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terminal domain attenuates trastuzumab
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Abstract

Trastuzumab resistance in HER2-positive breast cancer is associated with a poorer prognosis. HSP90 is thought to
play a major role in such resistance, but N-terminal inhibitors of this target have had little success. We sought to
investigate the utility of NCT-547, a novel, rationally-designed C-terminal HSP90 inhibitor in the context of
overcoming trastuzumab resistance. NCT-547 treatment significantly induced apoptosis without triggering the heat
shock response (HSR), accompanied by caspase-3/− 7 activation in both trastuzumab-sensitive and -resistant cells.
NCT-547 effectively promoted the degradation of full-length HER2 and truncated p95HER2, while also attenuating
hetero-dimerization of HER2 family members. The impairment of cancer stem-like traits was observed with
reductions in ALDH1 activity, the CD24low/CD44high subpopulation, and mammosphere formation in vitro and
in vivo. NCT-547 was an effective inhibitor of tumor growth and angiogenesis, and no toxic outcomes were found
in initial hepatic and renal analysis. Our findings suggest that NCT-547 may have applications in addressing
trastuzumab resistance in HER2-positive breast cancer.
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Main text
HSP90 is an important protein chaperone that responds
to stress conditions by maintaining the integrity of pro-
tein synthesis and folding for cellular homeostasis [1].
HER2 is one such potential oncogenic protein amongst
the many HSP90 clients. HSP90 directly modulates
HER2 kinase activity, which affects downstream
signaling. Despite the improvements in clinical outcomes

enabled by trastuzumab, most patients will eventually
become resistant to the drug with recurrence of the
disease and metastasis [1, 2].
Trastuzumab resistance has been correlated to both

EGFR/HER2 and HER2/HER3 heterodimers generating
aberrant compensatory signaling, rendering anti-HER2
therapy ineffective [2]. Another reported mechanism
arises from the truncated form of HER2 (known as
p95HER2) that shows steric effects leading to constitu-
tive HER2 kinase activity. Oncogenic p95HER2 is also a
HSP90 client protein and shows a reliance on the HSP90
chaperone complex [3]. These findings suggest that the
inhibition of HSP90 in HER2-positive breast cancer
could serve to overcome trastuzumab resistance and
improve anti-tumor effects.
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HSP90 inhibitors developed in recent years have
primarily targeted the N-terminal domain of HSP90.
However, no candidates have been approved to date,
due to issues including poor solubility and organ impair-
ment caused by off-target toxicity [4]. HSF-1 is a key
effector in the HER2 signaling pathway and is respon-
sible for a comprehensive range of pro-survival effects as
well as chemoresistance. N-terminal inhibitors trigger
HSF-1 activation, resulting in increased transcription of
HSP family members including HSP27, HSP70 and
HSP90. This event is collectively referred to as the heat
shock response (HSR) and is a pro-survival pathway for
malignant cells [5]. In this context, C-terminal inhibition
of HSP90 represents an alternative strategy that could
ameliorate the current drawbacks of N-terminal HSP90
inhibitors [4].

Results and discussion
NCT-547 induces apoptosis and targets HER2 signaling
We previously synthesized the C-ring truncated deguelin
derivative L80 as a C-terminal HSP90 inhibitor and
demonstrated that it elicits anti-metastatic activity in
TNBC via suppression of STAT3 signaling [6]. NCT-547
is a lead-optimized product of L80 discovered through
an investigation of the structure–activity relationship
(Fig. 1a and Additional file 3: Figure S1). We first sought
to evaluate the effect of NCT-547 on cell viability and
apoptosis in HER2-positive breast cancer cell lines,
including trastuzumab-sensitive BT474 and SKBR3, and
trastuzumab-resistant JIMT-1 and MDA-MB-453 cells.
Cell viability in both trastuzumab-sensitive and -resistant
cells was dose-dependently reduced by NCT-547 (**p < 0.01,
Fig. 1b and Additional file 3: Figure S2). NCT-547-induced
apoptosis was observed in these cells, accompanied by

increased sub-G1 accumulation and caspase-3/− 7 activation
(Additional file 3: Figure S3). In contrast, NCT-547 had no
significant effect on the non-malignant cell lines HEK293
and MCF10A (Additional file 3: Figure S4).
The expression levels and phosphorylation of HER2,

HER3 and EGFR were significantly reduced, together
with Akt downregulation in both BT474 and JIMT-1
cells following NCT-547 challenge (Fig. 1c and d,
Additional file 3: Figure S5). NCT-547 also downregu-
lates truncated-p95HER2, which has tyrosine kinase
activity. Immunoprecipitation assays with anti-HER2
antibodies revealed that NCT-547 reduced the presence
of HER2/HER3 and HER2/EGFR heterodimers, as well
as blocked the interaction between HSP90 and HER2 in
BT474 and JIMT-1 cells (Fig. 1e).

NCT-547 targets BCSC-like properties
Cancer stem cells (CSCs) have been implicated in drug
resistance and metastatic relapse. A positive correlation
has been reported between overexpression of HSP90 and
ALDH-positive BCSCs [7]. Impaired BCSC-like proper-
ties including ALDH1 activity, the CD44+/CD24- popu-
lation and mammosphere-forming capacity were
observed in response to NCT-547 (*p < 0.05, Fig. 1f-h).
Consistent with in vitro observations, mammospheres
with highly enriched BCSC-like populations in
trastuzumab-resistant tumors in vivo were significantly
inhibited (**p < 0.01, Fig. 1j and k). Of particular note,
stemness factors such as Nanog and Oct4 are described
as potential HSP90 client proteins [6, 8]. The elimination
of BCSC-subpopulations was observed via decreased
levels of Nanog, Oct4 and Sox2 as well as the caspase-3-
mediated apoptotic pathway, implying that NCT-547

(See figure on previous page.)
Fig. 1 NCT-547 targets HER2 signaling and cancer stem-like properties in HER2-positive breast cancer cells. a Chemical structures of NCT-547.
NCT-547 was synthesized as a lead-optimized product of L80, which is a C-ring truncated deguelin derivative. b HER2-positive cell lines (BT474,
SKBR3, JIMT-1, and MDA-MB-453) were treated with the indicated concentrations of NCT-547 (0–20 μM) for 72 h. c-e NCT-547 inhibits HER2
signaling. c Reduced expression of full-length p185HER2, p95HER2, phospho-HER2 (Tyr1221/1222), HER3, phospho-HER3 (Tyr1289), EGFR,
phospho-EGFR, and Akt observed following exposure to NCT-547 (0–10 μM, 72 h) by immunoblot analysis. d Immunocytochemical analysis and
intensity profiling for HER2. BT474 cells were treated with NCT-547 (10 μM, 24 h) and immunostained for HER2 (1:100, green) with DAPI nuclear
staining (blue). The intensity (y-axis, green) of HER2 signal in the plasma membrane is represented in arbitrary units as defined by the software. e
BT474 and JIMT-1 cells were treated with NCT-547 (0–10 μM) for 24 h. Cells were immunoprecipitated with HER2 antibody and analyzed by
immunoblotting of HER2, HER3, EGFR and HSP90 antibodies. IP, immunoprecipitation; IB, immunoblot; IgG, normal rabbit immunoglobulin G. f-k
NCT-547 suppresses cancer stem-like properties. f Aldefluor-positivity in BT474 and JIMT-1 cells as measured by flow cytometry after exposure to
NCT-547 (0–10 μM, 72 h) and Aldefluor-positive cells were quantified (*p < 0.05). g CD44+/CD24- population in the JIMT-1 cells was analyzed by
flow cytometry after NCT-547 treatment (0–10 μM) for 72 h (**p < 0.01). h Effect of NCT-547 on mammosphere formation by BT474 and JIMT-1
cells was demonstrated by 3D-culturing cells in ultralow attachment plates in the presence or absence of NCT-547 (0–10 μM, 72 h). The numbers
and sizes of BT474- and JIMT-1-mammospheres were significantly reduced after exposure to NCT-547 (**p < 0.01). i Effect of NCT-547 (10 μM, 72
h) on expression of stemness-related factors in BT474 mammospheres. Changes in HSP90, Nanog, Oct4 and Sox2, PARP and cleaved caspase-3
levels as determined by immunoblotting. Quantitative graphs of Nanog, Oct4 and Sox2 expression [**p < 0.01, adherent cells (Ad.) vs
mammospheres (Mammo.); ##p < 0.01, DMSO control vs NCT-547 treatment in mammospheres]. j-k Effect of NCT-547 on mammosphere
formation in a JIMT-1 xenograft model. Dissociated single cells (1 × 106/ml) from primary tumors (200 ~ 250mm3) were plated in ultralow
attachment dishes and cultured in the presence or absence of NCT-547 (0–10 μM) for 8 days. The numbers and volumes of mammospheres were
quantified (**p < 0.01)
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effectively kills both proliferating and cancer stem-like
cells (**p < 0.01, ##p < 0.01, Fig. 1i).

C-terminal HSP90 inhibitor NCT-547 does not induce the
heat shock response (HSR)
Compelling evidence suggests that HSR induced by
N-terminal targeting HSP90 inhibitors is a major
obstacle that impedes anti-tumor activity [4]. HER2
promotes constitutive activation of the HSF1-HSP90
axis, accompanied by upregulation of HSP70 which
is associated with reduced sensitivity to HSP90
inhibitors, thus circumventing the cellular induction
of apoptosis [9]. To address this unmet need, dual
therapeutic inhibition of HSP90/HSP70 may be
desirable. We observed that C-terminal inhibition
neither increased levels of the compensatory pro-
survival factor HSP70 nor promoted the nuclear
accumulation of HSF-1 in HER2-positive breast
cancer cells (Fig. 2a-c, Additional file 3: Figure S6),
suggesting that NCT-547 may have substantial
advantages by targeting HSP90 without affecting
HSF-1 transcriptional activity.
To confirm the interplay between NCT-547 and

C-terminal binding site of HSP90, we conducted a
specific HSP90α C-terminal inhibitor screening
assay. Compared with geldanamycin, NCT-547
significantly restrained C-terminal HSP90 activity
(***p < 0.001, Fig. 2d), with an effect that appeared
to be superior to novobiocin, a potent C-terminal
inhibitor. To investigate the possible binding mode
of NCT-547 to the ATP-binding site of C-terminal
domain hHSP90, molecular docking was performed.
NCT-547 theoretically docks well with the C-
terminal domain of the hHSP90 homodimer and

stabilizes the open conformation. The quinoline and
N-methylpiperazine moiety show electrostatically
favorable interactions with hHSP90 (green), and the
EC score of NCT-547 (0.181) is similar to ATP
(0.189) although NCT-547 is much larger than ATP
(Fig. 2e-h).

NCT-547 degrades HER2 and p95HER2 in HER2- and
p95HER2- overexpressing MDA-MB-231 cells
Stable HER2- and p95HER2-overexpressing cell lines
were generated from MDA-MB-231 TNBC cells lack-
ing HER2 expression to examine whether NCT-547
could effectively degrade HER2 and p95HER2. While
HER2-overexpressing cells showed both expression of
ECD- and ICD-HER2, the p95HER2-overexpressing
cells expressed ICD-HER2 specifically [3, 10]. Cell via-
bility analysis revealed that the MDA-MB-231-HER2
cells were sensitive to trastuzumab, while MDA-MB-
231-p95HER2 cells exhibited trastuzumab resistance
(Fig. 2i, Additional file 3: Figure S7). Following expos-
ure to NCT-547, the expression and phosphorylation
of HER2 or p95HER2 were dramatically decreased in
the HER2- and p95HER2-overexpressing cells, re-
spectively (Fig. 2j). Ubiquitination appeared to be in-
volved in the degradation of p95HER2, with
immunocytochemical analysis revealing co-localization
between p95HER2 and ubiquitin at the plasma mem-
brane expressed as yellow signal (Fig. 2k). Forced ex-
pression of either HER2 or p95HER2 elevated STAT3
activity and increased its downstream signaling in
TNBC cells (Additional file 3: Figure S8a). STAT3
plays major roles in migration and metastasis during breast
cancer progression [6]. NCT-547 suppressed STAT3 activa-
tion, evidenced by marked downregulation of the STAT3

(See figure on previous page.)
Fig. 2 NCT-547 targets the C-terminal binding site of HSP90. a-b SKBR3 cells immunostained for HSF-1 (red, a) and HSP70 (green, b) with DAPI
(blue) after exposure to NCT-547 (300 nM) and geldanamycin (300 nM) for 24 h. Intensity of nuclear HSF-1 (green) and cytosolic HSP70 (red) is
represented in arbitrary units as defined by the software using the intensity profile tool. Gelda; geldanamycin. c No change in protein levels of
HSP70 was observed, whereas HSP90 expression was reduced in the presence of NCT-547 (0–10 μM, 72 h). d HSP90α (C-terminal) Inhibitor
Screening Assay was used to assess inhibition of the C-terminal binding domain of HSP90 by the inhibitors (novobiocin, gelda and NCT-547). The
activity of HSP90 inhibitors was measured with an Alphascreen microplate reader, and the inhibitory effect of each drug was determined at
500 μM. e-h Structural modeling of docking between NCT-547 and hHSP90. e Binding pose of NCT-547 in the C-terminal domain of open state
hHSP90 (Surflex-Dock score = 10.228, CScore = 2). Chain A of hHSP90 is rendered as an orange ribbon, and chain B is sky blue. NCT-547 as a ball-
and-stick model. Hydrogen bonds and π-cation interactions are represented as yellow and green dashed lines respectively. f View of the entire
binding pose of NCT-547 at the dimerization interface. NCT-547 as a space-filling model. g Lipophilicity property surface map (brown color:
hydrophobic, blue color: hydrophilic) of the active site. Connolly surface of NCT-547 is shown as pink mesh. h Comparison of the electrostatic
complementarity (EC) surface and EC score of ATP with those of NCT-547. Green = perfect electrostatic complementarity (1), grey = both
potentials zero, red = perfect electrostatic clash (− 1). i-k NCT-547 degrades HER2 and p95HER2 in HER2- and p95HER2- overexpressing MDA-MB-
231 cancer cells. i The expression of HER2, p95HER, phospho-HER2, and phospho-p95HER2 was upregulated in both HER2- and p95HER2-
overexpressing MDA-MB-231 (two clones; C1 and C2) compared to the parental MDA-MB-231 cells. j Levels of full-length p185HER2, p95HER2,
phospho-HER2 (Tyr1221/1222) and phospho-p95HER2 were detected after treatment of NCT-547 (0–10 μM, 72 h) by immunoblot analysis. k
p95HER2-overexpressing MDA-MB-231 cells were co-immunostained for p95HER2 (1:100, green) and ubiquitin (1:100, red) with DAPI (blue) after
exposure to NCT-547 (10 μM) for 24 h. Co-localization of ubiquitin and p95HER2 in the plasma membrane is seen as yellow signal (white arrows)
at high magnification (× 2000)
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signaling-related factors, survivin and cyclin D1, as well as
impairment of migratory capacity in both HER2- and
p95HER2-overexpressing cells (Additional file 3: Figure S8b
and S9). Furthermore, cell migration by trastuzumab-
resistant JIMT-1 cells was also evidently reduced in the pres-
ence of NCT-547 (Additional file 3: Figure S10). These
findings suggest that NCT-547 may have clinical applications
in suppressing metastasis by trastuzumab-resistant HER2-
positive breast cancers.

NCT-547 inhibits tumor growth of trastuzumab-resistant
JIMT-1 xenografts
To confirm the physiological relevance of our in vitro
observations, we examined the impact of NCT-547 on
tumor growth in trastuzumab-resistant xenografts. The
growth of JIMT-1 tumors was significantly inhibited by
treatment with NCT-547, and tumor burden in the
NCT-547-treated group was less than the control
counterparts (***p < 0.001, Fig. 3a-c). There were
reduced numbers of Ki-67-positive cells and an
increase in TUNEL-positive cells (***p < 0.001, Fig. 3f,
Additional file 3: Figure S12). Inhibition of the tumor
angiogenesis was evidenced by significant reductions
in CD31-positive microvessels in both intratumoral
and peritumoral areas (Additional file 3: Figure S13).
Comparable with the in vitro findings, NCT-547
elicited a marked reduction in HER2 and ICD-HER2,
with a decrease in ALDH1 expression also observed
(***p < 0.001, Fig. 3g-i, Additional file 3: Figure S14
and S15).
There was no significant decline in body weight

observed (Additional file 3: Figure S11). Moreover, our
initial findings suggest that hepatic and renal health
through the levels of AST, ALT, or BUN are relatively
unaffected by NCT-547 with no histological findings in
tissue sections (NS, Fig. 3d and e). Further investigation
of the long-term safety profile for clinical application is
planned.

Conclusion
Our observations of the novel rationally-designed C-terminal
HSP90 inhibitor NCT-547 suggests that it may have poten-
tial to address limitations in the treatment of trastuzumab-
resistant HER2-positive breast cancer (Fig. 3j). Further
profiling of this promising compound is warranted.
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