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Abstract

of PCa.

The landscape and characteristics of circulating exosomal messenger RNAs (emRNAs) are poorly understood, which
hampered the accurate detection of circulating emRNAs. Through comparing RNA sequencing data of circulating
exosomes with the corresponding data in tissues, we illustrated the different characteristics of emRNAs compared
to tissue mRNAs. We then developed an improved strategy for emRNA detection based on the features of
circulating emRNAs. Using the optimized detection strategy, we further validated prostate cancer (PCa) associated
emRNAs discovered by emRNA-seq in a large cohort of patients and identified emRNA signatures for PCa screening
and diagnosis using logistic regression analysis. The receiver operating characteristic curve (ROC) analysis showed
that the circulating emRNA-based screening signature yielded an area under the ROC curve (AUC) of 0.948

in distinguishing PCa patients from healthy controls. The circulating emRNA-based diagnostic signature

also showed a great performance in predicting prostate biopsy results (AUC: 0.851). In conclusion, our

study developed an optimized emRNA detection strategy and identified novel emRNA signatures for the detection
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Main text

Prostate cancer (PCa) is the leading malignancy in West-
ern men, with 1,276,106 new cases and 358,989 deaths
in 2018 globally [1]. The accurate early detection of PCa
is one of the key issues in the management of PCa. The
early diagnosis of PCa depends on prostate-specific anti-
gen (PSA) test-initiated prostate biopsy. However, the
wide use of PSA has resulted in a number of unneces-
sary biopsies accompanying complications due to its low
specificity. In addition, a previous study showed that
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quite a few PCa cases, including high-grade PCa
(HGPCa) cases, are missed since they can show PSA
levels in the normal range [2]. Therefore, there is an ur-
gent need to identify novel biomarkers with higher ac-
curacy for the early detection of PCa.

Recent years have witnessed the promising roles of
exosomal RNAs (exRNAs) in cancer detection [3]. Extra-
cellular long RNAs (exLR), mainly messenger RNAs
(mRNAs), could be potential biomarkers in glioma [4],
hepatocellular carcinoma (HCC) [5], pancreatic ductal
adenocarcinoma (PDAC) [6], etc. However, the land-
scape and characteristics of circulating exosomal
mRNAs (emRNAs) are poorly understood [7], which
hinders the accurate detection of emRNAs. Although
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Fig. 1 Characterization of circulating exosomal mRNAs (emRNAs). a, Workflow of the study, including sample processing, emRNA sequencing,
demonstrating the landscape and characteristics of emRNA, optimizing the detection strategy, and identifying tumor-specific emRNA signatures.
b, The type and distribution of RNAs in circulating exosomes. Raw reads are the sequences detected by RNA sequencing. Query reads are those
after trimming. Mappable reads are those mapped to known human RNA or genomes. Circos plots showing all mRNAs (c), and oncogene mRNAs
(d), from PCa tissues and circulating exosomes of the same cohort of patients. e, Scatter plot illustrating the correlation between tissue mMRNA
and emRNA levels. f, Venn diagrams showing the distinctive expression patterns between emRNAs and tissue mMRNAs (based on the threshold of
p value< 0.05 and fold change > 2 for upregulated and fold change < 0.5 for downregulated)
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there have been reports on the use of extracellular
microRNAs [8, 9] and an extracellular three-gene panel
[10, 11] to detect PCa and HGPCa early, no studies have
focused on the diagnostic potential of circulating

emRNAs. Here, we performed comprehensive sequen-
cing of PCa-associated emRNAs, developed an opti-
mized detection strategy for emRNAs and established
novel emRNA-based signatures for the detection of PCa.
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The landscape and characteristics of circulating
emRNAs

To better understand the potential role of emRNA in
PCa detection, the landscape and characteristics of cir-
culating emRNAs were first illustrated. The workflow of
the study is summarized in Fig. 1a (see details of Study
design in Additional file 1). The quality control of exo-
some isolation and verification is shown in Additional
file 1: Figure S1. After analyzing the emRNA profiles in
31 PCa patients and 17 BPH (benign prostatic hyperpla-
sia) individuals (negative prostate biopsy) by RNA-
sequencing, we found that mRNA was the most abun-
dant RNA, which was consistent with the findings of
previous studies [5, 12] (Fig. 1b). We then compared the
RNA sequencing data of circulating exosomes with the
corresponding data in tissues. We mapped all mRNAs
and mRNAs of oncogenes to the whole transcriptome of
circulating exosomes and their corresponding tissues.
The results indicated an overall even distribution of both
mRNAs (Fig. 1c) and mRNAs of oncogenes (Fig. 1d)
across the transcriptome between PCa tissues and exo-
somes. In addition, tissue mRNA levels were significantly
correlated with emRNA levels (r = 0.441, Fig. 1le). These
results showed that circulating emRNAs could reflect
the tissue mRNA profiles, providing a promising nonin-
vasive method for cancer diagnosis.

We further compared the expression levels of PCa-
associated tissue mRNAs and circulating emRNAs. A
total of 4 mRNAs were identified to be upregulated and
25 mRNAs were identified to be downregulated in both
emRNAs and tissue mRNAs in PCa patients. Seven mRNAs
were upregulated in circulating exosomes but downregulated
in tissue, and 13 mRNAs were downregulated in circulating
exosomes but upregulated in prostate tissue in PCa patients
(Additional file 1: Table S1 and Fig. 1f). These results dem-
onstrated that there were distinctive expression patterns be-
tween emRNAs and tissue mRNAs, making circulating
emRNAs more attractive and usable as a noninvasive bio-
marker for PCa diagnosis.

An improved strategy for emRNA detection

There is currently no consensus about the existing forms of
emRNAs in peripheral blood, resulting in the inaccuracy and
inconsistency of emRNA detection. A previous sequencing
study estimated that most emRNAs appeared as shorter vari-
ants and fragments in the blood [5], which added to the diffi-
culties in detection. Therefore, we first answered the question
of whether circulating emRNAs were intact or presented as
short variants before emRNA detection. We used Integrative
Genomics Viewer (IGV) to visualize the reads distribution
across the transcriptome of circulating emRNAs and tissue
mRNAs. We compared the expression levels of each exon of
candidate mRNA in circulating exosomes and in tissue and
identified more variants in emRNAs than in tissue mRNAs
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(Additional file 1: Figure s2 and s4b-c, see details of Identifica-
tion the existing forms of circulating emRNAs in Additional
file 1). Therefore, we developed an optimized detection strat-
egy for enRNAs as follows. First, we mapped the read density
of each candidate mRNA across the transcriptome in circulat-
ing exosomes and in tissue to estimate the abundance of these
variants. We designed multiple primers for different regions in
the exons and validated the primers by reverse transcription
polymerase chain reaction (RT-PCR) (Primers are listed in
Additional file 1: Table S2). Then, the detectable and unique
bands were chosen as the targeted amplicon of candidate
emRNAs. Primers for RT-PCR and TagMan probes for quan-
titative PCR (qPCR) were designed accordingly.

EmRNA signatures for the detection of PCa

We identified PCa-associated emRNAs by RNA-
sequencing. Representative upregulated (p <0.05, fold
change >2) and downregulated (p < 0.05, fold change <
0.5) emRNAs are shown in Fig. 2a. We further evaluated
the diagnostic performance of the PCa-associated emR-
NAs. The workflow is summarized in Fig. 2b. First, 281
upregulated emRNAs in PCa were identified (Additional
file 1: Table S3). We then identified a total of 9 emRNAs
(TXK, ATM, TOX4, MAX, STK4, GRKS, PDGFA, RASS
F5, and IL32) with diagnostic potential for the detection
of PCa by least absolute shrinkage and selection operator
(LASSO) regression analysis (Additional file 1: Figure
S3). Another 4 top upregulated emRNAs (CDC42,
FAM?228B, NCF2 and SRSF2) according to the emRNA-
seq results were also selected for further testing. The op-
timized detection strategy developed in this study was
applied to evaluate the expression of the 13 emRNAs
candidates (Additional file 1: Figure S4, see details of
Optimized detection strategy for the detection of 13
PCa-associated emRNAs in Additional File 1). After test-
ing in 10 pairs of PCa patients and controls, 3 emRNAs
(TXK, ATM and TOX4) were excluded because they
showed no difference between PCa patients and controls
or showed inconsistencies with the RNA-seq results
(Additional file 1: Figure S5a-f), and the remaining 10
detectable emRNAs (MAX, STK4, GRKS5, PDGFA, IL32,
RASSF5, CDC42, FAM228B, NCF2 and SRSF2) were in-
cluded for further validation. After evaluating the ex-
pression levels in 76 PCa patients and 84 BPH, 4
emRNAs (STK4, GRKS, RASSF5 and FAMZ228B) were
excluded because they showed no difference between
PCa patients and controls (Additional file 1: Figure S5g-
j). Finally, 6 upregulated emRNAs (CDC42, IL32, MAX,
NCF2, PDGFA and SRSF2) were finally confirmed in 141
PCa patients, 170 BPH patients with negative prostate
biopsy and 30 healthy controls. As shown in Fig. 2c,
CDC42, IL32, MAX, NCF2, PDGFA and SRSF2 were up-
regulated in PCa patients compared to healthy controls
and achieved good performance for PCa screening (Fig.
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Fig. 2 Validation of circulating exosomal mRNAs (emRNAs) as novel biomarkers for PCa diagnosis. a, Heatmap demonstrates the significantly
dysregulated emRNAs in PCa patients. Each column represents an individual sample, and each row represents an emRNA. b, Workflow of the
validation of potential circulating emRNAs. ¢, The scatter plot shows that the expression levels of circulating emRNAs, including CDC42, IL32, MAX,
NCF2, PDGFA and SRSF2, are upregulated in PCa patients (n = 141) compared to healthy controls (n = 30). d, The scatter plot shows that the
expression levels of circulating emRNAs, including CDC42, I1L32, MAX, NCF2, PDGFA and SRSF2, are upregulated in PCa patients (n = 141) compared
to patients with BPH (negative prostate biopsy, n=170). e and g, ROC analysis shows the diagnostic performance of 6 mRNAs and the emRNA-
based screening model (CDC42, IL32, MAX, NCF2, PDGFA and SRSF2; AUC: 0.948; P < 0.0001). f and h, ROC analysis shows the diagnostic
performance of 6 emRNAs and the emRNA-based diagnostic model (CDC42, 1132, MAX, NCF2, PDGFA and SRSF2) (AUC: 0.851; P < 0.0001)
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2e). Furthermore, CDC42, IL32, MAX, NCF2, PDGFA
and SRSF2 were upregulated in PCa compared to BPH
(negative prostate biopsy) (Fig. 2d) and achieved good
performance for PCa diagnosis (Fig. 2g and Additional
file 1: Table S4). We then used logistic regression analysis to
establish an emRNA-based signature using the emRNAs de-
scribed above. Receiver operating characteristic (ROC) analysis
showed that the circulating emRNA-based screening signature
(CDC42, 1L32, MAX, NCF2, PDGFA and SRSF2) yielded an
area under the ROC curve (AUC) of 0.948 in distinguishing
PCa patients from healthy controls (Fig. 2f). More importantly,
the circulating emRNA-based diagnostic signature (CDC42,
1132, MAX, NCF2, PDGFA and SRSF2) showed great per-
formance in predicting prostatic biopsy results (AUC: 0.851)
(Fig. 2h). We also established the subtype signatures based on
clinical and molecular parameters for the detection of PCa
(Additional file 1: Figure S8, see details of Established the sub-
type signatures for the detection of PCa and Correlation ana-
lysis between emRNAs and the grade of PCa aggressiveness in
Additional file 1). Furthermore, the source and potential im-
portance of circulating emRNAs was demonstrated (Add-
itional file 1: Figure S9-10, see details of The source of
circulating emRNAs and The potential importance of the
emRNAs in Additional file 1). Our results indicated that
emRNA-based signatures could serve as a novel and promis-
ing method for the detection of PCa.

Conclusion

This is the first comprehensive study to investigate the
characteristics of emRNA profiles in PCa patients and to
evaluate the role of circulating emRNAs in the detection
of PCa. In this study, we developed an optimized
emRNA detection strategy and identified novel emRNA
signatures for PCa screening and diagnosis. These signa-
tures could serve as novel noninvasive biomarkers for
the improvement of PCa diagnosis.
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