metastasis, revealing that the 

Fig. 1 Evolution of a metastatic cancer stem cell (CSC). As a tumour 
progresses, genetic and epigenetic mechanisms may result in 
the emergence of a selfrenewing metastatic CSC (mCSC) that 
expresses different cell surface markers from the CSC that is driving 
tumorigenesis. This mCSC, through a series of invasive processes 
that characterize metastasis, enters the blood stream and seeds 
a secondary tumour in a distinct organ [18]. The copyright of this 
image belongs to Reference [18].
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genomic differences between the primary foci of colo-
rectal cancers and their liver metastases were substan-
tial. In addition, studies have also shown that KRAS, 
BRAF, and PIK3CA mutations and PTEN expression in 
primary and metastatic foci of colorectal cancer, as well 
as EGFR pathway status, were significantly different [24, 
25].

Colombino and others [26] compared the mutations 
in the primary and metastatic lymph nodes of malig-
nant melanoma patients, as well as the BRAF, NRAS and 
p16CDKN2A mutations in brain and skin metastases, 
and found that the metastatic lymph nodes were more 
similar to the primary lymph nodes than to the brain and 
skin metastases. Similar results have been shown in the 
study of breast cancer and lung adenocarcinoma. The 
expression of HER2 in breast cancer and the mutation 
rate of EGFR in lung adenocarcinoma were significantly 
among between primary tumors, metastatic foci, and dif-
ferent metastases. [27, 28].

The heterogeneity of tumors has been clarified by high-
throughput sequencing analyses of mixed samples of 
tumor tissue, which mainly reflects the overall genomic 
characteristics of tumor cells. The heterogeneity of tumor 
cells causes a low abundance of CTCs and cancer stem 
cells [29]. However, the genomic characteristics of func-
tionally important cells are unclear. Single-cell sequenc-
ing analysis of tumor tissues and CTCs is necessary to 
understand the biological progression of tumors.

Circulating tumor cells
CTCs are a group of tumor cells with high activity and 
high metastatic potential in the peripheral blood of solid 
tumor patients. CTCs are one of the important tumor 
markers in tumor liquid biopsy. Both the number of 
CTCs and their phenotypes are related to the progression 
of the primary tumor. Observing and analyzing the num-
ber and phenotypes of CTCs can indirectly reveal the 
nature of tumor lesions. The view that CTCs can be used 
to monitor tumor progression through peripheral blood 
analysis has been widely recognized [1–3]. Anatomists 
and pathologists have observed the presence of CTCs in 
the peripheral blood of patients with solid tumors.

Due to the low abundance of CTCs in peripheral blood 
relative to the number of blood cells, it is very difficult 
to distinguish them from other blood cells. With the 
progression of biological technologies, especially the 
developments of new nanomaterials and microfluidics, 
in 2004, the US Food and Drug Administration (FDA) 
approved a new technology [30] for detecting peripheral 
blood CTCs in metastatic breast cancer patients.

CTCs have been detected in the peripheral blood of 
patients with breast cancer, prostate cancer, liver can-
cer, lung cancer, ovarian cancer, esophageal cancer, 

pancreatic cancer, cervical cancer, colorectal cancer, head 
and neck cancer and gastric cancer.

Enrichment and identification of circulating tumor cells
Separation of rare cells requires enrichment and capture 
of CTCs. CTC enrichment technology mainly includes 
enrichment based on cell surface markers and enrich-
ment technology based on microfluidic chips. Enrich-
ment based on cell surface markers mainly includes 
positive selection and negative selection, namely, anti-
epithelial cell adhesion molecule (EpCAM) and kera-
tin (cytokeratin, CK), and other antibodies capture and 
enrich epithelial-derived tumor cells and/or use leu-
kocyte-derived antibodies to remove leukocytes. For 
example, the FDA approved the Cell Search enrichment 
method for CTC detection in breast cancer and prostate 
cancer patients using EpCAM and CD45 antibodies to 
capture EpCAM + cells from the blood. After removing 
the CD45 + cells and analyzing the isolated CTC count, 
CD45 + negative selection was also performed [1, 2, 31]. 
Another CTC capture technology uses a microfluidic 
chip. According to the biological and physical character-
istics of CTCs, the peripheral blood mononuclear cells 
(PBMCs) of tumor patients were isolated and passed 
through a microfluidic chip coated with EpCAM anti-
body under stable and slow laminar flow control, and 
EpCAM + cells were captured by EpCAM antibody and 
bound to the bottom of the chip, while the remaining 
lymphocytes flowed out with the liquid, as in the CTCs-i 
Chip method [32, 33]. CTC identification is mainly per-
formed by immunofluorescence, fluorescence in  situ 
hybridization (FISH), and RT-PCR analysis. The isolated 
peripheral blood nucleated cells identified in previous 
studies showed features such as EpCAM + , CK + , and 
CD45- phenotypes by immunofluorescence staining, 
chromosomal aneuploidy changes, and specific tumor-
related gene mutations. These cells were identified as 
CTCs derived from epithelial cells [2, 34, 35].

In addition, Swennenhuis et  al. [34] developed a self-
seeding microwell chip for the isolation and interrogation 
of single cells, which contained 6400 microwells, each 
microwell with a single 5 μM pore in the bottom. The cell 
suspension enters the microwell and drags a cell onto the 
pore. After identification by fluorescence microscopy, the 
cells of interest are isolated from the microwell by punch-
ing the bottom together with the cell. The overall single-
cell recovery rate by seeding followed by isolation of the 
single cell is > 70% with a specificity of 100%, as confirmed 
by the genetic make-up of the isolated cells. Stevens et al. 
[35] developed Puncher technology for the isolation of 
single cells, which combines a silicon chip with microw-
ells, fluorescence imaging, and a punching method to iso-
late and transfer single cells to standard reaction tubes. 
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They used Rosettesep and Parsortix as pre-enrichment 
methods that are compatible with Puncher technology, 
which leads to high recovery rates when isolating a sin-
gle CTC accurately from a small quantity of enriched 
samples. In contrast to other single-cell separation tech-
niques, Puncher technology can be applied to isolate very 
low concentrations of single cells from liquid biopsies 
and, more generally, from cell suspensions.

The main biological characteristics of circulating tumor 
cells
Peripheral blood CTCs are also heterogeneous tumor 
cells. The surface markers of CTCs from different 
tumors vary, and the cells differ in size and can appear 
as single cells or cluster-like. Almost all of the invasive 
and metastatic CTC subpopulations survive in the cir-
culation, lodge into distant sites and support the forma-
tion of a metastatic niche. Additionally, relatively benign 
CTCs have the advantage of increased replication rates 

compared with those of more aggressive but more vul-
nerable CTCs. Studies have shown that the appearance 
of CTCs in the peripheral blood is an early event in the 
formation of solid tumors of epithelial origin [30]; CTCs 
in the peripheral blood can simultaneously or bidirec-
tionally stimulate the growth of tumor cells in primary 
and metastatic tumors (Fig.  2) [36]. CTCs appear clus-
ter-like, which is the hallmark of tumor stem cells, and 
the presence of CTC clusters in the peripheral blood 
of tumor patients suggests tumor progression [37]. The 
clinical significance of detecting CTCs is mainly as fol-
lows. (1) CTCs are an important supplement for clini-
cal tumor TNM staging. There are many deficiencies in 
TNM staging based on anatomical characteristics. In 
2007, CTCs were recommended as a tumor marker by 
the American Society of Clinical Oncology (ASCO) as 
an important supplement to the TNM staging of tumors. 
Additionally, the 8th edition of the American Joint Com-
mittee on Cancer (AJCC) breast cancer staging manual 

Fig. 2 Seeding of established tumors by CTCs. A A diagram of contralateral-seeding experiment. Unlabeled and GFP/luciferase-expressing breast 
cancer cells were injected into contralateral No. 2 mammary glands as a “recipient tumor” and a “donor tumor”, respectively. B BLI of recipient 
tumors extracted from mice bearing the indicated GFP/luciferaseexpressing donor tumors. Color-range bars: photon flux. LM2: a lung metastatic 
derivative of MDA231. MCF7-BoM2: a bone-metastatic derivative of MCF7, CN34-BrM2: a brainmetastatic derivative of pleural effusion CN34, PyMT: 
cells derived from mammary tumors developed in MMTV-PyMT transgenic mice. C BLI of tumor-free and tumor-bearing mammary glands from 
mice bearing GFP/luciferaseexpressing donor tumors. n = 9–18. D Frozen sections of seeded MDA231-LM2 tumors were visualized by fluorescence 
microscopy. An entire tumor section and a higher-magnification image (× 10) of a selected field are shown. E A contralateral-seeding experiment 
was performed with RFP- and GFP-expressing. MDA231-LM2 cells. Frozen sections from RFP-labeled tumors were visualized under confocal 
microscopy at × 20. FA diagram to test mammary tumor seeding from lung metastases. GFP/luciferaseexpressing MDA231-LM2 cells were injected 
intravenously. Once lung metastases were established, unlabeled MDA231 cells were injected into a mammary gland No. 2. G Left: burden of CTCs 
derived from lung metastases in mice described in panel F. Relative levels of CTC were plotted against the luminescent signals of recipient tumors. 
Right: BLI of three representative recipient tumors (i, ii and iii) identified in the graph [36].The copyright of this image belongs to Reference [36]
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released in 2017 affirmed the significance of CTCs. The 
peripheral blood CTC counts of clinically advanced 
breast cancer patients were ≥ 5 per 7.5  mL, and clini-
cal early breast cancer patient peripheral blood CTC 
counts ≥ 1 per 7.5  mL indicated a poor prognosis. The 
level of evidence is grade II [1]. (2) Efficacy monitor-
ing and prognosis judgment is another significant fac-
tor. CTCs can directly indicate the response of cancer 
patients to treatment. The continuous increase in CTC 
number indicates that the tumor responds poorly to 
treatment. The occurrence of CTCs in the peripheral 
blood of patients with malignant tumors indicates a 
poor prognosis. The occurrence or increase in CTCs 
after treatment is associated with tumor recurrence. (3) 
CTCs can be used to guide individualized treatment of 
tumors. The biological characteristics of metastatic foci 
are different from those of primary foci, the sensitivity of 
drugs can be detected by CTC ex vivo culture, and indi-
vidualized treatment plans can be formulated according 
to the biological characteristics of the foci [38]. (4) Early 
warning of metastasis and recurrence can be provided 
by CTCs. Tumor metastasis is the main cause of death 
among cancer patients. The current methods for detect-
ing tumor metastasis are mainly based on imaging. Even 
with high-resolution imaging methods, it is difficult 
to detect early tumor metastasis events at the cellular 
level. Through high-resolution imaging examination 
combined with dynamic monitoring of the number and 
nature of CTCs, potential metastasis clues in tumor 
lesions can be identified, which provides the possibility 
for early targeted treatment.

Single cell sorting and sequencing analysis
Single‑cell sorting
Since peripheral blood CTCs are rare cells, some 
traditional single-cell sorting methods, such as 

fluorescence-activated cell sorting (FACS), are not suit-
able for CTC single-cell sorting. The methods used for 
CTC single-cell sorting mainly include the microman-
ipulation sorting method, microfluidic technology sort-
ing method, DEPArray and Cell Celector sorting system 
(Table 1).

Micropipette isolation (micropipette isolation) involves 
a high-power microscope that uses micromechanical 
manipulators or visual tweezers to complete single-cell 
sorting [40]. The advantage is that it can effectively con-
trol the selection, transfer, and release of target cells to 
ensure that the accuracy of cell selection at a low cost, 
but this method takes a long time with low flux, and it 
easily causes mechanical damage to the target cells. 
This method is suitable for the separation of target cells 
present at low numbers in the overall cell population 
and can be used for enrichment by Cell Search or Mag 
Sweeper technology for the sorting of nucleated cells [6, 
41, 43]. The microfluidics sorting method (microfluid-
ics) can be coupled with downstream genome amplifica-
tion technology to complete single-cell sorting, lysis, and 
amplification in one step, such as Fluidigm’s C1 single-
cell amplifier with high throughput (each chip can be 
completed 96 single-cell sorting), small reaction volume 
(can increase amplification efficiency and reduce reagent 
consumption), less contamination and little impact on 
sequencing. The disadvantages are a low capture rate for 
viscous and nonspherical cells and a high chip cost [39, 
42].

The DEPArray sorting system (Di-Electro-Phoretic 
Array system) refers to a semiautomatic sorting system 
that separates rare cells from a mixed cell population 
[44]. Visualizing the cells to be sorted by fluorescent 
labeling, single cells are captured by the "electronic cage" 
formed by the microelectrodes on the chip, and then 
the microelectrodes are turned on or off to move the 

Table 1 Comparison of CTC single cell sorting methods

Sorting method Sorting objects time consuming Advantage shortcoming Reference

Microoperation separation 
method

Less tissue and cell suspen-
sion

long High accuracy and low cost Time consuming, low flux, 
easy to cause mechanical 
damage to the target cells

[33, 34]

Microfluidic separation Cell suspension with 
numerous cells

short High flux, small reaction 
volume, less space and less 
pollution

High cost and high cell 
loss rate

[36, 39]

DEPArray sorting system CTO solution long Visualization and semi 
automation

The sample size is small and 
can not be directly derived 
from it

[7, 40, 41]

Separation and enrichment 
of CTC in peripheral blood

CellCelector sorting system CTC suspension short Keeping cell activity, high 
accuracy and less time 
consuming

High cost and high instru-
ment dependence

[42]
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sorted and captured target cells to a suitable position 
on the chip and place them in suitable media for subse-
quent sequencing analysis [45]. The disadvantage is that 
it takes a long time, and the sample volume is small (only 
14 μL). Peripheral blood samples need to be divided and 
enriched in CTCs before they can be sorted by this sys-
tem. This approach has been used at the single-cell level 
to study CTCs in breast cancer and colorectal cancer [7, 
46, 47]. The Cell Celector sorting system is an automatic 
sorting system that separates rare cells from mixed cell 
populations. It automatically retrieves single cells and cell 
clones through a multifunctional robot system to achieve 
single-cell sorting and directly separates the target cells 
or clones mechanically without affecting cell viability, 
allowing for real-time, highly accurate observation of cell 
images for cell sorting; however, this method is time-con-
suming [48].

Single cell whole genome amplification
The DNA content of a single cell is only 6 ~ 7 pg, which 
does not meet the level of DNA content required for 
whole-genome sequencing. High-fidelity, high-efficiency 
and unbiased genome amplification are required for 
whole-genome sequencing of a single cell. The develop-
ment of whole-genome amplification (WGA) has pro-
moted the progression of single-cell genome sequencing 
technology [49].

Based on the PCR amplification method, that is, the 
PCR amplification method that improves the specific 
primers or random primers of traditional PCR, such as 
primer-adapter PCR (LA-PCR), primer extension pre-
amplification PCR, PEP-PCR and degenerate oligo-
nucleotide primer PCR (degenerate oligonucleotides 
deprimed PCR, DOP-PCR), solves the problems of differ-
ent primer annealing kinetics, low fidelity of the enzyme 
and exponential amplification, but insufficient coverage 
and unevenness of amplification products, amplification 
deviations, and allele deletions may cause single-nucleo-
tide variation (SNV) and cause false positives [50, 51]. In 
addition, according to CTC enrichment techniques, the 
prevalence and metastatic potential of CTC subpopula-
tions may differ, leading to different conclusions.

Multiple displacement amplification (MDA) uses 
random hexamers as primers to continuously syn-
thesize φ29 DNA polymerase with strong synthesis 
ability, high fidelity, and strong strand displacement 
activity and completes the amplification at 30  °C [52, 
53]. Under isothermal conditions, random primers 
with exonuclease activity are combined with the tem-
plate. During amplification, φ29 DNA polymerase can 
replace the complementary strand of the template, and 
the substituted single-stranded DNA is further ampli-
fied as a new template, showing a branched structure. 

Exponential amplification is completed, and amplicon 
fragments of 5–10 kb are formed. MDA is a commonly 
used single-cell whole-genome amplification method 
with high coverage and uniformity, good accuracy, and 
long amplicons, but there are high allele deletion rates, 
exponential amplification-caused sequence-depend-
ent deviations, and the approach neglects differences 
between cells. The lack of heterogeneity detection in 
this approach means that it is not suitable for detect-
ing copy-number variation (CNV) [5, 54]. Many ampli-
fication methods are further improved on the basis of 
MDA, such as the microwell displacement amplification 
system (microwell displacement amplification system, 
MIDAS), through microfluidic technology to reduce 
the reaction volume, thereby reducing the deviation 
caused by the amplification, which can be reduced to 
a nanoliter volume. Thousands of single-cell genomes 
in microwells are amplified simultaneously, thereby 
increasing the uniformity of amplification reactions 
[55]. Emulsion whole-genome amplification (e WGA) 
disperses genomic DNA fragments into skin-emulsified 
emulsion droplets. Over time, each reaction system 
reaches saturation, reducing the dependence on ampli-
fication due to sequence differences. Compared with 
classic MDA, this method guarantees high coverage and 
improves accuracy and resolution [56]. Picher et al. [57] 
introduced the DNA primer enzyme Thermus thermo-
philus Prim Pol (Tth Prim Pol) into the MDA system to 
form a replication initiation polymer, which can simul-
taneously perform DNA chain initiation and extension 
functions. This WGA method was named True Prime. 
Compared with the original MDA method, this method 
increases the number of amplified products, and the 
resulting product fragments are longer and more sen-
sitive to a small volume of initial DNA template. This 
method provides better coverage and uniformity, 
improved reproducibility, and can be used for CNV 
analysis. Additionally, the number of SNVs caused by 
allele dropout (ADO) decreased, and the false positive 
rate of SNV detection decreased. Chimeras are formed 
during the chain replacement process in the MDA reac-
tion, but this method still relies on φ29 chain replace-
ment activity, so there is no improvement in chimera 
formation levels [57].

Multiple annealing and looping-based amplification 
cycles (MALBAC) is a linear amplification method. After 
extension to form a semiamplicon, the temperature is 
raised to cause the product to fall off the template, and 
the temperature is reduced to form a hairpin structure to 
prevent further amplification, thereby ensuring that only 
amplification of the original template is performed, and 
the entire reaction cycle occurs 8 to 12 times, resulting in 
microgram-level genomic samples [58]. As this method 
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involves linear amplification and high uniformity with-
out amplification deviation, it is more suitable for the 
detection of CNVs. However, due to the low fidelity of 
the Taq DNA polymerase used, the false positive rate of 
SNV detection by this method is higher (approximately 
40 times higher than that of MDA) [54].

The linear amplification via the transposon inser-
tion (LIANTI) system introduced a specially designed 
Tn5 transposon that contains the T7 promoter that can 
be randomly combined with the genome; then, in vitro, 
linear amplification is reversed. Thousands of RNA cop-
ies are subsequently reversed and synthesized by the 
second strand to form the LIANTI amplicon for library 
construction. Compared with other amplification meth-
ods, the coverage and uniformity of this method are 
improved, and the allele deletion rate and false positive 
rate are reduced [59].

The DNA content of a single cell is at the pg level, so 
special attention should be paid to the prevention of 
contamination from the environment and the operator 
to reduce nonspecific amplification during amplifica-
tion, and operation and control of contamination should 
be performed under sterile, controllable air pressure 
conditions.

Single cell whole genome sequencing
Single-cell sequencing analysis technology was devel-
oped by the American Anderson Cancer Research Center 
and Cold Spring Harbor Laboratory in 2011 [4]. Com-
monly used next-generation sequencing (NGS) plat-
forms include 454 Life Sciences/Roche, Illumina and 
Applied Biosystems’ SOLiD system (Fig.  3) [60]. Single-
cell genome sequencing first detects the total amount 
of amplified products and fragment distribution and 

Fig. 3 Technical characteristics including sample preparation, sequencing chemistries, and data output formats of different sequencing 
approaches [60]. The copyright of this image belongs to Reference [60]
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constructs a library of qualified samples. Library prepa-
ration includes randomly interrupting the amplified 
products into small DNA fragments, end repair, adding 
A, adding adapters and PCR amplification to obtain the 
required library, and sequencing the library concentra-
tion and amplified fragment distribution after passing 
quality inspection.

The basic process of single-cell genome sequenc-
ing data analysis is similar to NGS. First, the original 
offline data is filtered and the quality of the sequencing 
is evaluated. Then, the filtered data are compared to the 
reference genome, and the corresponding indicators are 
quality-controlled. Due to the uneven coverage and high 
chimerism rate brought about by WGA, the data need to 
be preprocessed. For example, the nucleic acid library is 
standardized and can be spliced using traditional splicing 
methods [60]. At present, data analysis methods devel-
oped for single-cell sequencing include Smash Cell, Vel-
vet-SC, and SPAdes. These high-performance computing 
platforms and bioinformatics methods have overcome 
the problem of uneven coverage caused by expansion to 
a certain extent [61–63]. Single-cell genome sequencing 
can provide information regarding large-scale genomic 
structure variations, including genome rearrangements, 
insertions, duplications, inversions and transpositions, 
as well as genomic structural variation information, such 
as CNVs and SNVs. SNVs include single base insertions, 
deletions and mutations. Through these genomic struc-
tural variations, tumor driver genes and biomarkers can 
be found, and the progression of tumorigenesis can also 
be understood [64].

Single cell sequencing of circulating tumor cells
As an important indicator of tumor progression, CTC 
single-cell whole-genome sequencing analysis of the 
peripheral blood of patients with solid tumors helps to 
understand the occurrence and development of tumors, 
especially tumor heterogeneity and drug resistance, and 
can identify the mechanisms of tumor development. Dis-
covering gene mutations can lead to the discovery of new 
driver genes, enhance understanding of the clonal origin 
and evolutionary mechanism of tumors, recognize the 
genetic sequence differences between tumor subtypes, 
and contribute to the discovery of new biomarkers [49]. 
The information obtained through single-cell sequenc-
ing is more comprehensive, making up for the deficien-
cies in tumor stratification based on a single biopsy, and 
is widely used to assist in the early diagnosis of tumors, 
the selection of therapeutic drugs, prognosis prediction 
and relapse monitoring. Tumor diagnosis and progno-
sis prediction via single-cell sequencing is a noninvasive 
method (Table 2).

Single‑cell sequencing technologies for CTCs
This section describes emerging and important single-
cell sequencing technologies for CTCS, such as Hydro-
Seq and EPISOT & EPIDROP assays. Yu-Heng Cheng 
et al. presented Hydro-Seq, a high-efficiency contamina-
tion-free cell capture scRNA-seq platform, for the gene 
expression profiling of CTCs. Hydro-Seq utilizes size-
based single-cell capture to prevent bias that may result 
from molecular CTC selection. This cell capture proto-
col achieves high cell capture efficiency (72.85 2.64%, 
representing standard deviation n = 3) for the analysis 
of a small number of CTCs in a 10 ml blood sample. To 
enable contamination-free single-cell sequencing, the 
Hydro-Seq chamber integrates pneumatic valves that 
allow washing of cell and noncell contaminant clearing 
chambers on the chip. In addition, the chamber array can 
be expanded to thousands of chambers for massive par-
allel analysis. By sequencing 666 CTCs from 21 patients 
with advanced breast cancer, we validated the utility of 
Hydro-Seq, identifying cellular heterogeneity as a key 
biomarker of tumor metastasis and treatment. Hydro-
Seq offers the ability to analyze CTCs by single-cell whole 
transcriptome sequencing for metastasis studies and 
companion diagnostic applications [65].

Liquid biopsy has been introduced as a new diagnos-
tic concept based on the analysis of CTCsor circulat-
ing tumor-derived factors, particularly cell-free tumor 
DNA (ctDNA). Highly sensitive liquid biopsy assays have 
since been developed that can be applied to detect and 
describe minimal residual disease (MRD), which reflects 
the presence of tumor cells that disseminate from the pri-
mary lesion to distant organs in patients lacking any clin-
ical or radiological signs of metastasis, or residual tumor 
cells remaining after local therapy that ultimately lead to 
local recurrence. This application is a new frontier in liq-
uid biopsy analysis, which is challenged by the very low 
concentrations of CTCs in blood samples.

Pantel & Alix-Panabières discussed key techniques 
such as EPISOT & EPIDROP assays used to detect and 
characterize CTCs in MRD monitoring and highlighted 
the current use of CTC analysis to detect and monitor 
MRD as well as acquire clinical data on therapeutic tar-
gets and resistance mechanisms relevant to the manage-
ment of individual cancer patients [66].

CTC analysis promotes the accurate typing of tumors
Many previous studies used Sanger sequencing or NGS 
methods to detect specific gene mutations in CTCs at the 
single-cell level and found heterogeneity between tumor 
patients and patients with the same tumor; for example, 
Sanger sequencing revealed differences between breast 
cancer CTCs and breast cancer tumor tissue. The level of 
heterogeneity in PIK3CA gene mutation status is large. 
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In addition, heterogeneous CTC subgroups can also be 
found based on mutations in the TP53 gene in CTCs [7, 
67]. In colorectal cancer studies, BRAF, PIK3CA, and 
KRAS mutations in different CTCs were found, suggest-
ing the existence of a large level of tumor heterogeneity 
both between individuals and within the same individual. 
Similarly, sequencing of BRAF and KIT mutations in 
malignant melanoma revealed a high degree of heteroge-
neity between CTCs and tumor tissue [6, 68].

In addition, through genome-wide sequencing and 
comparative genome hybridization (array comparative 
genomic hybridization, aCGH) technology, CNV varia-
tion patterns in CTCs have been studied at the genome-
wide level. Through aCGH analysis of breast cancer 
CTCs, it was found that the CNV variation in CTCs 
from different patients with the same pathological type of 
tumor was highly heterogeneous, suggesting that breast 
cancer can be more accurately typed according to the 
CNV variation pattern [46]. A CTC single-cell whole-
genome sequencing study on multiple tumors, including 
gastric cancer, colorectal cancer, breast cancer, and lung 
cancer, revealed that different CTCs in the same patient 
had highly consistent genome-wide CNV change pat-
terns, while the CTC CNV variation patterns of different 
tumors and different pathological types were quite differ-
ent. Similar to the results obtained in above studies, the 
CNV change pattern in CTCs of breast cancer patients is 
complicated, suggesting that CNV analysis can be used as 
a basis for more accurate typing [69].

CTC analysis can reveal the mechanism of tumor 
metastasis
Tumor recurrence and metastasis are the main causes of 
tumor death. CTC single-cell sequencing analysis of CNV 
and other mutation patterns is helpful to understand the 
mechanism of tumor metastasis. Heitzer et al. [70] used 
aCGH to analyze the CNV variation patterns in primary 
tumors, metastases, and CTCs of colorectal cancer at the 
single-cell genome level and found that CTCs contained 
the same CNV variations as the primary tumors and 
metastases in addition to new CNV variations. Lohr et al. 
[8] selected 10 patients with metastatic prostate cancer in 
whom CTCs were not detected in the peripheral blood 
and performed exome sequencing analysis on tissue sam-
ples of the primary tumor and metastatic tumors. Ten 
mutations, referred to as "early mutations," were found in 
the primary focus, and 56 mutations, referred to as "met-
astatic mutations," were found in the metastatic focus. 
Then, two more patients with metastatic prostate cancer 
with peripheral blood containing more than 20 CTCs 
were selected. Exome sequencing analysis was performed 
on the primary tumors, metastases and CTC single cells, 
and it was found that 9 of the CTCs were associated with 

the primary tumors. The same "early mutations" found in 
the foci and 41 "metastatic mutations" were found in the 
CTCs, indicating that the CTCs contained both primary 
tumor and metastasis genetic mutation information; 
this, it is possible to determine the mechanism of tumor 
metastasis from the mutations found in CTCs [8]. In 
2017, Gao et al. [69] performed genome-wide sequencing 
analysis on 28 primary tumor cells, 5 CTCs, and 3 meta-
static lymph nodes from a colon cancer patient. They 
found that the CNV variation in 28 tumor cells of the 
primary focus had greater heterogeneity. That is, the cor-
relation coefficient of the CNV variation of any two pri-
mary focus cells was between 0.09 and 0.96; and the CNV 
variation pattern among the 5 CTCs was similar The 
CNV variation was close that of three metastatic lymph 
nodes and is similar to a certain subpopulation of cells 
in the primary tumor, indicating that the change in the 
CNV pattern in the process of tumor metastasis is gradu-
ally converging, suggesting that there may be only a small 
group of cells with a higher degree of malignancy Tumor 
cells can enter the circulatory system from the primary 
foci and then form metastatic foci. Through compre-
hensive analysis of SNV, CNV and structural variation, a 
two-step model of the formation of multi-interval CNVs 
has been proposed; that is, a multi-interval copy number 
increase occurs due to a series of replication fork pauses 
and template transpositions during DNA replication, fol-
lowed by homologous recombination. Further amplifica-
tion of this region to a higher copy number reveals the 
cause of tumor CNV formation at a deeper level (Fig. 4) 
[70].

Dynamic monitoring of tumor progression
As CTCs are an important component of liquid biopsy, 
an increasing number of studies have tried to use the 
tumor mutation information from CTCs to guide the 
clinical treatment of tumors. In prostate cancer, the 
glucocorticoid receptor (GR) is a prime suspect for 
acquired therapy resistance, as resistance to the antian-
drogen enzalutamide (Enz) can occur through bypass of 
androgen receptor (AR) blockade by the glucocorticoid 
receptor (GR)[70]. Prostate cancer (PCa) cells are able to 
increase GR signaling during anti-androgen therapy and 
thereby circumvent androgen receptor (AR) blockade 
and cell death [71, 72]. In 2014, Dago et al. [70] analyzed 
the whole-genome CNV variation of peripheral blood 
CTCs in patients with castration-resistant prostate can-
cer at four treatment time points, before chemotherapy, 
before treatment with abiraterone, when symptoms were 
significantly relieved, and when symptoms worsened. 
Combined with CTC morphology, androgen receptor 
(androgen receptor, AR) expression levels and other com-
prehensive analyses, it was found that the change in CNV 



Page 12 of 17Xu et al. Molecular Cancer          (2021) 20:104 

pattern in CTCs at different periods was significantly dif-
ferent, especially when abiraterone was ineffective and 
the symptoms were aggravated. CNVs varied greatly, 
and a subpopulation of CTCs had MYC gene amplifica-
tions. The appearance of this subpopulation of malignant 
CTCs has a significant correlation with the resistance 

of patients to abiraterone. In contrast to fixed genomic 
alterations, Shah et  al. [71] found that GR-mediated 
antiandrogen resistance is adaptive and reversible due to 
regulation of GR expression by a tissue-specific enhancer. 
GR expression is silenced in prostate cancer by a combi-
nation of AR binding and EZH2-mediated repression at 

Fig. 4 Evolution of SNVs and Large-scale CNAs in Primary Tumour cells and CTCs. A Schematic diagram of the manner in which primary tumour 
cells intravasate and become CTCs. B SNVs of primary tumour cells and CTCs. The distribution of 20 non-synonymous mutations was assessed in 
28 primary tumour cells (Cells 1–28) and five CTCs (CTCs 1–5) from a colon cancer patient (blue box, mutant; grey box, wild type). Three clones of 
cells were present according to a probabilistic modelling-based approach. C CNA patterns of the primary tumour, one control leukocyte (C1), single 
primary tumour cells, CTCs, and three lymph node metastases (Pri., primary tumour; Meta., metastases). The copy numbers (blue and red dots) are 
plotted along the genome at a bin size of 500 kb. The ordinate coordinate represents copy numbers ranging from 0 to 6 (a copy number of more 
than 6 copies is set to 6). Phylogenetic tree on the left was constructed based on the segmented copy numbers of single cells [70]. The copyright of 
this image belongs to Reference [70]
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the GR locus but is restored in advanced prostate can-
cers upon reversion of both repressive signals. Puhr et al. 
[72] identified MAO-A as a directly upregulated mutual 
epithelial and stromal GR target, which is induced after 
GC treatment and during PCa progression. Their find-
ings demonstrate that targeting MAO-A represents an 
innovative therapeutic strategy to synergistically block 
GR- and AR-dependent PCa cell growth and thereby 
overcome therapy resistance. Their research showed that 
CTC single-cell sequencing can be used to dynamically 
monitor the response of cancer patients to treatment, 
discover the evolution of tumor cells and disease pro-
gression in a timely manner, and establish a new multipa-
rameter comprehensive analysis liquid biopsy program 
(Fig. 5) [73].

Dynamic monitoring of primary tumor cells, CTCs and 
tumor metastatic cells through single-cell sequencing 
can help to elucidate tumor progression in real time in a 
noninvasive manner, understand the key oncogenes and 
tumor suppressor genes of tumor patients, and under-
stand the variation in genomic CNVs, as early diagnosis 
of tumors, dynamic treatment monitoring, and discov-
ery of drug resistance mutations and other important 

personalized treatment information provide the basis for 
potential clinical application prospects (Fig.  6) [74–78]. 
Single-cell sequencing compares the differences between 
single-cell genomes, transcriptomes, and epigenetic 
groups in peripheral blood CTCs and tumor primary 
tumors, metastatic lymph nodes, and metastatic tumors, 
reducing interference from tumor heterogeneity and 
increasing understanding of the biology of tumor devel-
opment. The evolution of this process provides a new 
perspective [6–9, 68].

Determining the efficacy of adjuvant therapy
It is also an important application direction of single-
cell sequencing analysis to understand the therapeutic 
effect of tumors through CTC single-cell transcriptome 
sequencing analysis. In 2014, Ting et  al. [77] used 
CTCs-i Chip to enrich the peripheral blood CTCs of 
a pancreatic cancer mouse model and analyzed the 
transcriptome of 75 CTCs at the single-cell level. They 
comprehensively analyzed the expression levels of 
marker genes of epithelial cells, hematopoietic cells 
and endothelial cells, found that there were 7 different 
cell subpopulations in CTCs, and that the extracellular 

Fig. 5 AR subcellular localization changes at the time of disease progression. A Comparison of the AR subcellular localization in the CTCs identified 
in the blood prior to and after nine weeks of abiraterone treatment. Correlation between the AR and DAPI signals within the cell is indicative of AR 
being colocalized with DAPI, i.e. localized in the cell nucleus. High correlation was generally seen before abiraterone treatment, but a shift to less 
nuclear stain was observed after nine weeks of treatment (p = 0.00017, Wilcoxon sum-rank test). B and D Height maps constructed from the pixel 
intensities of CK (red), AR (green) and DAPI (blue) in representative CTCs to visualize the subcellular localization of AR. The cell in (B) was isolated 
before abiraterone initiation and displays AR staining confined to the nucleus, while cytoplasmic AR staining is observed in the CTC identified at the 
time of therapeutic relapse (D). C and E Plots of AR versus DAPI signal intensities for each pixel inside the cell in the 406images of the CTCs in (B) 
and (D), respectively. Each plot point is colored by the corresponding CK signal intensity. Nuclear localization was observed as positive correlation 
between the two intensities (C), and nuclear exclusion as negative correlation (E). All graphs and were done using the ggplot2 and rgl packages in R 
[73]. The copyright of this image belongs to Reference [73]
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matrix od mouse pancreatic cancer CTCs had high 
expression of Dcn, Sparc, Ccdc80, Col1a2, Col3a1 and 
Timp2 isogenic genes, which are related to the dis-
semination of the tumor to distant organs. In 2015, 
this group used the same method to analyze 77 CTCs 
obtained from the peripheral blood of 13 prostate can-
cer patients and found that gene expression in CTCs 
was heterogeneous and included androgen receptor 
(AR) mutants and splicing-related differential expres-
sion of isomers. On this basis, a retrospective analysis 
of patients using AR inhibitors and their response rate 
to inhibitors was performed and the results revealed 
that after using AR inhibitors, patients with CTCs 
with nonclassical Wnt signaling still showed positive 

prostate-specific antigens or still needed radiation ther-
apy. The Wnt signaling pathway and its downstream 
RAC1, RHOA, and CDC42 signals were activated, 
indicating that the changes in cell signaling pathways 
in CTCs may be related to the therapeutic response of 
patients [78]. Compared with CTC single-cell genome 
sequencing analysis, CTC single-cell transcriptome 
sequencing analysis is relatively difficult.

Conclusion and prospects
Single-cell sequencing is a booming emerging tech-
nology. In 2013, Science magazine ranked the field of 
single-cell sequencing among the top six. However, a 
major challenge in the field is sample size. These cells 

Fig. 6 Single cell genomics of CTCs from patients (a) H&E staining of the primary tumor of metastatic breast and lung cancer patients. Tissue 
biopsies were used to determine the presence of DNA mutations on the oncogene PIK3CA and EGFR. b Panel of CTCs from the same metastatic 
breast and lung cancer patients in (a). Micrographs of the CTCs identified and subsequently released for molecular analysis using our selective 
release mechanism (scale bar 10 μm). c Micrographs of amplified DNA of the single CTCs shown in (b). d Sequencing of the amplified DNA from the 
single CTCs shown in (b). The 3140A/G (H1047R) point mutation in the PIK3CA oncogene as well as the exon 19 deletion and the 2573 T/G (L858R) 
point mutation in the EGFR oncogene were detected at the single cell level [74]. The copyright of this image belongs to Reference [74]
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occur at extremely low frequency, and even after suc-
cessful enrichment, captured CTCs are of different 
times (passively and/or actively detached from tumors 
at different time points) and tumors (primary and/or 
metastatic tumor), confounding the sequencing results. 
Furthermore, different single-cell enrichment/library 
prep/WGA/sequencing technologies used in independ-
ent studies serve as another potential source of varia-
tion. Single-cell sequencing technology is not yet fully 
mature; for example, human-generated amplification 
of whole genome amplification, low coverage, poor 
reproducibility, allele deletion, false positives and false 
negatives, as well as errors in sequencing and splic-
ing software occur. Analyzing heterogeneity and clonal 
evolution, and the discovery of driver genes is challeng-
ing. With the continuous optimization of genome-wide 
amplification methods and the rapid development of 
bioinformatics methods, these problems will be gradu-
ally solved. Amplification methods with higher cover-
age and better uniformity will promote the development 
of single-cell genome sequencing technology. For the 
analysis of single-cell sequencing data, large sample 
sequencing analysis methods are commonly used, such 
as Mu Tect, Var Scan, and Monovar. In recent years, 
researchers have also successfully developed many bio-
informatics methods to better analyze high-throughput 
data. Salehi et  al. [79] proposed ddClone based on the 
analysis results of real and simulated datasets, which 
analytically integrates NGS and SCS data, leveraging 
their complementary attributes through a joint statis-
tical inference. Furthermore, technological advances 
have made it possible to measure spatially resolved 
gene expression at high throughput. Svensson et al. [80] 
developed SpatialDE, a statistical test to identify genes 
with spatial patterns of expression variation from mul-
tiplexed imaging or spatial RNA sequencing data, which 
implemented “automatic expression histology” (the 
spatial gene clustering approach that enables expres-
sion-based tissue histology). Additionally, single-cell 
transcriptome sequencing and epigenetic sequencing 
methods are constantly being developed, and single-cell 
genome sequencing be used in the integrated analysis of 
single-cell multiomics [81, 82].

Given the key role of CTCs in the development of 
tumors, with the continuous maturation of single-cell 
sequencing technology and the standardization of CTC 
enrichment identification technology, CTC single-cell 
sequencing analysis will contribute to our understand-
ing of the genetic heterogeneity, evolution, and drug 
resistance of tumor cells. The integrated analysis of 
single-cell sequencing combined with other omics pro-
vides valuable information and will also promote the 
development of precision medicine for tumors.
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