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Abstract

Background: The mRNA-based cancer vaccine has been considered a promising strategy and the next hotspot in
cancer immunotherapy. However, its application on cholangiocarcinoma remains largely uncharacterized. This study
aimed to identify potential antigens of cholangiocarcinoma for development of anti-cholangiocarcinoma mRNA
vaccine, and determine immune subtypes of cholangiocarcinoma for selection of suitable patients from an
extremely heterogeneous population.

Methods: Gene expression profiles and corresponding clinical information were collected from GEO and TCGA,
respectively. cBioPortal was used to visualize and compare genetic alterations. GEPIA2 was used to calculate the
prognostic index of the selected antigens. TIMER was used to visualize the correlation between the infiltration of
antigen-presenting cells and the expression of the identified antigens. Consensus clustering analysis was performed
to identify the immune subtypes. Graph learning-based dimensionality reduction analysis was conducted to
visualize the immune landscape of cholangiocarcinoma.

Results: Three tumor antigens, such as CD247, FCGR1A, and TRRAP, correlated with superior prognoses and
infiltration of antigen-presenting cells were identified in cholangiocarcinoma. Cholangiocarcinoma patients were
stratified into two immune subtypes characterized by differential molecular, cellular and clinical features. Patients
with the IST tumor had immune “hot” and immunosuppressive phenotype, whereas those with the 1S2 tumor had
immune “cold” phenotype. Interestingly, patients with the 1S2 tumor had a superior survival than those with the IS1
tumor. Furthermore, distinct expression of immune checkpoints and immunogenic cell death modulators was
observed between different immune subtype tumors. Finally, the immune landscape of cholangiocarcinoma
revealed immune cell components in individual patient.

Conclusions: CD247, FCGR1A, and TRRAP are potential antigens for mRNA vaccine development against
cholangiocarcinoma, specifically for patients with 1S2 tumors. Therefore, this study provides a theoretical basis for
the anti-cholangiocarcinoma mRNA vaccine and defines suitable patients for vaccination.
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Background

Cholangiocarcinoma (CHOL) is one of the most aggres-
sive and lethal malignancies [1, 2]. At present, surgical
resection is the only available treatment to cure CHOL.
However, most patients miss the opportunity to be sub-
jected to surgery due to the advanced disease stage at
diagnosis, caused by its “silent” clinical characteristics [1,
2]. Besides, the systemic treatment is still limited in
these patients at advanced stages. The combination of
gemcitabine and cisplatin is the first-line treatment but
with a limited response rate and high risk of primary
and acquired resistance [1, 3]; and thus the prognosis of
these patients is extremely poor, with a median overall
survival (OS) of less than one year [3]. Therefore, novel
strategies are needed to improve the therapeutic condi-
tion of CHOL.

To date, cancer immunotherapy has achieved consid-
erable success in combatting several malignancies [4—6].
Following immune checkpoint inhibitors targeting pro-
grammed cell death protein 1 and its ligand 1, the
mRNA-cancer vaccine has become increasingly attract-
ive to scientists and oncologists and could be a hotspot
in cancer immunotherapy [7, 8]. Actually, mRNA-based
therapy was not common before the 2000s due to the in-
stability of mRNA and related excessive inflammation
responses. However, technological breakthroughs, in-
cluding incorporation of modified nucleosides, purifica-
tion of IVT mRNA, optimization of coding sequences,
and development of efficacious delivery material, chan-
ged the situation by enabling mRNA optimal form to
carry tumor antigens [9, 10]. For instance, mRNA se-
quence can be easily modified to encode any protein,
unlike the traditional peptide vaccine that requires gen-
etic analysis of cancer. This greatly improves the prod-
uctivity of the vaccine and shortens therapeutic empty
window of the patients. Importantly, the half-life of
mRNA is adjustable through a delivery system or RNA
sequence modification for safety. Moreover, mRNA has
no gene integration risk and irrelevant sequence exclu-
sion caused by DNA type, preventing insertional muta-
genesis or gene deletion. The self-adjuvant properties of
mRNA (e.g., cytokines) increase its in vivo immunogen-
icity and induce a strong and persistent immune re-
sponse [7-10]. Preclinical models have demonstrated
that the vaccine encoding tumor-specific antigens pro-
motes an anti-tumor immunity and prevents multiple
tumors, including melanoma, hepatocellular carcinoma,
colorectal cancer, gastrointestinal cancer, and pancreatic
adenocarcinoma [7-13].

However, CHOL still lacks an effective mRNA vaccine
as the isolation of potent antigens for anti-CHOL mRNA
vaccine from hundreds of thousands of mutated candi-
dates is still challenging. Moreover, only a small fraction
of CHOL patients might benefit from mRNA vaccine
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due to tumor heterogeneity and its complex immune
microenvironment (TIME) [14-16]. Therefore, patient
stratification based on tumor biological subtypes can be
used to identify suitable patients for vaccination. Previ-
ous CHOL classification was based on certain molecular
patterns and mainly focused on tumor cell-intrinsic mo-
lecular profile, including gene amplification, copy num-
ber alterations, and signaling pathways deregulation
[15-17]. However, this traditional method is not suffi-
cient to screen applicable candidates for mRNA vaccine
in perspective of immune regulation. In contrast, stratifi-
cation in light of immune gene expression profile is po-
tentially suitable for identifying patients for mRNA
vaccination from an immunologically heterogeneous
population.

This study aimed to identify the potential tumor anti-
gens for anti-CHOL mRNA vaccine development.
Immunotyping for identifying suitable CHOL patients
for vaccination was also investigated. Three tumor anti-
gens correlated with superior prognoses and infiltration
of antigen-presenting cells in CHOL were identified, and
CHOL patients were stratified into two immune sub-
types. The two immune subtypes were associated with
differential cellular, molecular and clinical features
which were consistent in different cohorts. Our findings
might provide valuable information to scientists and on-
cologists and serve as a reliable reference for further de-
veloping and administering cancer vaccines.

Methods

Identification of tumor antigens

cBioPortal analysis

cBioPortal for Cancer Genomics (cBioPortal, http://
www.cbioportal.org, version v3.2.11) is an open-access
online tool integrating the raw data from large scale gen-
omic projects including, but not limited to, The Cancer
Genome Atlas (TCGA) and the International Cancer
Genome Consortium (ICGC) [18]. In this study, cBio-
Portal was used to visualize the gene alteration of poten-
tial antigens against tumors in the TCGA.

GEPIA analysis

Gene Expression Profiling Interactive Analysis (GEPIA,
http://gepia2.cancer-pku.cn, version 2) is an open-access
online tool for the interactive exploration of RNA se-
quencing data of 9736 tumors and 8587 normal samples
from the TCGA and the Genotype-Tissue Expression
(GTEx) programs [19]. In this study, GEPIA2 was used
to calculate the prognostic index of each selected anti-
gen. The evaluation of the OS and disease-free survival
(DES) of the patients in whom the identified antigens
were targeted was performed using the Kaplan-Meier
method with a 50% (Median) cutoff for both low and
high expression groups. Logrank test (the Mantel-Cox
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test) was used for hypothesis testing, and a P-value <
0.05 was considered statistically significant.

TIMER analysis

Tumor Immune Estimation Resource (TIMER, https://
cistrome.shinyapps.io/timer/) is a comprehensive re-
source for the systematical analysis of the immune infil-
trates across diverse cancer types [20]. In this study,
TIMER was used to visualize the correlation between
antigen-presenting cell (APC) infiltration and the ex-
pression of the identified potent antigens. The partial
Spearman’s correlation was used to perform purity ad-
justment. Spearman correlation analysis was used to
analyze the correlation between the abundance of APCs
and the expression of the selected antigens. Statistical
significance was set at P < 0.05.

Identification of the immune subtypes

Immune-related gene data extraction

A total of 30 CHOL gene expression data and correspond-
ing clinical information were collected from the GEO
database (discovery cohort). A total of 45 TGCA
database-derived gene expression profile of CHOL were
obtained from the UCSC database (validation cohort). A
total of 2006 immune-related genes were identified
through literature reviewing, including single-cell RNA-
seq-derived immune cell-specific genes, co-stimulatory
and co-inhibitory molecules, cytokine and cytokine recep-
tors, antigen-presenting, and other immune-related genes.

Data preprocessing

The RNA sequence gene expression data of the tumor
samples were expressed as reads per kilobase million
(RPKM), which was transformed into transcript per mil-
lion (TPM) to discover the cohorts. A comprehensive set
of genes reflecting various immunological processes was
collected by mapping the transcription profile using Gene-
Symbol. Finally, 30 CHOL samples with 1939 immune-
related genes were collected. Normal tissues and tumor
samples without complete clinical information were ex-
cluded to obtain the validation cohort. Genes without ex-
pression variance were also excluded. Finally, each patient
gene expression was transformed using log2.

Identification of immune subtypes and validation

After preprocessing the immune-related gene, the parti-
tion around medoids (PAM) algorithm was applied with
the “l1-Pearson correlation” distance metric, and 500
bootstraps were performed, each comprising 80% of pa-
tients of the discovery cohort. Since the discovery cohort
was relatively small, patients were clustered into two
subtypes. The in-group-proportion (IGP) analysis was
performed to quantitatively evaluate the similarity and
reproducibility of the identified immune subtypes
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between two cohorts. The IGP values varied from O to 1.
A higher IGP for a subtype corresponded to a more re-
producible fraction of patients for specific subtypes.

Immune-related molecular and cellular features

Biological process enrichment analysis was performed
using the “clusterProfiler” package to explore the signal-
ing pathways associated with the immune-related mo-
lecular and cellular features. The relationship between
the immune subtypes and 56 immune-related molecular
and cellular features was assessed [21]. The immune cell
composition in the tumor tissue deduced by the CIBER-
SORT algorithm was analyzed.

Gene co-expression network

The R software package WGCNA was used to identify
the co-expression modules of the immune-related genes
[22]. The hallmark gene sets were downloaded from the
Molecular Signatures Database (MSigDB) and GSEA
was applied to evaluate the enrichment of these sets. In-
put genes were ranked in descending order according to
the log2FC values. The default settings and 1000 permu-
tations were used to estimate the enrichment signifi-
cance. Benjamini—Hochberg-adjusted P-values less than
0.05 were considered statistically significant.

Immune landscape analysis

The graph learning-based dimensionality reduction analysis
was performed using the reduceDimension function of the
Monocle package with a Gaussian distribution. The max-
imum number of components was set to 4, and the discrim-
inative dimensionality reduction with trees (DDRTree) was
used for dimension reduction. Finally, the function plot_
cell_trajectory (package Monocle) was used to visualize the
immune landscape, with different colors corresponding to
the different immune subtypes identified above.

Results

Identification of potential tumor antigens in CHOL

The copy number of aberrated genes were first explored,
where 4276 amplified genes that could express the
tumor-associated antigens were screened to identify po-
tent CHOL antigens (Fig. 1a). Subsequently, a total of
7283 mutated genes encoding tumor-specific antigens
were screened by assessing fraction genome alteration
and mutation count in each patient. Most patients
showed low fraction genome alteration and mutation
count, indicating that CHOL is characterized by low im-
munogenicity (Fig. 1b and c). Genes with the highest al-
teration frequency in the fraction genome altered group,
including BRCA1 associated protein 1, polybromo 1,
tumor protein p53, isocitrate dehydrogenase (NADP(+))
1, and at-rich interaction domain 1A, were individually
displayed (Fig. 1d). Genes with the highest mutation
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Fig. 1 Identification of potential tumor antigens in CHOL. a Identification of potential tumor-associated antigens in CHOL. The chromosomal
distribution of the aberrant copy number genes in CHOL is shown. b-e Identification of potential tumor-specific antigens in CHOL. Overlapping
mutated genes distributed in the fraction genome altered group (b) and mutation count group (c) are shown. Genes with the highest frequency
in the fraction genome altered groups (d) and mutation count groups (e) are individually shown

frequency in the mutation count group, including ATP
binding cassette subfamily C member 8, apoptotic chro-
matin condensation inducer 1, activin A receptor type
1B, adenosine deaminase domain containing 2, ADAM
TS Like 2, ADAMTS Like 5, adhesion G protein-

coupled receptor F4, ATP/GTP binding protein-like 1,
A-kinase anchoring protein 9, and ALMS1 centrosome
and basal body associated protein, were individually dis-
played (Fig. 1e). Taken together, 1391 amplified and mu-
tated genes were identified.
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Identification of tumor antigens associated with CHOL
prognosis and antigen-presenting cells

The survival relevance of the amplified and mutated
genes was analyzed to further screen prognostically rele-
vant antigens that may have immune-stimulatory or in-
hibitory effects as candidates for mRNA vaccine
development. A total of 15 genes closely correlated with
the OS of CHOL were identified, where three were re-
lated to the RFS (Fig. 2a). The elevated expression of
CD247 (Fig. 2b and c), FCGR1A (Fig. 2d and e) and
TRRAP (Fig. 2f and g) were associated with superior OS
and RFS of CHOL, indicating that the three tumor anti-
gens have potential immune-stimulatory effects. Import-
antly, the expression levels of CD247 (Fig. 3a) and
FCGR1A (Fig. 3b) were positively correlated with the
levels of macrophages, Dendritic cells (DCs), and B cells.
Although more fluctuant, the higher TRRAP expression
was also positively correlated with the levels of macro-
phages, DCs, and B cells (Fig. 3c). Together, three tumor
antigens (CD247, FCGR1A, and TRRAP) were identified
as potential candidates for the CHOL-mRNA vaccine
with potential immune provocative effects and can be
processed and presented by antigen-presenting cells
(APCs) to induce a tumor response.

Identification of potential immune subtypes of CHOL

A total of 1939 immune gene profiles of CHOL were first
extracted and 393 were screened as prognostically related
genes to identify suitable patients for vaccination. Further
signaling pathway impact analysis (SPIA) suggested that
31 prognosis-related genes enriched signaling pathways
were activated (e.g., Natural killer cell-mediated cytotox-
icity, cytokine-cytokine receptor interaction), while 12 sig-
naling pathways were inhibited (e.g., T cell receptor
signaling pathway, antigen processing and presentation, B
cell receptor signaling receptor) (Fig. 4a). Since the activa-
tion and inhibition of the signaling pathways were closely
associated with the effectiveness of the mRNA vaccine,
the prognosis-related gene profiles were further used to
construct a consensus cluster. Two immune subtypes (IS1
and IS2) were obtained with the minimum variance within
the group and the maximum variance across the groups
(Fig. 4b). IS2 had a superior survival probability than IS1
in both GEO and TCGA cohorts (Fig. 4c and d), indicat-
ing the reproducibility and stability of the results. There-
fore, immunotyping can be a prognostic biomarker, and
patients with IS2 tumors could have better prognoses.

Association of immune subtypes with tumor mutational
burden and mutation

Previous studies demonstrated that tumor mutational
burden (TMB) and mutation used to quantify the num-
ber of tumor antigens is closely related to immunothera-
peutic efficacy, including mRNA vaccine [23]. Therefore,
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the TMB and mutations were assessed using the
mutect2-processed mutation dataset in TGCA for the
two subtypes. In contrast, no significant difference was
observed between the two subtypes in TMB (Fig. 5a)
and the number of mutated genes (Fig. 5b). In addition,
the landscape of eight immune-related genes with the
most frequent genomic alteration was displayed (Fig.
5c). These findings indicate that the amounts of tumor
antigens encoded by mutated genes are not significantly
different between the two immune subtypes.

Association of immune subtypes with ICPs and
immunogenic cell death modulators

Previous studies demonstrated that both ICPs (e.g.,, PD-L1
and TIM-3) and immunogenic cell death (ICD) modulators
(e.g, CALR and HMGBI1) play critical roles in modulating
the host anti-tumor immunity, which could influence the
efficacy of mRNA vaccine. Therefore, the differential ex-
pression of ICPs and ICD modulators was assessed in the
two immune subtypes. A total of 25 ICD modulator-related
genes were detected in both GEO and TCGA cohorts.
Eight genes were differentially expressed in the two sub-
types in the GEO cohort, and IS1 had significantly higher
LRP1, TLR4, ANKA1, FPR1, IFNE, CXCL10, and HGF ex-
pressions (Fig. 6a). However, the three genes were differen-
tially expressed in the two subtypes in the TCGA cohort,
and IS2 had higher IFNK and EIF2AK1 expressions (Fig.
6b). Moreover, 47 ICP-related genes were detected in both
GEO and TCGA cohorts. A total of 27 genes were dis-
tinctly expressed in the two subtypes in GEO cohort, and
IS1 had significant upregulation of ADORA2A, BTLA,
CD200, CD200R1, CD244, CD27, CD274, CD28, CD48,
CD70, CD80, CD86, CTLA4, ICOS, IDO2, LAG3, LAIR1,
PDCD1, PDCD1LG2, TIGIT, TMIGD2, TNFRSF18, TNFR
SF4, TNFRSF8, TNFRSF9, TNFSF18 (Fig. 6¢). Nine genes
were distinctly expressed in the TCGA cohort, and IS1 had
significant upregulation of BTLA, CD27, CD48, CD70,
CD80, CD86, IDO1, LAIR1, and TIGIT (Fig. 6d). Collect-
ively, the immunotyping can reflect the expression level of
ICD modulators and ICPs, thus acting as a biomarker for
mRNA vaccine. mRNA vaccine could be less effective to
patients with highly expressing ICPs, and more effective to
those with upregulation of ICD modulators.

Association of immune subtypes with CA19-9 and CA125
Carbohydrate antigen 19-9 (CA19-9) and carbohydrate
antigen 125 (CA125) are the two most commonly used
prognostic tumor biomarkers for CHOL and their high
value indicates a poor patient outcome. Therefore, the
expression levels of CA19-9 and CA125 in each patient
in both GEO and TGCA cohorts were analyzed. Serum
CA19-9 in IS1 in the GEO cohort were significantly up-
regulated (Fig. 7a), while there was no significant differ-
ence in CA125 between the two subtypes (Fig. 7b). Both
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Fig. 2 Identification of tumor antigens associated with CHOL prognosis. a Narrow-down analysis of potential tumor antigens with both amplified
and mutated features (in a total of 1391 candidates), and significant OS and RFS prognosis (in a total of 3 candidates) in CHOL. b-c Kaplan-Meier
OS (b) and RFS (c) curves comparing the groups with a different CD247 expression in CHOL. d-e Kaplan-Meier OS (d) and RFS (e) curves
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CA19-9 and CA125 were not significantly differentially
expressed in the two subtypes in the TCGA cohort (Fig.
7c and d), different from the superior prognosis in IS2.
Therefore, the prognostic prediction accuracy of immu-
notype is better than traditional CA19-9 and CA125 in

CHOL.

Cellular and molecular characteristics of the immune

subtypes

Since the tumor immune status largely influences the ef-
fectiveness of mRNA vaccine, ssGSEA was first used to
determine the scores of 28 previously reported immune
cells for defining the immune cell components in two
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Fig. 3 Identification of tumor antigens associated with antigen-presenting cells. a Association of CD247 expression with the purity of infiltrating
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immune subtypes [24]. The immune cell components
were significantly distinct in the two subtypes (Fig. 8a).
IS1 had higher scores in activated B cell, activated CD4"
T cell, activated CD8" T cell, central memory CD4" T
cell, effector memory CD8" T cell, regulatory T cell,
macrophage, and myeloid-derived suppressor cells
(MDSC) in the GEO cohort (Fig. 8b), similar to the
TCGA cohort (Fig. 8c and d). Therefore, IS1 is an

immune “hot” and immunosuppressive phenotype, while
IS2 is an immune “cold” phenotype. In a previous study,
Thorsson et al. identified six immune categories (C1-C6)
based on the immunogenomic analysis of more than
1000 tumor samples among 33 cancer types [21]. These
categories were significantly associated with prognosis,
genetic, and immune-modulatory alterations in the tu-
mors. Thus, the distribution of the six categories was
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also investigated in our study. A distinct distribution
over IS1 and IS2 was observed, and the individual im-
mune categories substantially varied in their proportion
in the two immune subtypes (Fig. 8e). For instance, C1
(wounding healing) and C2 (IFN-r) were mainly clus-
tered into IS1, whereas C4 (immunologically quiet) and
C6 (TGF-B dominant) were mainly clustered into 1S2.
These results suggested that CHOL TIME was extremely
different from the TIME of other tumor types, providing
a useful and additional complement to previous studies.
The relationship between the immune subtypes and 56

previously defined immune-related molecular features
was evaluated. The expressions of 10 molecular signa-
tures were significantly different between the two im-
mune subtypes (Fig. 8f). IS1 had higher scores in
lymphocyte infiltration, leukocyte fraction, TCR rich-
ness, T cells follicular helper, macrophage regulation,
mast cell activation, and stromal fraction. IS1 is an im-
mune “hot” and immunosuppressive phenotype, while
IS2 is an immune “cold” phenotype, consistent with the
cellular signature results. Therefore, immunotyping can
be used to mirror CHOL immune status and to
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distinguish suitable population for mRNA vaccine that
could result in immune cell infiltration in patients with
immune “cold” IS2.

The immune landscape of CHOL

The immune-related gene expression profiles were inte-
grated to construct the immune landscape of CHOL to
visualize the immune distribution of each patient for
mRNA vaccine application (Fig. 9a). The two immune
subtypes were oppositely distributed in the immune
landscape. The Y-axis was highly correlated with acti-
vated CD8 T-cell, effector memory CD8" T cell, imma-
ture B-cell, macrophage, and MDSC modules (Fig. 9b).
Further prognostic analysis of extremely distributed pa-
tients showed that patients in group 1 had better sur-
vival probability than group 4 and 5, indicating that

immune landscape based on immune subtypes can be
used to predict patient prognoses (Fig. 9c and d). IS1
and IS2 were further stratified into distinct subgroups
according to the distribution location of the two im-
mune subtypes in the immune landscape (Fig. 9e). Pa-
tients with IS1 were divided into IS11, IS12, IS14, and
IS15, and those with IS2 were divided into IS21, 1S22,
and 1S24. The prognoses of patients with IS14 were bet-
ter than those with IS15 (Fig. 9f), while those with IS21
and IS22 had superior prognoses than 1S24 (Fig. 9g).
Therefore, there is significant intra-cluster heterogeneity
within subtypes. Together, these findings suggest that
the immune landscape can be used to define the im-
mune components of each CHOL patient and predict
prognoses that help in selecting suitable patients for
mRNA vaccine.
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Identification of immune gene co-expression modules
and immune hub genes of CHOL

The immune gene co-expression module was used to
classify immune-related genes, whose expression signifi-
cantly influenced the effectiveness of the mRNA vaccine.
WGCNA was used to cluster the collected immune-
related genes to construct gene modules (Fig. 10a). The
soft threshold was set at six in the scale-free network
(Fig. 10b and c). The representation matrix was con-
verted to adjacency and next to a topological matrix.
The average-linkage hierarchy clustering approach was
used with a minimum of 30 genes for each network ac-
cording to the standard of a hybrid dynamic shear tree.
Eigengenes of each module were computed and the close
modules were integrated into a new one (height = 0.25,
deep split=3 and min module size=30) (Fig. 10d).
Therefore, 12 gene modules were identified and the
genes in the grey module were not clustered with others
(Fig. 10e). The module eigengenes in two immune sub-
types were then analyzed. The module eigengenes of IS1
were significantly higher in blue, magenta, and purple
modules (Fig. 10f). In addition, the prognostic

correlation analysis revealed that the expression of genes
in the blue and pink modules was significantly associated
with the prognosis of CHOL patients (Fig. 11a). Further
functional enrichment analysis showed that genes in-
volved in cytokine-cytokine receptor interaction were
enriched in the blue module (Fig. 11b), which was sig-
nificantly positively correlated with component 2 in the
immune landscape (Fig. 11c). The pink module enriched
with genes in cytokine-cytokine receptor interaction,
JAK-STAT signaling pathway, and TNF signaling path-
way (Fig. 11d) showed a significantly positive correlation
with component 1 in the immune landscape (Fig. 11e).
Consistently, patients with low scores of genes clustered
into blue (Fig. 11f) and pink (Fig. 11g) modules had pro-
longed survival compared to those with higher scores in
the GEO cohort. Similar trends were observed in the
TCGA cohort (Fig. 11h and i). Therefore, patients with
highly expressing genes clustered in the blue module are
not suitable for mRNA vaccine. In contrast, mRNA vac-
cine could be effective in patients with the upregulation
of genes clustered into the pink module. Finally, 26
immune-related genes with the correlation >95% to the
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module eigengenes of blue and pink modules, including
CCL11, CCL3L1, CPXM1, CSF3, FAM92B, IFNW1,
IL17A, IL1B, IL21, IL22, IL6, IL9, LCE3D, PLA2GA4E,
PNOC, S100A12, S100A7, S100A7A, S100A9, TNIP3,
CCR5, CD53, EVI2B, HCLS1, IL10RA, and PSTPIPI,
were immune hub genes. Therefore, the hub genes can
act as a biomarker for predicting the prognoses of
CHOL patients and for identifying suitable patients for
mRNA vaccine.

Discussion

CHOL is one of the most aggressive malignancies with a
heterogeneous molecular profile and limited therapeutic
options [1, 2]. The combination of gemcitabine and cis-
platin is the first-line option in treating advanced CHOL,
with limited clinical benefits and a median OS of just
under a year [3]. Although immunotherapy has revolu-
tionized oncology from the therapeutic point of view, its
effectiveness in CHOL remains unclear [4, 5]. The
mRNA cancer vaccines represent promising novel im-
munotherapy to treat malignancies because both tumor-
specific and non-specific antigens are expressed in can-
cerous cells. Both of them could be used as mRNA vac-
cine targets, resulting in the regression of the tumor in

both preclinical models and patients [25-27]. Other
studies also showed an improved therapeutic efficacy by
combining tumor vaccine with immune checkpoint in-
hibitors or chemotherapy agents [28]. However, the po-
tential effect of the mRNA cancer vaccine is still under
exploration in CHOL patients, thus, the clinical benefits
are still limited [29].

In this study, the profiles of CHOL somatic mutations
and amplified genes were constructed, which revealed a
wide range of potent antigen targets that might be con-
sidered in CHOL. Since the antigens predicted using the
gene alteration profile might not be functionally signifi-
cant in CHOL, prognostic roles and immune correla-
tions were further analyzed to confirm the clinical
relevance of the selected antigens. Three tumor antigens
(CD247, FCGR1A, and TRRAP) correlated with superior
prognoses and infiltration of antigen-presenting cells in
CHOL were identified using narrow-down analysis, thus
promising candidates for mRNA vaccine. Although fur-
ther clinical evaluation is required, the potential of the
three tumor antigens to be successful targets for the
anti-CHOL mRNA vaccine was consolidated in previous
reports. For instance, Xu et al. reported that FCGR1A
could be involved in regulation, activation, or induction
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of immune cells and multiple physiological and patho-
logical processes, thus a potential prognostic biomarker
and associated with immune infiltration levels in various
cancers, especially CHOL [30].

Since the benefits of therapeutic response and survival
of patients subjected to tumor vaccine-based therapy are

still limited to a fraction of patients [29, 31], patients
with CHOL were stratified based on tumor immune-
related gene profile to obtain a guide in the optimal use
of tumor vaccine therapy. A distinct gene expression
profile and clinical prognosis characterized the two iden-
tified immune subtypes. Patients with 1S2 had prolonged
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survival compared with those with IS1, suggesting that
immunotype can be a prognostic biomarker for CHOL
and its accuracy is better than conventional CA19-9 and
CA125. In addition, the immune subtype reflects the ex-
pression level of ICD modulators and ICPs. mRNA vac-
cine could be more effective in patients with

upregulation of ICD modulators, while patients with
higher ICP expressions were not suitable for mRNA vac-
cine. Thorsson et al. identified six immune categories
among 33 cancer types with distinct immune phenotype
and prognosis [32]. The distribution of the six categories
in our study was investigated and a different distribution
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rate of five categories was observed on IS1 and IS2.
Other individual immune categories varied substantially
in their proportion on the two immune subtypes, except
for C3, which was equally distributed in the two iso-
types. The majority of C1 (wound healing) and C2 (IEN-
g dominant) categories were clustered into IS1 and char-
acterized by an increased immune cell infiltration and
relatively better prognosis, while the C4 (lymphocyte de-
pleted) and C6 (TGF-b dominant) categories were clus-
tered into IS2 and associated with an immunologically
quiet phenotype and poor prognosis. However, in our
study, IS1 tended to have a worse prognosis compared
to 1S2. These results indicated that CHOL was associ-
ated with immune subtypes different from the previously
identified categories and our results provided a useful
and additional complement in the classification of
TIME.

mRNA vaccine is not commonly used in CHOL pa-
tients, because of the tumor heterogeneity and its com-
plex tumor immune microenvironment. Unsupervised
hierarchical clustering analysis was performed based on
a comprehensive set of immune-related genes instead of
developing a supervised learning model for patient risk
stratification, thus providing new insights into the selec-
tion of suitable patients for vaccination. The two sub-
types identified in our study showed an extremely
distinct TIME. The IS2 displayed an immune desert
phenotype characterized by the absence of immune cell
infiltration consequently representing a non-inflamed
tumor microenvironment. The IS1 showed an opposite
immunologic characteristic with an immune-hot pheno-
type characterized by an increased immune cell infiltra-
tion consequently representing an extremely inflamed
microenvironment. These two subtypes might represent
the different underlying mechanisms regulating tumor
immune escape, which should correspond to different
treatment strategies. The immune desert phenotype
(IS2) might be associated with the lack of tumor antigen
and antigen-presenting cells, leading to T cell anergy. A
previous study revealed that certain CHOL deregulates
the major histocompatibility complex-I (MHC-I) to es-
cape immune surveillance, which is associated with the
impairment of immune cell infiltration and poor prog-
nosis [33]. Thus, the use of the mRNA vaccine therapy
can induce immune infiltration to reinvigorate the im-
mune system in these patients. The inflamed phenotype
(IS1) corresponded to a more complex tumor micro-
environment. Previous studies well establish the close re-
lationship between inflammation and CHOL ([34, 35].
The inflammatory cytokines, including interleukin-6 (IL-
6), tumor necrosis factor-alpha (TNF-a), and transform-
ing growth factor-beta (TGEF-B) play critical roles in
tumor progression and promote early metastasis [29,
36]. Although IS1 was associated with a high level of
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immune cell infiltration, the prognosis of IS1 was signifi-
cantly poorer than the one of IS2. Therefore, the critical
factor determining the prognosis might be due to the
dominance of the immune-suppressive environment or
the stimulatory one. Sylvie et al. analyzed the TME in
the intrahepatic CHOL and stratified patients into four
subtypes corresponding to the different nature of the
TME (lymphoid, myeloid, mesenchymal). The myeloid
and mesenchymal dominance resulted in a poor progno-
sis, while the lymphoid dominance subtype was signifi-
cantly associated with a good survival [37]. The further
graph learning-based dimensionality reduction revealed
the intra-cluster heterogeneity in IS1, consistent with
the previous study. A fraction of patients (IS1-5) in IS1
showed significantly better survival than others. These
patients might be associated with different dominant im-
mune factors that significantly influenced the prognosis
of these patients. In these patients, the combination of
an mRNA-based cancer vaccine with another immuno-
therapy or chemotherapy might modulate both the host
immune response and tumor microenvironment toward
a state more conducive to successful therapy. In
addition, patients in IS2—4 had a better prognosis than
other groups in IS2. Interestingly, IS2—4 and IS1-5 were
closely related to each other having similar positions in
the graph, indicating that the two types of patients can
have the same treatment strategy. Notably, integrating
results of both immune subtypes and the immune land-
scape of CHOL is important.

Moreover, this study provides important information
for mRNA vaccine development for other diseases. For
instance, most mRNA vaccines for COVID-19 were de-
veloped based on spike (S) protein sequences, whose ef-
ficacy could be compromised due to varying escape
mutations [38—40]. Furthermore, mRNA vaccine efficacy
varies significantly in different groups of recipients [41,
42]. According to this study, identifying the promising
specific antigen and patients with corresponding im-
mune subtypes suitable for mRNA vaccine treatment
may help improve clinical practice in combatting
COVID-19.

Conclusions

In conclusion, CD247, FCGR1A, and TRRAP are the po-
tential targets of the CHOL mRNA vaccine and could be
beneficial for patients with IS2. Thus, this study provides
a theoretical foundation for mRNA vaccine against
CHOL and defines suitable vaccination patients.
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