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Main text

Despite extensive research and the recent introduction
of innovative therapeutics, lung cancer remains the first
cause of cancer-related death, with a 5 year survival of
only 17% [1]. In lung adenocarcinoma (AD), the main
lung cancer subtype, different driver genetic alterations
can be targeted with specific small-molecule inhibitors
[1], whereas KRAS mutations, which occur in about 30%
of AD cases, have been traditionally considered undrug-
gable. Current treatment approaches for KRAS-mutated
patients include platinum-based chemotherapy or im-
mune checkpoint inhibitors [1]. Multiple attempts have
been done to develop molecules targeting RAS-mutated
tumors, including GTP competitive inhibitors, farnesyl-
transferase inhibitors and compounds inhibiting down-
stream effectors, like MEK inhibitors or CDK4/6
inhibitors [2]. Recently, a new class of inhibitors has
been developed, acting specifically on the KRAS G12C
mutant and blocking it in the GDP-bound state [3].
These inhibitors are currently in clinical trials, showing
promising early results, and may enter clinical practice
in the next years [4]. However, more than half of lung
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cancer KRAS mutations are not actionable by these
agents [3]. The lack of KRAS inhibitors clinically effect-
ive for all patients, together with the possible develop-
ment of resistance mechanisms, emphasize the need of a
deep molecular characterization of KRAS-driven AD,
aimed to define new or overlooked targets.

In this work, we performed an integrative functional
genomic analysis, combining in vitro dependency data
within a large collection of cancer cell lines, gene drugg-
ability information and patients’ transcriptomics and
mutational data. Through this approach, we identified
and validated the EGLN1 gene as a novel druggable de-
pendency, preferentially associated with KRAS-mutated
lung AD.

Identification of lung AD dependencies associated with
KRAS mutation
To identify dependency genes that can be used as new
therapeutic targets, we performed a CRISPR/Cas9
screening in the A549 cell line, derived from KRAS-
mutated lung AD [5].

To validate the results of our screening, we performed
a data integration-based analysis of different and com-
plementary -omics sources (Fig. 1a). First, we compared
our screening data with essentiality data for 73 lung can-
cer cell lines, available through the DepMap portal [6].
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expression. *p < 0.05; **p < 0.01; ***p < 0.001; ns = not significant

Fig. 1 Identification of EGLN1 as a druggable pro-oncogenic factor in KRAS-driven lung AD. a Schematic representation of the bioinformatics and
functional genomics integrative approach. b Cumulative distribution of CERES scores in A549 cells generated with AVANA library (DepMap data)
or GeCKOv2 sub-libraries A or B (our screening data). ¢ Comparison between median CERES scores in KRAS mutated (MUT) vs KRAS wild-type
(WT) lung cancer cell lines. The genes (n = 1374) with a CERES score significantly different between the two groups (Wilcoxon test pvalue< 0.05)
are highlighted in red. The genes (n = 88) with a CERES score significantly different between the two groups (Wilcoxon test pvalue< 0.05) and
lower than our dependency threshold (D < —0.3.) are highlighted in yellow. d Network representation of significant enriched pathways for the 88
essential genes in the KRAS-mutated cell lines. @ Comparison of CERES score distributions across the identified druggable targets in KRAS-
mutated (MUT) vs KRAS-wild-type (WT) cell lines. f Comparison of CERES scores distributions for the EGLN1 gene in cell lines derived from
different tumor tissues. Numbers between brackets on Y axis indicate the number of cell lines considered for each cancer type. g EGLN1
expression in TCGA lung adenocarcinoma patients cohort (N =572, normal = 59, KRAS WT = 350, KRAS mutated = 154). h EGLNT expression in a
set of surgical samples from our Institute Biobank (N =9). Cyan dots represent patients carrying a KRAS mutation. i Representative microscopy
images of immunohistochemistry staining for EGLN1 expression in lung adenocarcinoma patients. Central image shows the interface between
tumor and healthy lung tissue (50x magnification). Higher magnifications (400x) of the healthy lung epithelial tissue (left image) or of the tumor
tissue (right image) are provided. Arrows indicate bright positive stained macrophages. The tissue has been counter-stained with hematoxylin. j
Kaplan-Meier curve representing overall survival probability in KRAS-mutated patients presenting high (N =39) or low (N =39) levels of EGLN1

J

DepMap data are normalized through the CERES algo-
rithm, allowing to compare essentiality screening data of
different cell lines and to assign a score to each gene,
with the most negative scores assigned to the most es-
sential genes [6]. We applied the CERES method to our
screening data and, as shown by the cumulative distribu-
tion of CERES scores (Fig. 1b), our normalized results
are consistent with DepMap data. Thus, we integrated
our A549 dataset with the lung cancer DepMap data
and used RNA-sequencing data to filter for expressed
genes.

To identify dependency genes that were preferentially
associated with the KRAS-mutated genetic background,
we mined the dependency profiles of KRAS-mutated
and KRAS wild-type lung cancer cell lines, extracting
1374 genes having a significantly different CERES score
(Fig. 1c). To further refine this gene list, we selected
genes showing a lower score in KRAS-mutated vs KRAS
wild-type cell lines and we established a dependency (D)
threshold on CERES scores at - 0.3, representing the
mean value plus two standard deviations of CERES
scores for common essential genes in A549 cells. By this
step, we identified 88 genes, representing dependencies
significantly associated with KRAS-mutated background.
Enrichment analysis showed that this signature is signifi-
cantly associated with apoptosis regulation and Fanconi
anemia related pathways (Fig. 1d). Notably, both the
apoptosis deregulation and DNA repair deficiencies are
well-known alterations in KRAS-driven lung cancer,
supporting the validity of our analyses [7, 8].

EGLN1 as a novel druggable dependency

To select genes that can be targets of chemical com-
pounds, we mined our signature querying the gene-drug
interaction database [9]. In addition to KRAS, we identi-
fied four potential candidate genes (Fig. le), including
the proteasome subunit PSMF1 and cycline kinase
CDK4, thus confirming the already reported enhanced

sensitivity to proteasome and CDK4 inhibitors in KRAS-
mutated lung cancer [10, 11]. These results further sup-
port the validity of our approach.

Among these potential druggable candidates, we fo-
cused our attention on EGLN]1, since its dependency has
never been reported in KRAS-mutated lung AD. The
EGLN1 gene encodes the PHD2 prolyl-hydroxylase, an
oxygen sensor, regulating HIF transcription factor activ-
ity. Under aerobic conditions, EGLN1 hydroxylates the
HIFa subunit, leading to the recognition by the VHL
adaptor, which prompts the binding to ubiquitylation
complexes and the consequent proteasome-mediated
degradation. Conversely, in hypoxia, EGLNI is inactive
and the HIFa subunit is stabilized, activating the
transcriptional programs that lead cells to hypoxia adap-
tation [12]. In line with the existence of multiple
EGLN1-mediated processes, depending on the context,
EGLN1 has been defined either as a tumor suppressor
or an oncogene [13, 14].

We verified whether EGLN1 represents a shared de-
pendency with other cancer types, comparing CERES
scores in cancer cell lines of different origin (Fig. 1f).
Notably, the cell lines most addicted to EGLN1 were the
KRAS-mutated AD and ovarian cancer cells, confirming
the known dependency on this gene in clear cell ovarian
cancer [13]. Interestingly, in colorectal carcinoma, an-
other KRAS-mutated neoplastic disease, EGLN1 scores
were very close to zero in both KRAS-mutated and
KRAS-WT cell lines, suggesting a specific dependency
on this gene in lung cancer (Fig. 1f).

To gain insights into this novel role of EGLNI1 in lung
tumorigenesis, we evaluated its expression levels in both
the TCGA adenocarcinoma cohort [15] and a set of pa-
tients’ samples retrieved from our Institute’s Biobank.
Remarkably, EGLN1 expression, both at mRNA and pro-
tein level, was significantly higher in tumor tissue com-
pared to surrounding healthy lung tissue (Fig. 1g-i). We
also detected a strong EGLN1 expression in
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Fig. 2 Dependency on EGLN1 is partially mediated by HIF1a stabilization. a Western blot analysis showing CRISPR/Cas9-mediated knockout (KO)
of EGLNT in NCI-H23 cells. A non-targeting sgRNA (NT) has been used as a negative control. 3-actin is the loading control. b Competition assay
showing reduced proliferation in NCI-H23 cells KO for EGLN1. Cells infected with a sgRNA targeting ATP2A2 gene are the positive control. For
each time point the ratio between GFP-positive (infected) and GFP-negative (uninfected) cells has been calculated and normalized on TO.
Statistical significance has been calculated comparing the normalized ratio for each sample with NT. Data are mean + SEM; *p < 0.05; N =3. ¢
Sensitivity curve of NCI-H23 cells to EGLNT inhibitor molidustat. Data are mean + SEM; N = 3. d Heatmap showing lung cancer cell lines ordered
by dependency on EGLNT gene. e Heatmap showing sensitivity to EGLN1 inhibitor molidustat in a panel of lung cancer cell lines. f and g
Correlation analysis between EGLNT and HIFTA (f) or VHL (g) CERES scores in lung AD cell lines. Cyan dots represent KRAS-mutated cell lines,
black dots represent KRAS-WT cell lines. h Western blot analysis for HIF1a or EGLN1 expression on NCI-H23/Cas9 cells infected with sgRNAs for
HIF1A, EGLNT or both. 3-actin is the loading control. i Western blot analysis with anti-HIF1a antibodies, performed on NCI-H23 cells treated with
molidustat for 72 h at the indicated concentrations. 3-actin is used as loading control. j Competition assay performed on NCI-H23 cells. Cells
infected with a non-targeting sgRNA (NT) are the negative control. NT, EGLNT or HIF1A sgRNAs carried by a GFP-containing plasmid have been
used to infect the cells. For double KO, EGLNT sgRNA-GFP containing plasmid was used to infect cells which were already KO for HIF1A. For each

Schematic representation of the proposed mechanism

time point the ratio between GFP-positive (infected) and GFP-negative (uninfected) cells has been calculated and normalized on TO. Statistical
significance has been calculated comparing the normalized ratio for EGLN1 KO with double KO. Data are mean + SEM; *p <0.05; N =3. k

macrophages, indicating a possible role for this protein
in tumor inflammatory microenvironment (Fig. 1i).
Strikingly, high EGLNI1 expression was also associated
with a worse prognosis in the TCGA AD cohort and the
difference in overall survival was even more pronounced
in KRAS-mutated patients (Fig. 1j).

To validate the effect of EGLN1, we obtained the
knock out (KO) in KRAS-mutated AD cell lines with
two sgRNAs (Fig. 2a). As shown in Fig. 2b, the EGLN1
KO resulted in a significant proliferation impairment in
a competition assay, with similar results obtained in dif-
ferent KRAS-mutated AD cell lines (data not shown).

Finally, to provide a proof of principle of the possibility
to pharmacologically target EGLN1, we selected a panel
of lung cancer cell lines and treated them with the
EGLNT1 inhibitor molidustat. All tested cell lines were
sensitive to molidustat, with EC50 in the range of micro-
molar. Notably, KRAS-mutated cell lines displayed the
highest sensitivity (Fig. 2c-e).

EGLN1 pro-oncogenic activity is partially dependent on
HIF1A

To gain further insights into the pro-oncogenic mechanism
controlled by EGLN1, we relied on the notion that co-
dependencies can be used to identify genes that have a simi-
lar function [16]. We found that EGLN1 CERES scores posi-
tively correlate with scores for the VHL gene and negatively
correlate with HIF1A gene scores (Fig. 2f-g), suggesting that
cancer vulnerability to EGLN1 inactivation may be related to
its canonical function on HIFla regulation. Indeed, EGLN1
KO or molidustat treatment induced HIFla stabilization
(Fig. 2h-i). To further investigate this hypothesis, we gener-
ated the double KO of HIF1A and EGLN1 genes (Fig. 2h).
As shown in Fig. 2j, the HIF1A KO attenuated EGLN1 de-
pendency, without completely rescuing the impaired cell
proliferation observed in the single EGLN1 KO. Similar re-
sults were obtained with other KRAS-mutated AD cell lines
(data not shown). These data indicate that, although HIFla

protein is stabilized by EGLN1 KO, its stabilization is only
partially responsible for the detrimental effect on cell prolif-
eration of the EGLN1 KO. We hypothesize that at least two
mechanisms underlie the EGLN1 dependency in KRAS-
mutated AD: one is HIF1a dependent, whereas the other is
HIFla-independent (Fig. 2k). This is partially contrasting
with the data reported by Price and collaborators [13], show-
ing that sensitivity to EGLN1 inhibitors requires intact
HIFla in ovarian cancer. Further investigation will be re-
quired to clarify additional mechanisms explaining EGLN1
dependency in KRAS-mutated lung AD.

Conclusions

Overall, our results uncover a previously unknown pro-
oncogenic function of the EGLN1 gene in KRAS-
mutated lung AD. EGLN1 inhibitors are currently in
clinical trials for anemia, demonstrating good tolerability
and safety [17]. Our findings support the repurposing of
these drugs to the lung cancer context, as single agent
therapy or in combination with other compounds.
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