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Abstract

Wnt signaling is a highly conserved signaling pathway that plays a critical role in controlling embryonic and organ
development, as well as cancer progression. Genome-wide sequencing and gene expression profile analyses have
demonstrated that Wnt signaling is involved mainly in the processes of breast cancer proliferation and metastasis. The
most recent studies have indicated that Wnt signaling is also crucial in breast cancer immune microenvironment
regulation, stemness maintenance, therapeutic resistance, phenotype shaping, etc. Wnt/β-Catenin, Wnt–planar cell
polarity (PCP), and Wnt–Ca2+ signaling are three well-established Wnt signaling pathways that share overlapping
components and play different roles in breast cancer progression. In this review, we summarize the main findings
concerning the relationship between Wnt signaling and breast cancer and provide an overview of existing
mechanisms, challenges, and potential opportunities for advancing the therapy and diagnosis of breast cancer.
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Background
Breast cancer was the most commonly diagnosed cancer
(24.2% of the total cancer cases) and the leading cause of
cancer-related death (15% of the total cancer deaths)
among females worldwide in 2018 [1]. Metastatic disease
accounts for more than 90% of breast cancer-related
deaths [2]. Increasing evidence suggests that the genetic
mutation-driven activation of Wnt signaling is the key
factor in breast cancer metastasis [3].
Wnt signaling is an evolutionarily conserved pathway in

metazoan animals [4]. The name ‘Wnt’ is a fusion of the
name of the vertebrate homolog Integrated (Int-1) [5, 6] and
the name of the Drosophila segment polarity gene Wingless
[7, 8]. It has been almost four decades since the discovery of
the Int-1 proto-oncogene, now known as Wnt-1, which was
identified as an integration site for mouse mammary tumor

virus (MMTV) [5]. Breast cancer, on the other hand, is the
first cancer to be associated with Wnt signaling.
In recent decades, a growing number of studies have

demonstrated that Wnt signaling involves the proliferation
[9], metastasis [3, 10, 11], immune microenvironment regu-
lation [3, 12], stemness maintenance [13], therapeutic resist-
ance [14], and phenotype shaping [15, 16] of breast cancer.
Various Wnt signaling inhibitors that act on different tar-
gets have been developed, and many of them exhibit potent
anticancer potential [17]. However, no Wnt inhibitors have
been approved for breast cancer treatment to date.
This review describes the three well-established Wnt

signaling pathways, summarizes the main findings be-
tween Wnt signaling and breast cancer based on biological
mechanisms, elaborates the challenges in drugging Wnt
signaling, and provides potential solutions for both basic
research and the clinical treatment of breast cancer.

An overview of the Wnt signaling pathway
There are 19 Wnt genes in the human genome, all of which
encode secreted lipoglycoproteins that have fundamental
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roles in controlling cell specification, cell-cell interactions,
stem cell self-renewal, and tissue patterning during embry-
onic development [18, 19]. Wnt proteins (Wnts) couple to
various receptors and thereby activate different downstream
pathways [20]. Canonical Wnt signaling is a β-Catenin-
dependent and T cell factor (TCF)/lymphoid enhancer
factor (LEF)-involved pathway that is responsible mainly for
breast cancer cell proliferation and ‘stemness’ maintenance
[21]. Increasing evidence indicates that Wnt–PCP and
Wnt–Ca2+ signaling, the two well-established β-Catenin-
independent noncanonical Wnt pathways, are responsible
for breast cancer cell metastasis [22, 23]. The processes of
immune microenvironment regulation, therapeutic resist-
ance, and phenotype shaping of breast cancer seem compli-
cated and are always mediated by cooperation and crosstalk
between canonical and noncanonical Wnt pathways.

Canonical Wnt signaling pathway
Canonical Wnt signaling (also known as Wnt/β-Catenin
signaling) is the best-characterized pathway and is generally
triggered by Wnt1, Wnt2, Wnt3, Wnt3a, Wnt8b, Wnt10a,
Wnt10b, and so on (Table 1) [18, 19, 79]. In the endoplas-
mic reticulum (ER), the conserved cysteine of Wnts is pal-
mitoylated by Porcupine to a lipid-bound form that is also
an active form [80]. The ER-to-Golgi trafficking of Wnts is
mediated by the p24 protein family (such as TMED2/
CHOp24, TMED4/éclair, and TMED5/opossum) [81–83].
Then, lipid-modified Wnts are transported by GPR177
(also known as Wntless/Evenness/Interrupted/Sprinter)
[84–87] in an endosome-dependent manner [88–90] and
secreted into the extracellular matrix using exosomes as po-
tent carriers [10, 91–93]. Notum is a deacetylase that acts
as a lipid eraser of Wnts and can inactivate Wnts [94, 95].
Frizzleds (Fzds) are 7-transmembrane (7-TM) proteins

that act as the primary receptors for Wnts [96–98], while
low-density lipoprotein receptor-related proteins (LRPs)
are single-pass transmembrane proteins that act as core-
ceptors for Fzds [99–101]. Wnt signaling is inhibited by
endogenous inhibitors, such as Wnt inhibitory factor 1
(WIF-1) [102], Cerberus [103], and secreted Fzd-related
proteins (sFRPs) [104] that interact with Wnts directly,
Wise/SOST [105–107] and dickkopf proteins (Dkks) [108,
109] that bind to LRPs and block Fzds–LRP heterodimer
formation, and insulin-like growth factor-binding protein
4 (IGFBP4) physically interacts with Fzd8 and LRP6
and inhibits Wnt3a binding [110]. Of note, sFRPs can
also interact with Fzds and inhibit Wnt signaling [111,
112]. Additionally, Rnf43 and Znrf3 are two single-pass
transmembrane E3 ligases that specifically mediate the
multiubiquitination of Fzds [113, 114].
Wnt signaling is maintained in an off state in the absence

of extracellular Wnts. β-Catenin is the core component of
canonical Wnt signaling and binds to the cytoplasmic tail
of E-cadherin for cell-cell adhesion [115–118]. In the

cytoplasm, β-Catenin is hijacked by the ‘destruction com-
plex’, which comprises adenomatous polyposis coli (APC)
[119, 120], Axin [121–124], glycogen synthase kinase 3β
(GSK-3β) [125, 126], casein kinase 1α (CK1α) [127, 128],
protein phosphatase 2A (PP2A) [129], and Wilms tumor
gene on X chromosome (WTX) [130], thereby being
ubiquitinated by the Skp1, Cullin1 and F-box protein β-
TrCP (SCFβ-TrCP) ubiquitin ligase and degraded [131, 132].
β-Catenin is first phosphorylated by CK1α at Ser45,
followed by GSK-3β phosphorylation at the Thr41, Ser37,
and Ser33 residues [90]. The phosphorylation of Ser33 and
Ser37 creates the recognition site for β-TrCP [127] for sub-
sequent degradation. Tankyrase 1/2 (TNKS1/2) destabi-
lizes Axin, making it an attractive target for Wnt signaling
regulation [133]. In addition, Siah-1 interacts with APC
and promotes the degradation of β-Catenin independent of
GSK-3β-mediated phosphorylation and β-TrCP-mediated
ubiquitin [134].
In the nucleus, TCF [135, 136] and C-terminal binding

protein (CTBP) [137] interact with Transducin-like en-
hancer/Groucho (TLE/GRG), while histone deacetylases
(HDACs) interact with TCF and LEF1 [138, 139]. These
proteins form a repressor complex that represses the ex-
pression of Wnt target genes [140]. In addition, β-Catenin
is inhibited from binding to TCF/LEF by inhibitors of β-
Catenin and TCF (ICAT) [141] and Chibby (CBY) [142].
The canonical Wnt signaling cascade is initiated from

the binding of lipid-modified Wnts to the receptor com-
plex. Norrin binds to Fzd4 and activates the canonical
Wnt pathway, although it is structurally unrelated to Wnts
[143–145]. On the other hand, R-spondin binds to
leucine-rich repeat-containing G protein-coupled receptor
5 (LGR5) and induces the membrane clearance of Rnf43/
Znrf3, which removes the ubiquitylation of Fzd4 [113,
114]. LRP6 is phosphorylated by GSK-3 and CK1 [146,
147], which recruits the scaffold protein Axin [148], while
Fzds recruit Dishevelled (Dvl) [149] to the plasma mem-
brane, thereby disrupting the destruction complex [150].
β-Catenin is phosphorylated at Ser191 and Ser605 by Jun

N-terminal kinase 2 (JNK2), which facilitates its nuclear
localization mediated by Rac1 [151]. In the nucleus, β-
Catenin serves as a scaffold for the LEF [152, 153] and TCF
[154–156] families, recruiting coactivators such as CREB-
binding protein (CBP)/p300 [157], Pygopus (PYGO) and B
cell lymphoma 9 (BCL9) [158, 159] and leading to the tran-
scription of a large set of target genes (Fig. 1).

Wnt–PCP signaling pathway
Wnt–PCP signaling does not involve β-Catenin, LRP, or
TCF molecules and is generally triggered by Wnt4, Wnt5a,
Wnt5b, Wnt7b, and Wnt11 [160–162] (Table 1). These
Wnts can also be inhibited by directly binding to
endogenous inhibitors, including sFRPs, WIF, and
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Cerberus, and sFRPs may also inhibit Wnt–PCP signal-
ing by binding to Fzds [163].
The complementary and mutually exclusive distribu-

tion of transmembrane complexes is the key feature of
planar polarization, which results in the asymmetric en-
richment of proximal and distal transmembrane
complexes in cells (Fig. 2a). The proximal transmem-
brane complex is composed of Vang-like 2 (Vangl2),
cadherin EGF LAG seven-pass G-type receptor 1
(Celsr1), Prickle, inturned (Intu) and Dvl [164], while
the distal transmembrane complex is composed of Fzds,

Celsr1, Inversin (Invs) and Dvl. On the proximal side,
Vangl2 recruits Prickle, which competes with Invs for
Dvl binding and therefore disrupts the localization of
Invs towards the proximal side. Intriguingly, noncanoni-
cal Wnt binding to Fzds leads to Dvl phosphorylation
and distal side localization of the Invs [165] and Dvl–
Par6 complex, and Smurf is recruited by phosphorylated
Dvl to Par6, thereby ubiquitinating and degrading Par6-
bound Prickle on the distal side and antagonizing the in-
hibitory action of Prickle on Wnt–PCP signaling [166]
(Fig. 2b). This asymmetric cell patterning, in turn, directs

Table 1 Wnt ligands and related factors in breast cancer

Ligand Signaling pathway Alterations in breast cancer Ref.

Wnt1 Canonical Activated by MMTV integration in breast cancer;
Activated by TP53 loss in breast cancer;
Highly expressed in breast cancer

[3, 5, 24–26]

Wnt2 Canonical Expressed at a high level in breast cancer [27–32]

Wnt2b Canonical – [33, 34]

Wnt3 Canonical Overexpressed in trastuzumab-insensitive breast cancer cells;
Activated by TGFβ in breast cancer cells

[35–37]

Wnt3a Canonical Amplified in breast cancer [16]

Wnt4 Noncanonical Driven by estrogen and progesterone in breast cancer [25, 27, 38, 39]

Wnt5a Canonical/noncanonical Highly expressed in BLBC [15, 16, 22, 40]

Wnt5b Canonical/noncanonical Highly expressed in BLBC [16, 22, 41–43]

Wnt6 Canonical Activated by TP53 loss in breast cancer [3]

Wnt7a Canonical/noncanonical Activated by TP53 loss in breast cancer;
Secreted exclusively by aggressive breast cancer cells

[3, 44, 45]

Wnt7b Canonical/noncanonical Activated by TGFβ in breast cancer cells [27, 45, 46]

Wnt8a Noncanonical – [47]

Wnt8b Canonical – [48]

Wnt9a Canonical Amplified in breast cancer [16, 49]

Wnt9b Canonical/noncanonical – [50–52]

Wnt10a Canonical Expressed in mouse ALDH-negative breast cancer cells in
a time-dependent manner

[53]

Wnt10b Canonical Highly expressed in TNBC [9, 54–56]

Wnt11 Canonical/noncanonical Induced by ERα and β-Catenin [57, 58]

Wnt16 Canonical/noncanonical – [59–62]

Porcupine Canonical/noncanonical – [63]

p24 proteins Canonical/noncanonical TMED2 is increased in breast cancer [64]

GPR177 Canonical/noncanonical Markedly increased in breast cancer [65]

Notum Canonical/noncanonical – –

Norrin Canonical/noncanonical Significantly decreased in breast cancer [66]

R-spondin Canonical/noncanonical R-spondin-1 is secreted by differentiated mammary luminal cells [67, 68]

Cerberus Canonical/noncanonical – –

sFRPs Canonical/noncanonical sFRP1, sFRP2, and sFRP5 are aberrantly methylated or epigenetically
suppressed in breast cancer

[69–74]

WIF Canonical/noncanonical WIF-1 is epigenetically silenced or lost in breast cancer [75, 76]

SOST Canonical Induced expression by Runx2/CBFβ in metastatic breast cancer cells [77]

Dkks Canonical/noncanonical Dkk1 is epigenetically inactivated in breast cancer [69]

IGFBP4 Canonical Protease-resistant IGFBP4 is expressed in murine breast cancer [78]
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the orientation of subcellular structures and cell behaviors
through the regulation of cytoskeletal elements and cellular
adhesions [161].
Fzds [167–170], Celsr1 [171–173], and Vangl2 [174–179]

are core receptors in Wnt–PCP signaling. Fzds are still the
primary receptors for Wnts, while receptor-like tyrosine
kinase (RYK) [180], muscle-skeletal receptor Tyr kinase
(MUSK) [181–183], protein tyrosine kinase 7 (PTK7) [184],
receptor Tyr kinase-like orphan receptor 1/2 (ROR1/2)
[162], Syndecan [185, 186] and Glypican [187] act as

coreceptors for Fzds. However, the ligand-receptor binding
interaction between Wnts and Celsr1 [188] or Vangl2 [189]
has not been clarified to date.
The formation of the Fzds–Celsr1–Invs–Dvl complex

and the interaction between Dvl and Dvl-associated activa-
tor of morphogenesis (DAAM) activate the small GTPases
Rac1 [190] and Ras homologue gene-family member A
(RHOA) [191, 192]. Rac1 activates JNK [193], which further
phosphorylates c-Jun at Ser63 and Ser73, thereby activating
c-Jun [194]. RHOA subsequently activates diaphanous 1

Fig. 1 Canonical Wnt signaling pathway in mammals
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(DIA1) and RHO-associated coiled-coil-containing protein
kinase (ROCK) [195]. Then, JNK activates CapZ-interacting
protein (CapZIP) [196], ROCK activates mitogen-activated
protein kinase (MRLC) [197], and DAAM activates Profilin
[198]. These PCP effectors lead to the development of lat-
eral asymmetry in epithelial sheets and other structures

[199], as well as cell polarity and migration by remodeling
the cytoskeleton [200] (Fig. 2c).

Wnt–Ca2+ signaling pathway
Wnt–Ca2+ signaling is a less focused noncanonical Wnt
pathway but plays a central role in cell fate during early em-
bryogenesis [201], cancer progression [202–204], interneural

Fig. 2 Wnt–PCP signaling pathway in mammals. a Planar cell polarity of the asymmetric transmembrane complexes. b Asymmetric PCP signaling
components form transmembrane complexes. c Wnt–PCP signaling pathway in mammals
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communication [205], the inflammatory response [206], and
so on. Wnt–Ca2+ signaling is initiated mostly by Wnt5a and
Fzd2, and pertussis toxin-sensitive heterotrimeric G protein
subunits [207] are required for the activation of phospholip-
ase C (PLC). Activated PLC cleaves phosphatidylinositol-4,
5-bisphosphate (PtdInsP2), a membrane-bound inositol
lipid, into diacylglycerol (DAG) and inositol-1,4,5-trisphos-
phate (InsP3). DAG, together with Ca2+, activates protein
kinase C (PKC), which further stimulates cell-division cycle
42 (Cdc42) and promotes actin polymerization. On the
other hand, InsP3 binds to inositol-1,4,5-trisphosphate re-
ceptors (InsP3Rs) [208] on the ER membrane, opening cal-
cium channels for Ca2+ release and increasing cytoplasmic
Ca2+ levels [209]. The decrease in Ca2+ levels within the ER
lumen is sensed by stromal interaction molecule 1/2
(STIM1/2), which gains an extended conformation to trap
and activate ORAI proteins at the plasma membrane and
induce store-operated Ca2+ entry (SOCE) [210, 211]. In
addition, sarcoplasmic/ER Ca2+ ATPases (SERCAs) act as
Ca2+ ion pumps that pump Ca2+ from the cytosol to the ER.
An increased Ca2+ concentration activates the phosphatase
calcineurin and several calcium-dependent kinases, includ-
ing PKC and calcium calmodulin mediated kinase II
(CAMKII). The increased activity of calcineurin, in turn, ac-
tivates the nuclear factor of activated T cells (NFAT) [212].
In contrast, CAMKII stimulation activates TGFβ-activated
protein kinase 1 (TAK1), which subsequently activates
nemo-like kinase (NLK), resulting in the phosphorylation of
TCF and the inhibition of β-Catenin/TCF signaling [213,
214]. The Wnt–Fzd–Dvl complex also activates cyclic
guanosine monophosphate (cGMP)-specific phospho-
diesterase 6 (PDE6), thereby depleting cellular cGMP
and inactivating protein kinase G (PKG), which in turn
increases the cellular concentration of Ca2+. The G
protein-induced activation of p38 via mitogen-activated
protein kinase 3/6 (MKK3/6) is required for the activa-
tion of PDE6. Moreover, the p38-induced phosphoryl-
ation of activating transcription factor 2 (ATF2) on
Thr69 and Thr71 is important for its transcription
[215, 216] (Fig. 3).

Wnt signaling alterations in breast cancer
Numerous studies have shown that the constitutive com-
ponents of Wnt signaling are altered in breast cancer cells.
These alterations include mutations, amplifications, dele-
tions, and methylations that occur at the DNA level, post-
transcriptional modifications that occur at the mRNA
level, and posttranslational modifications that occur at the
protein level. These alterations also include changes in
subcellular localization, especially for β-Catenin. Mutation
of CTNNB1, which encodes β-Catenin, is rare in breast
cancer [217]. However, the activation of Wnt signaling is
nonetheless thought to play an essential role in breast
tumorigenesis [69]. This is mainly due to the epigenetic

activation of Wnts and the inactivation of Wnt inhibitors
(Table 1). Nonetheless, it has been reported that Wnt5a is
lost in breast cancer [75, 218–220]. Foxy-5, a Wnt5a mim-
icking hexapeptide, impairs the migration and invasion of
breast cancer without affecting apoptosis or proliferation
by reconstituting Wnt5a signaling [221] and has entered
phase I clinical trials (NCT02020291 and NCT02655952)
for metastatic breast, colorectal and prostate cancer treat-
ment and a phase II clinical trial (NCT03883802) for
Wnt5a-low colon cancer neoadjuvant therapy. In addition,
most canonical and noncanonical Wnt receptors are ele-
vated in breast cancer, especially in triple-negative breast
cancer (TNBC) and basal-like breast cancer (BLBC). E-
cadherin, as an interacting protein of β-Catenin, is fre-
quently mutated or silenced in BLBC and TNBC, which
leads to the release of β-Catenin from the cytomembrane
into the cytoplasm [222–224] (Table 2).
Cytoplasmic β-Catenin should be carefully controlled by

the destruction complex in the cytoplasm. However, the de-
struction complex components are frequently mutated, de-
leted, hypermethylated, or reduced in breast cancer, which
increases the stability of cytoplasmic β-Catenin and the
probability of β-Catenin entering the nucleus. Most coacti-
vators are highly expressed in breast cancer, as expected.
However, it is interesting that some corepressors (e.g., TLE/
GRG and CTBP) are elevated in breast cancer [254, 255]
(Table 3). These studies suggest that the activation of ca-
nonical Wnt signaling in breast cancer is induced mainly
by epigenetic alterations in the constitutive components ra-
ther than the mutation of β-Catenin or APC. Noncanonical
Wnt signaling is preferentially activated in TNBC/BLBC
and is induced mainly by the epigenetic activation of non-
canonical Wnts and their receptors (Tables 1 & 2). Cyto-
plasmic components of noncanonical Wnt signaling are
commonly involved in various signaling pathways and are
challenging to define as exclusive components of nonca-
nonical Wnt signaling (Figs. 2 & 3).

Wnt signaling in breast cancer classification
Invasive ductal carcinoma no-special-type (IDC-NST) and
invasive lobular carcinoma (ILC) are the most common
histological subtypes of breast carcinoma, accounting for
70 ~ 75% and 10 ~ 14%, respectively [272]. β-Catenin ex-
pression is significantly correlated with histological type.
The majority of IDCs display a regular pattern of β-Catenin
expression, with membranous expression (80.6%) and
nuclear expression (12.5%), whereas ILCs lack membranous
expression (14.7%) and nuclear expression (0%) [256]. Add-
itionally, E-cadherin and β-Catenin expression is largely
preserved in ductal carcinoma in situ (DCIS) [273]. How-
ever, lobular carcinoma in situ (LCIS) shows the simultan-
eous loss of E-cadherin and β-Catenin expression [274].
This may explain why IDCs have a worse prognosis than
ILCs [275] (Fig. 4a).
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Furthermore, breast cancer can be classified into five in-
trinsic subtypes: luminal A, luminal B, Her-2 enriched,
normal-like, and BLBC [276–278]. However, the normal-
like subtype is controversial, potentially due to normal
tissue contamination and low tumor cellularity [279].
Claudin-low was initially considered a breast cancer sub-
type [280, 281] and later redefined as a breast cancer
phenotype [282].
Surrogate intrinsic subtypes are based on the immuno-

histochemistry of estrogen receptor (EsR), progesterone
receptor (PgR), human epidermal growth factor receptor
2 (Her-2), and Ki67 and consist of luminal A-like, lu-
minal B-like, Her-2 enriched, and TNBC [283]. The ma-
jority of BLBCs and claudin-low intrinsic subtypes are
TNBCs [272, 284]. TNBCs can be further divided into
basal-like 1 (BL-1), basal-like 2 (BL-2),

immunomodulatory (IM), luminal androgen receptor
(LAR), mesenchymal (M), and mesenchymal stem-like
(MSL) [285].
The claudin-low subtype is composed mostly of the M

and MSL subtypes of TNBC [286], which, together with
the BL-2 subtype of TNBC, are linked to Wnt signaling ac-
tivation [285]. Intriguingly, the majority of claudin-low can-
cers are metaplastic breast cancers [281]. This is consistent
with the previous description that Wnt signaling activation
is enriched in metaplastic breast cancers [287], BLBCs
[257], and TNBCs [256]. Specifically, Wnt signaling activa-
tion in metaplastic breast cancers is caused mainly by gen-
etic changes, such as CTNNB1 and APC mutations [287],
whereas Wnt signaling activation in BLBCs and TNBCs is
associated mainly with the strong expression of nuclear β-
Catenin [256, 257]. This may be the main reason for the
worst prognosis of TNBCs among all subtypes. Notably,

Fig. 3 Wnt–Ca2+ signaling pathway in mammals
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both basal and luminal tumor cells are found in MMTV-
Wnt1 mammary tumors, implying that they are derived
from a bipotent malignant progenitor cell [24, 288]. Based
on these studies, Wnt signaling is the critical pathway for
phenotype shaping in both histological subtypes and mo-
lecular subtypes of breast cancer (Fig. 4 b).

Wnt signaling in the breast cancer immune
microenvironment
All breast cancers arise in the terminal duct lobular units
(the functional unit of the breast) of the collecting duct
[272] (Fig. 5 a). Breast cancer cells commonly reside in a
complicated tumor microenvironment that is composed
mainly of genetically abnormal cells surrounded by
blood vessels, fibroblasts, immune cells, stem cells and
the extracellular matrix (ECM), and dynamic crosstalk

among these various components ultimately determines
the fate of breast cancer [289] (Fig. 5 b).
The reciprocal crosstalk between breast cancer cells

and immune cells is initiated by the neoantigens [272]
that arise from nonsynonymous mutations and other
genetic alterations [290]. These neoantigens are pre-
sented by antigen-presenting cells (APCs) on major
histocompatibility complex class I (MHC I) or MHC II
molecules [272], resulting in the activation of CD8+

(cytotoxic) [291] and CD4+ (helper) T cells [292]. Acti-
vated CD8+ T cells directly induce premalignant breast
cell lysis by releasing cytolytic perforin and granzyme B
[293] and promote the apoptosis of premalignant breast
cells by expressing Fas ligand (FasL) and TNF-related
apoptosis-inducing ligand (TRAIL) on their cell surface
[272, 294]. This may explain why high breast tumor-
infiltrating CD8+ T cell counts are associated with

Table 2 Wnt receptors and coreceptors in breast cancer

Receptor Signaling pathway Alterations in breast cancer Ref.

Fzd1 Canonical Upregulated in breast cancer [225, 226]

Fzd2 Noncanonical Elevated in metastatic breast cancer [22, 225]

Fzd3 – – –

Fzd4 – – –

Fzd5 – – –

Fzd6 Noncanonical Genomically amplified in TNBC [227]

Fzd7 Canonical Elevated in BLBC/TNBC [228–230]

Fzd8 – – –

Fzd9 – Relatively hypermethylated in breast cancer [231]

Fzd10 – – –

LRP5 Canonical – –

LRP6 Canonical Markedly upregulated in breast cancer;
Overexpressed in TNBC

[229, 232]

RNF43 Canonical – –

ZNRF3 Canonical – –

E-cadherin Canonical Mutated or silenced in BLBC/TNBC [222–224]

LGR5 Canonical Overexpressed in breast cancer [233, 234]

Celsr1 Noncanonical Highly expressed in luminal breast cancer [235]

Vangl2 Noncanonical Highly expressed in BLBC [189]

ROR1 Noncanonical Highly expressed in TNBC, BLBC, and
aggressive/metastasis-prone breast cancer

[236–240]

ROR2 Canonical/noncanonical Highly expressed in breast cancer [241]

RYK Noncanonical Reduced in primary breast cancer [220]

PTK7 Noncanonical Elevated in TNBC and BLBC [242–244]

MUSK Noncanonical – –

Syndecan Noncanonical Syndecan-1 is overexpressed in breast cancer;
Induced expression in stromal fibroblasts of breast cancer

[245–248]

Glypican Noncanonical Glypican-3 is silenced in human breast cancer [249]

ORAI Noncanonical ORAI1 is elevated in BLBC;
ORAI3 is elevated in breast cancer

[250–253]
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improved clinical outcomes [295]. CD4+ TH1 cells arise
from naive T cells that are activated by interleukin (IL)-
12 (provided by dendritic cells and macrophages) and
interferon (IFN)-γ (provided by natural killer (NK) cells)
[296] and amplify the anticancer effect of CD8+ T cells
by secreting IFN-γ, IL-2, and tumor necrosis factor
(TNF)-α. NK T cells recognize MHC I-like molecule
CD1d on dendritic cells and are further activated by IL-
12 that is expressed by dendritic cells. Activated NK T
cells also recognize CD1d expressed by breast cancer
cells [297] and recruit NK cells by releasing IFN-γ,
which kills breast cancer cells directly (Fig. 5 c).
However, Wnt/β-catenin signaling activation sup-

presses the antitumor immune response [298]. Malig-
nant breast cells with activated Wnt signaling develop
several strategies to avoid immune recognition and
destruction. They express CD24 [299] and CD47 [300–
302] as ‘don’t eat me’ signals to prevent phagocytosis
from macrophages by interacting with Siglec-10 and
SIRP-α, respectively, expressed by macrophages. Re-
markably, CD24 is a direct target of Wnt1 in breast can-
cer [303], while CD47 is an indirect target of Wnt
signaling mediated by SNAI1 and ZEB1 in breast cancer
[304]. In addition, CD47 and programmed death-ligand

1 (PD-L1) are controlled by Myc, a well-documented tar-
get of Wnt/β-catenin signaling [305]. In addition,
TNBCs upregulate PD-L1 through Wnt signaling activ-
ity, thereby blocking CD8+ T cell activation [306]. Cyto-
toxic T lymphocyte antigen 4 (CTLA-4) is expressed at a
low level in naive T cells but is rapidly induced after ac-
tivation. Coincidentally, CTLA-4 is also a direct target of
Wnt/β-catenin signaling [307]. Tumor-associated mac-
rophages (TAMs) [308] and forkhead box protein P3
(FoxP3)+ Treg cells [309–311] are commonly associated
with a poor clinical outcome. TAMs directly inhibit T
cell functions by expressing checkpoint ligands (such as
PD-L1, PD-L2, B7–1/CD80, and B7–2/CD86) [312] and
inhibit CD4+ TH1, TH2, and CD8+ T cells by secreting
immunosuppressive cytokines (such as IL-10 and TGFβ)
[313]. TAMs also inhibit cytotoxic T cells by releasing
arginase 1 and indoleamine 2,3-dioxygenase (IDO). In
addition, TAMs secrete Wnt7b, which mediates the an-
giogenic switch and metastasis in breast cancer [46].
FoxP3+ Treg cells exert their immunosuppressive effect
by consuming IL-2, secreting immunosuppressive cyto-
kines (such as IL-10, IL-35, and TGFβ), converting ATP
into adenosine, and secreting perforin and/or granzyme
B, thereby limiting, inhibiting or destroying effector cells

Table 3 β-Catenin and its related factors in breast cancer

Protein Function Alterations in breast cancer Ref.

β-Catenin Key mediator Increased nuclear accumulation in TNBC and BLBC;
Activation is enriched in BLBC

[256, 257]

APC Destruction complex Mutated, deleted, hypermethylated or reduced in breast cancer [258–262]

PP2A Reduced activity in breast cancer [263]

WTX Reduced in breast cancer [264]

Axin Mutated in breast cancer [265]

GSK-3β Reduced in BLBC cells [16]

CK1α Reduced in BLBC cells [16]

Siah-1 – –

TNKS Destabilizer of Axin Overexpressed in breast cancer [266]

JNK2 Transcriptional cofactor – –

Rac1 Mutated and overexpressed in breast cancer [267]

TLE/GRG Corepressor TLE1 is selectively upregulated in invasive breast cancer [254]

HDAC – –

CTBP Elevated in TNBC and BLBC [255]

CBY – –

ICAT – –

TCF Coactivator TCF1/7 is overexpressed in BLBC cells [16]

LEF LEF1 is highly expressed in Her-2-negative breast cancer [268]

CBP – –

P300 Highly expressed in breast cancer [269]

PYGO PYGO2 is highly expressed in breast cancer cells [270]

BCL-9 Significantly amplified in BLBC [271]
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and attenuating the functions of APCs mediated by
CTLA-4 [314]. Intriguingly, TAMs and FoxP3+ Treg cells
express IL-10 and TGFβ, which induces reciprocal acti-
vation. Based on these studies, atezolizumab, an anti-
PD-L1 monoclonal antibody, has been approved by the
Food and Drug Administration (FDA) for advanced or
metastatic TNBC with PD-L1 expression [315]. T cell
exhaustion mediated by Wnt signaling is a strategy that
was developed for the immune escape of malignant
breast cells (Fig. 5 d).
TP53 is the most frequently altered gene in metastatic

breast cancers [316]. The loss of TP53 in breast cancer
cells triggers the secretion of Wnt1, Wnt6, and Wnt7a.
These Wnts bind to Fzd7 and Fzd9 on the surface of
TAMs, stimulating TAMs to produce IL-1β [3]. IL-1β
elicits IL-17 expression from γδ T cells, resulting in the
systemic, granulocyte colony-stimulating factor (G-CSF)-

dependent expansion and polarization of neutrophils.
Phenotypically altered neutrophils produce inducible ni-
tric oxide synthase (iNOS), which suppresses the activity
of antitumor CD8+ T cells and thereby induces systemic
inflammation and drives breast cancer metastasis [317].
FoxP3+ Treg cells express receptor activator of nuclear
factor-κB (RANK) ligand (RANKL), which stimulates the
pulmonary metastasis of RANK+ breast cancer cells
[318]. Cancer-associated fibroblasts (CAFs) promote
tumor immunosuppression by releasing IL-6, which in-
creases the number of FoxP3+ Treg cells [319]. Malignant
breast cells acquire invasive properties and become inva-
sive breast cancer cells through an epithelial-
mesenchymal transition (EMT)-dependent process that
is mediated mostly by the Wnt signaling pathway [320–
323] (see below). FoxP3+ Treg cells and invasive breast
cancer cells secrete matrix metalloproteinases (MMPs)

Fig. 4 Wnt signaling in breast cancer classification. a Wnt signaling in the histological classification of breast cancer. b Wnt signaling in the
molecular classification of breast cancer. (adapted from [272], additional data are based on an open-source database: www.cbioportal.org)
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Fig. 5 Wnt signaling in the immune microenvironment of breast cancer. a Schematic representation of the human mammary gland, breast
cancer, and an enlarged cross-section of the duct (adapted from [272]). b Tumor microenvironment of breast cancer. c Wnt signaling in the
immune microenvironment of breast cancer
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and vascular endothelial growth factors (VEGFs) to de-
grade the ECM and promote angiogenesis, resulting in
breast cancer metastasis (Fig. 5 e). Of note, MMPs and
VEGFs are classic targets of Wnt signaling [324]. Col-
lectively, these findings show that Wnt-driven systemic
inflammation and the immunosuppressive niche provide an
immune microenvironment for breast cancer metastasis.

Wnt signaling in the EMT-dependent metastasis of breast
cancer
The immune microenvironment is an external factor in
breast cancer metastasis, while genetic alteration-driven cell
transformation is the internal factor in breast cancer metas-
tasis [325]. Increasing evidence suggests that EMT contrib-
utes to the primary cause of breast cancer metastasis,
especially for BLBCs [326]. The term EMT refers to a com-
plicated and highly regulated molecular and cellular process
by which epithelial cells shed their differentiated character-
istics and acquire mesenchymal features [327]. Snai1
(Snail), Snai2 (Slug), Twist1, ZEB1, and ZEB2 (also known
as Sip-1 and Zfhx1b) are core EMT transcription factors
(EMT-TFs) [328]. These core EMT-TFs are mechanically
activated by TGFβ–Smads, Wnt/β-Catenin signaling,
epidermal growth factor (EGF)/fibroblast growth factor
(FGF)–receptor tyrosine kinase (RTK) signaling, Notch
signaling, and the MAPK pathway, further initiating EMT-
associated changes in gene expression, such as the suppres-
sion of E-cadherin and ZO-1 and the activation of N-
Cadherin, MMPs, integrins, and fibronectin [329].
The overexpression of core EMT-TFs has been observed

in primary invasive breast cancer and is usually associated
with a poor prognosis [327, 330–333]. Specifically, Snail
[224], Slug [16, 334], Twist1 [15], ZEB1, and ZEB2 [333]
are commonly overexpressed in BLBCs. While Snail [322,
331], Slug [321], Twist1 [335], and ZEB1 [336] are direct
targets of Wnt/β-Catenin signaling in breast cancer, ZEB2
is inclined to be an upstream factor of Wnt/β-Catenin sig-
naling [337, 338]. Twist1, ZEB1, and ZEB2 are also induced
by the MAPK pathway and may be mediated through
TGFβ and noncanonical Wnt signaling [329] (Fig. 6). Over-
expressed EMT-TFs suppress the expression of E-cadherin,
leading to the release of β-Catenin from the cytomembrane
into the cytoplasm (Fig. 1). Free β-Catenin, in turn, pro-
motes the expression of EMT-TFs, thereby forming a posi-
tive feedback loop. In addition, Wnt5a/b and Fzd2 drive
EMT through a noncanonical Wnt pathway that includes
Fyn and Stat3 [22]. The early dissemination and metastasis
of Her-2+ breast cancer are also driven by the noncanonical
Wnt (Wnt5a, Wnt5b, and Wnt11)-dependent EMT-like
pathway [11]. Wnt-driven EMT-TF expression further
regulates the morphogenesis of breast cancer cells [341]
(such as the formation of lamellipodia [342]) and
directly secretes MMPs, thereby acquiring migratory
and invasive properties. Indeed, EMT also contributes

to chemoresistance [343], stem cell properties [344],
and immunosuppression [345].

Wnt signaling in the inter- and intratumoral
heterogeneity of breast cancer
Extensive molecular and cellular heterogeneity exists in
human breast cancer tissues [312, 346] and determines
the diversity of pathological features, prognoses, and
responses to available therapy [347]. The heterogeneity
of breast cancer involves complicated concepts, termed
intertumoral heterogeneity (tumors from different pa-
tients), mammary epithelial differentiation hierarchy,
intertumoral heterogeneity (within a single tumor), and
breast cancer stem cells (BCSCs) [348].
The intertumoral heterogeneity of breast cancer can

be explained by a mammary epithelial differentiation
hierarchy theory by which different mammary epithelial
cell subpopulations that reside in mammary ducts pro-
vide a repertoire for intertumoral heterogeneity. Two
hypothetical models of mammary epithelial differenti-
ation hierarchy have been established based on gene ex-
pression profiling, and the difference lies in whether
adult quiescent mammary stem cells (MaSCs) exist
[349]. Cumulative evidence indicates that adult bipotent
or multipotent quiescent MaSCs, such as LGR5+Tspan8-
high MaSCs [350], may reside within the adult mammary
gland [351, 352].
Wnt signaling executes cardinal roles in maintaining

the phenotype of MaSCs [349]. Mouse MaSCs are iden-
tified by the surface marker Lin−CD24+CD29high sub-
population, which is expanded in MMTV-Wnt1-induced
premalignant mammary tissue [353]. On the other hand,
human stem-like cells identified by the surface marker
Lin−CD10−CD24−ProCr+CD44+ subpopulation have
been identified in both normal human mammary epithe-
lium and breast carcinomas [21]. Notably, both protein
C receptor (ProCr) and CD44 are targets of Wnt/β-ca-
tenin signaling [21, 354]. LRG5 is not only a coreceptor
(Fig. 1) but also a target of Wnt/β-catenin signaling
[355]. LRG5+ mammary epithelial cells contribute to the
reconstitution of an entire mammary gland, suggesting
that LRG5 is a potent biomarker of MaSCs [356].
MMP3, as an extracellular regulator of the Wnt signal-
ing pathway, is necessary for the phenotype and activity
maintenance of MaSCs [41]. Axin2 is not only a target
but also a negative feedback regulator of Wnt signaling
(Fig. 1) and is therefore sensitized to Wnt signals. The
Wnt-responsive cell population with Axin2+ is enriched
for MaSCs in the adult mammary gland [357, 358]. In
addition, the macrophages that receive the Notch path-
way ligand Dll1 from MaSCs, together with Gli2+ stro-
mal cells, govern MaSCs by secreting Wnts and other
paracrine factors [359, 360]. These data demonstrate
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that Wnt signaling is essential for MaSCs to maintain
their phenotype and self-renewal.
A comparison of the gene signatures between normal

mammary epithelial subpopulations and breast cancer
subtypes implied that the claudin-low cancer subtype is
remarkably similar to LGR5+Tspan8high MaSCs [349,
350]. In contrast, the basal-like cancer subtype shares
great similarity to the luminal progenitor subpopulation
[361, 362]. The Her-2+, luminal B, and luminal A cancer
subtypes reflect different cell subtypes within the lu-
minal lineage and in turn gradually lose differentiation
capacity. Therefore, the luminal A subtype is closest to
mature luminal cells, while the Her-2+ and luminal B
subtypes likely originate in cells restricted to the luminal
lineage [349]. These findings suggest a hypothesis that
various breast cancer subtypes (intertumoral heterogen-
eity) are derived from different mammary epithelial cell
subpopulations [363] (Fig. 7). Although Wnt signaling
controls various aspects of mammary gland development
and differentiation during both embryogenesis and post-
natal life [358], this hypothesis is derived from the

conjecture of comparative genomics rather than facts.
More sophisticated lineage tracing systems may be re-
quired to address this question in the future.
Two models have been proposed to account for the

intratumoral heterogeneity of breast cancer. The clonal
evolution model explains intratumor heterogeneity as a
result of natural selection and uses stochastic mutations
as a platform. Advantageous clones differ in time and
space within an individual tumor and thereby contribute
to the intratumoral heterogeneity of breast cancer [348].
The cancer stem cell model hypothesizes that the intratu-
moral heterogeneity is derived from common malignant
self-renewing cells that can generate the full repertoire of
tumor cells (i.e., BCSCs). BCSCs are hypothesized to be
breast cancer-initiating cells (BCICs) that undergo a sec-
ond oncogenic event by which BCSCs gain the ability of
sustained propagation, whereas BCICs are hypothesized to
be MaSCs that undergo one oncogenic event [364].
BCSCs were initially identified by surface markers as
Lin−CD44+CD24−/low [365]. Subsequently, an aldehyde de-
hydrogenase 1 (ALDH1)+ BCSC population capable of

Fig. 6 Wnt signaling in the EMT-dependent metastasis of breast cancer. (adapted from [329, 339, 340])
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self-renewal and of generating tumors that recapitulate
the heterogeneity of the parental tumor was identified
[366]. Of note, a portion of Lin−CD44+CD24−/low BCSCs
overlap with ALDH1+ BCSCs, and Lin−CD44+CD24−/lo-
wALDH1+ BCSCs display a more tumorigenic feature
[366] (Fig. 7).
Wnt signaling is critical not only to the phenotypic main-

tenance of BCSCs but also to MaSC–BCSC transformation.
CD44 is a well-known target of Wnt/β-catenin signaling
and contributes the ‘stemness’ properties to BCSCs [21].

The depletion of CD44 effectively prevents aggregation,
blocks lung metastasis, and impairs the ‘stemness’ of circu-
lating breast tumor cells [367]. ProCr is another target of
Wnt/β-catenin signaling, and ProCr+ MaSCs represent one
of the origins of BCSCs [354]. Intriguingly, 100% of CD44+

breast tumor cells are positive for ProCr [21]. Indeed, the
expression level of CD44 is also controlled by noncanonical
Wnt5a [15] and Wnt5b [16]. As discussed above, ALDH1+

BCSCs represent another important subpopulation of
BCSCs [366]. ALDH1 is not a direct target of Wnt/β-

Fig. 7 Wnt signaling in the inter- and intratumoral heterogeneity of breast cancer. (adapted from [349])
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catenin signaling; however, its activity is controlled by
syndecan-1, a coreceptor of noncanonical Wnt–PCP sig-
naling (Fig. 2 c), and the BCSC phenotype that is character-
ized by ALDH1 activity and CD44+CD24−/low is reduced
upon Syndecan-1 knockdown [248]. These findings suggest
that the phenotypic maintenance of BCSCs is governed
jointly by both canonical and noncanonical Wnt signaling.
The constitutive overexpression of Wnt1 in the mam-

mary gland directly gives rise to tumors [5], suggesting that
Wnt signaling activation is an independent oncogenic
event. MMTV-Wnt1- and MMTV-ΔN89β-Catenin-in-
duced tumors contain differentiated cells of both luminal
and basal lineages, suggesting that the precursor of Wnt1-
and ΔN89β-Catenin-induced tumors is a bipotential stem
cell [24, 368]. The loss of Pten accelerates the dysregulation
of this subpopulation during tumor initiation [288]. Intri-
guingly, MMP3, as a regulator of Wnt signaling, maintains
the phenotype of MaSCs on one side [41] and promotes
mammary carcinogenesis on the other [369]. Additionally,
the Lin−CD24+CD29high MaSC subpopulation is expanded
in MMTV-Wnt1-induced premalignant mammary tissue
[353]. These findings indicate that Wnt signaling is the
principal driver in MaSC–BCSC transformation. However,
the relationship between Wnt1/ΔN89β-Catenin-induced
bipotential stem cells and Lin−CD44+CD24−/low or
ALDH1+ BCSCs remains obscure (Fig. 7).

Wnt signaling in breast cancer drug resistance
Drug resistance in cancer is considered to be a multi-
faceted problem involving tumoral heterogeneity, drug
efflux/inactivation, survival pathway activation, etc.
[370]. The Goldie-Coldman hypothesis explains drug
resistance as a result of directed selection and uses
heterogeneous tumor cell clones with various muta-
tions as a platform [371, 372]. Drug-resistant clones
survive and expand under toxic drug stress; on the
other hand, Wnt signaling inactivation causes BCSCs
to enter a quiescent state that is insensitive to drugs
[352, 373], thereby leading to multidrug resistance.
The Wnt signaling-mediated mammary epithelial dif-
ferentiation hierarchy and the formation and self-
renewal of BCSCs are drivers of the tumoral hetero-
geneity of breast cancer (Fig. 8 a).
Drug efflux from cancer cells mediated by ATP-

binding cassette (ABC) transporters is another vital
pathway in the drug resistance of breast cancer. P-
glycoprotein (P-gp, also known as MDR1, encoded by
ABCB1), multidrug resistance protein 1–5 (MRP1–5,
encoded by ABCC1–5), and breast cancer resistance pro-
tein (BCRP, encoded by ABCG2) are well-defined ABC
transporters that are involved in the transport of clinic-
ally relevant drugs [375]. PYGO2 is a coactivator in
Wnt/β-catenin signaling (Fig. 1) that mediates chemore-
sistance by activating MDR1 expression in breast cancer

[376]. Caveolin 1 is overexpressed and amplified in a
subset of basal-like and metaplastic breast carcinomas
[377, 378] and promotes drug resistance by increasing
ABCG2 expression in a Wnt/β-catenin signaling-
dependent manner [379, 380] (Fig. 8 b).
EsR-positive breast cancers account for nearly 80% of

all breast cancer cases [1], and approximately 50% of
mortalities arise from EsR-positive breast tumors [381].
EsR is a ligand-inducible transcription factor that con-
tains a central DNA binding domain, an intrinsically dis-
ordered N-terminal activation function 1 (AF1) domain,
and a C-terminal ligand-binding domain (LBD) [381].
Tamoxifen was the first clinically approved EsR-targeted
drug and competes with 17β-estradiol (E2) for EsR bind-
ing and prevents LBD-mediated coactivator recruitment,
thereby impairing the transcriptional activity of EsR
[381]. The primary (4-hydroxytamoxifen) and secondary
(endoxifen) metabolites of tamoxifen mediated by the
cytochrome P450 system are more potent than tamoxi-
fen itself [374]. Cytochrome P450 2D6 (CYP2D6) is un-
doubtedly the key enzyme for endoxifen generation.
One-third of women treated with tamoxifen for 5 years
experience recurrence within 15 years, and endocrine-
resistant disease may account for 25% of all breast
cancers [382]. Inactive CYP2D6 that fails to convert
tamoxifen to endoxifen and the lack of ERα expression
are primary mechanisms of endocrine resistance [383].
Intriguingly, both canonical and noncanonical Wnt sig-
naling pathways are activated in tamoxifen-resistant
breast cancer cells, and Wnt3a increases the resistance
of EsR+ breast cancer cells to tamoxifen treatment [384].
Furthermore, Sox2 is increased in tamoxifen-resistant
breast cancer cells and negatively correlated with ERα
expression. Sox2 also maintains the phenotype of breast
cancer stem/progenitor cells by activating Wnt signaling,
thereby rendering EsR+ breast cancer cells insensitive to
tamoxifen treatment [14]. Although there is no direct
evidence to prove the relationship between Wnt signal-
ing and CYP2D6 activity or tamoxifen metabolism, some
studies indicate that such a relationship may exist.
Endoxifen levels are 20% lower during winter months
than return to mean levels across seasons and are associ-
ated with low vitamin D3 levels; thus, vitamin D3 may
maintain endoxifen levels by increasing CYP2D6 activity
[385]. Indeed, vitamin D3 can regulate intestinal
CYP3A4 expression through the binding of the vitamin
D receptor (VDR)-retinoid X receptor (RXR) heterodi-
mer to the ER6 motif of the CYP3A4 promoter [386,
387]. On the other hand, vitamin D3 increases tamoxifen
sensitivity by inhibiting Wnt/β-catenin signaling [388]
(Fig. 8 c). Of note, vitamin D3 has been proven to be a
potent disruptor of β-Catenin/TCF [389, 390]. Endoxifen
is also a substrate of the efflux transporter MDR1 [391],
a target of Wnt signaling, as we discussed above [376].
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These findings indicate that Wnt signaling is involved in
endocrine therapy resistance in breast cancer.
Immunotherapy for breast cancer has attracted wide

attention and interest, and immune checkpoint blockade
is the most investigated form in more than 290 ongoing
clinical trials of breast cancer immunotherapy [392]. Un-
doubtedly, PD-1/PD-L1 and CTLA-4 are the most at-
tractive targets among immune checkpoint inhibitors
[393]. Indeed, more than 40% of TNBCs are PD-L1 posi-
tive, and the anti-PD-L1 monoclonal antibody atezolizu-
mab has been approved by the FDA for advanced or
metastatic PD-L1-positive TNBC [394]. Nevertheless,
approximately 40% of PD-L1-positive TNBCs exhibit a
poor response to atezolizumab plus nab-paclitaxel treat-
ment. Given the 10.3% complete response rate in PD-
L1-positive TNBC, much more effort may be needed
[394]. Wnt signaling not only controls the expression of
PD-L1 [306] and CTLA-4 [307] but also blocks the
tumor-immune cycle at all steps [395]. β-Catenin/STT3-

dependent PD-L1 N-glycosylation stabilizes and upregu-
lates PD-L1, which promotes breast cancer immune eva-
sion [396]. Moreover, MMTV-Wnt1 breast tumors are
classified as ‘cold tumors’, suggesting that Wnt signaling
mediates immunotherapy resistance [397]. Thus, target-
ing Wnt signaling is a potential strategy to enhance the
efficacy of cancer immunotherapy (Fig. 5 d).

Molecular agents targeting the Wnt signaling pathway in
breast cancer
Hundreds of inhibitors have been developed over the
past few decades. These inhibitors are generally focused
on targeting Porcupine, Fzds, DVLs, TNKS 1/2, and β-
Catenin/TCF or β-Catenin/coactivators.
Porcupine inhibitors have recently received great at-

tention because of their broad-spectrum Wnt-targeted
and anticancer activity. LGK974, a representative Porcu-
pine inhibitor, is being tested in a phase I clinical trial in
patients with TNBC and other Wnt-driven cancers [16,

Fig. 8 Wnt signaling in breast cancer drug resistance. a Wnt signaling-induced tumoral heterogeneity involves the drug resistance of breast
cancer. b The APC transporters P-gp (encoded by ABCB1) and BCRP (encoded by ABCG2), which are involved in drug efflux, are targets of Wnt
signaling in breast cancer. c Wnt signaling involves endocrine resistance in breast cancer. The thickness of the arrow represents the relative
contribution of each pathway to the overall oxidation of tamoxifen (adapted from [374])
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Fig. 9 Selected Wnt signaling inhibitors (Part 1). a Porcupine inhibitors. b Fzd inhibitors. c Wnt/Fzd/LRP inhibitor. d LGR5-specific antibody-drug
conjugate. e Dvl inhibitors. f CK1α agonists. g GSK-3β agonist
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63, 398]. Of note, GNF-6231, Porcn-IN-1, and Wnt-C59
are LGK974 analogs (Fig. 9 a and Table 4). Perturbation
of Wnt–Fzd interactions is another strategy to block
Wnt signaling transduction. OMP-54F28 is an Fc fusion
protein that contains the extracellular N-terminal
cysteine-rich domain (CRD) of Fzd8 and serves as a
decoy receptor, competing with Fzd8 for all Wnts [17,
408, 409]. R-spondins are indirect activators of Wnt sig-
naling; OMP-131R10, an anti-R-spondin-3 antibody, has
entered a phase I clinical trial for solid tumor treatment
(Table 5).
Targeting Fzds is also a mainstream strategy to block

Wnt signaling. Niclosamide is an FDA-approved antihel-
minth. As an inhibitor of Fzd1, it has entered phase I/II
clinical trials and could be the most promising Fzd in-
hibitor [411]. OMP-18R5, an antibody that targets
multiple Fzds, binds to 5 of the 10 Fzds and is a poten-
tial drug for breast cancer and other solid tumors [414].
In addition, OTSA101-DTPA-111In and OTSA101-
DTPA-90Y are humanized chimeric anti-Fzd10 anti-
bodies (named OTSA-101) that are radiolabeled with
Indium 111 and Yttrium 90, respectively. OTSA101-
DTPA-111In is a promising Fzd10-targeted single-photon
emission computed tomography (SPECT) imaging agent,
while OTSA101-DTPA-90Y is a potent Fzd10-targeted
agent for metastatic synovial sarcoma radiotherapy [420,
421]. Salinomycin is an FDA-approved supplement in
poultry feed and kills BCSCs selectively [424]. It was
subsequently proven to block Wnt-induced LRP phos-
phorylation [422]. LGR5 (mAb)-mc-vc-PAB-MMAE is
an LGR5-specific antibody-drug conjugate (ADC).
Monomethyl auristatin E (MMAE) is a tubulin-
inhibiting cytotoxic drug that kills LGR5-positive cancer
cells selectively [423] (Fig. 9 b-d and Table 5).
Dvls, as the main intracellular effectors of the Wnt/

Fzd/LRP complex, are ideal targets. Quite a few small-
molecule inhibitors have been developed for Dvl inhib-
ition. Sulindac is the most promising Dvl inhibitor

among these small-molecule inhibitors. It is an FDA-
approved nonsteroidal anti-inflammatory drug that has
been shown to have clinically significant anticancer ef-
fects. Sulindac is an inhibitor of not only cyclooxygenase
1/2 (COX1/2) [425] but also Dvl in the PDZ domain
[426]. It is hypothesized to suppress tumor growth by
blocking Dvl activity rather than prostaglandin synthesis
[427, 428] (Fig. 9 e and Table 6).
β-Catenin is the key to canonical Wnt signaling. The

direct inhibition or degradation of β-Catenin is assuredly
an effective strategy. Only two small molecules (MSAB
[435] and NRX-252262 [436]) that directly target β-
Catenin have been identified to date. Other small mole-
cules that target β-Catenin by enhancing the formation
of the destruction complex, such as activating CK1α
[437–439], GSK-3β [440], and Axin [441], have also
received full attention. Another destruction complex-
independent strategy is activating Siah-1-induced β-
Catenin degradation with hexachlorophene [442]. Given
the critical function of Axin degradation mediated by
TNKS1/2, various small-molecule inhibitors have been
developed to inhibit TNKS1/2. 2X-121 (also known as
E7449), the most promising TNKS1/2 inhibitor, has en-
tered phase I/II clinical trials for breast cancer and ovar-
ian cancer treatment [443, 444] (Fig. 9 f-g, Fig. 10 a-c
and Table 7).
Nuclear β-Catenin serves as a scaffold for its coactiva-

tors to bind rather than as an independent transcription
factor. Thus, disrupting the interaction between β-
Catenin and its coactivators is also a potent strategy to
block Wnt signaling transduction. β-Catenin/TCF be-
comes the primary target for disruption. However, vita-
min D3, as a potent β-Catenin/TCF disruptor [389, 390],
has been proven to be invalid for cancer prevention
and treatment [460, 461]. Disrupting the interaction
between β-Catenin and BCL9 or CBP is an optional
strategy to block the transcription of Wnt target
genes. PRI-724, as a β-Catenin/CBP disruptor, has en-

Table 4 Inhibitors of Porcupine

Compound IC50 Development stage Ref.

CGX1321 1.0 nM Phase I (NCT03507998): Gastrointestinal tumors;
Phase I (NCT02675946): Solid tumors

[399, 400]

ETC-159 2.9 nM Phase I (NCT02521844): Advanced solid tumors [401]

LGK974 0.1 nM Phase I (NCT01351103): TNBC and other cancers [16, 63, 398]

GNF-1331 12 nM Preclinical [402]

GNF-6231 0.8 nM Preclinical [402]

IWP2 27 nM Preclinical [384, 403, 404]

IWP-L6 0.5 nM Preclinical [405]

IWP-O1 80 pM Preclinical [406]

Porcn-IN-1 0.5 ± 0.2 nM – [407]

Wnt-C59 74 pM Preclinical [398]
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tered a phase I clinical trial for advanced solid tumor
treatment [462]. Transducin β-like protein 1 (TBL1)–
TBL1-related protein (TBLR1) and β-Catenin recruit
each other, displacing the corepressors TLE and
HDAC1 and resulting in the stimulation of Wnt tar-
get gene transcription [463]. BC2059 is a β-Catenin/
TBL1 disruptor and has entered a phase I clinical
trial for desmoid tumor treatment [464]. Intriguingly,
apicularen A and bafilomycin A1, as vacuolar H+-ad-
enosine triphosphatase (V-ATPase) inhibitors, effect-
ively inhibit Wnt signaling [465]. In addition,
although the direct targets of KY02111 [466] and
SM04690 remain unknown, SM04690 has entered a
phase II clinical trial for knee osteoarthritis treatment
[467] (Fig. 10 d-i and Table 8).

Challenges and opportunities
Wnt signaling activation in colorectal cancer is induced
mainly by APC (73%) and CTNNB1 (5%) mutations [217],
suggesting that canonical Wnt/β-Catenin signaling is the
leading form of Wnt signaling in colorectal cancer. By

Table 6 Inhibitors of Dvls

Compound IC50 Development stage Ref.

3289–8625 12.5 μM Preclinical [429]

BMD4702 ND Preclinical [430]

FJ9 ND Preclinical [431]

J01-017a 1.5 ± 0.2 μM Preclinical [432]

KY-02061 24 μM Preclinical [433]

KY-02327 3.1 μM Preclinical [433]

NSC668036 ND Preclinical [434]

Sulindac ND FDA-approved nonsteroidal
anti-inflammatory drug;
Phase I (NCT00245024):
Breast cancer;
Phase II (NCT00039520):
Breast cancer;
Phase III (NCT01349881):
Colorectal neoplasms

[426]

Table 5 Inhibitors of Fzds and related factors

Compound Target IC50 Development stage Ref.

OMP-54F28
(Fzd8-Fc fusion)

Wnts ND Phase I (NCT02069145): Hepatocellular cancer;
Phase I (NCT02092363): Ovarian cancer;
Phase I (NCT02050178): Pancreatic cancer;
Phase I (NCT01608867): Solid tumors

[408]

OMP-131R10 (mAb) R-spondin3 ND Phase I (NCT02482441): Solid tumors [410]

Niclosamide Fzd1 0.5 ± 0.05 μM FDA-approved antihelminth;
Phase I (NCT03123978): Prostate cancer;
Phase II (NCT02519582): Colorectal cancer;
Phase II (NCT02807805): Prostate cancer

[411]

DK-520 Fzd1 0.23 ± 0.06 μM Preclinical [412]

DK-419 Fzd1 0.19 ± 0.08 μM Preclinical [413]

OMP-18R5 (mAb) Fzd1/2/5/7/8 ND Phase I (NCT01345201): Solid tumors;
Phase I (NCT02005315): Pancreatic cancer;
Phase I (NCT01957007): NSCLC;
Phase I (NCT01973309): Breast cancer

[414]

IgG-2919 (mAb) Fzd5/8 ND Preclinical [415]

Fz7–21 Fzd7 50–100 nM Preclinical [416]

RHPD-P1 7–40 μM Preclinical [417]

SRI37892 0.66 μM Preclinical [418]

1094–0205 Fzd8 5.0 ± 1.1 μM Preclinical [419]

2124–0331 10.4 ± 2.0 μM Preclinical [419]

3235–0367 7.1 ± 1.4 μM Preclinical [419]

NSC36784 6.5 ± 0.9 μM Preclinical [419]

NSC654259 5.7 ± 1.2 μM Preclinical [419]

OTSA101-DTPA-111In; OTSA101-DTPA-90Y Fzd10 ND Phase I (NCT04176016): Synovial sarcoma [420, 421]

Salinomycin Wnt/Fzd/LRP 163 nM Preclinical [422]

LGR5 (mAb)-mc-vc-PAB-MMAE LGR5 ND Preclinical [423]

ND not determined
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Fig. 10 Selected Wnt signaling inhibitors (Part 2). a Siah-1 agonist. b β-Catenin destabilizers. c TNKS1/2 inhibitors. d Axin stabilizers. e β- Catenin/
TCF disruptors. f β-Catenin/CBP disruptors. g β-Catenin/TBL1 disruptor. h V-ATPase inhibitors. i Wnt signaling inhibitors with an unknown target
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contrast, Wnt signaling activation in breast cancer is more
complicated and often involves dual effects of canonical
and noncanonical Wnt signaling [22, 189, 479]. Although
extensive research has been carried out, it is still unclear
whether Wnt signaling can be druggable successfully for
the therapeutic purposes of breast cancer.
The safety and effectiveness of Wnt signaling-targeted

drugs is the most concerning issue that we have to face.
Abrogation of the aberrant ‘dark side’ of Wnt signaling
in breast cancer without interfering with its crucial role
in tissue homeostasis and repair is undoubtedly the most
desirable clinical outcome [17]. However, the majority of
available Wnt inhibitors (such as LGK974) are broad
spectrum, and it is challenging to achieve balance by
controlling the dosage or appropriate time of drug
administration. In addition, the effectiveness of Wnt
signaling-targeted drugs needs to be further confirmed
in clinical trials. Of note, very few inhibitors of

noncanonical Wnt signaling have been identified or de-
veloped. Extensive crosstalk between noncanonical Wnt
signaling and many other signaling pathways exists,
making it difficult to specifically target Wnt signaling.
ROCK, as a critical component of Wnt–PCP signaling
(Fig. 2c), can be inhibited by the small molecule fasudil,
thereby blocking Wnt–PCP signaling [480].
Furthermore, the mechanism of balance between

canonical and noncanonical Wnt signaling should be
addressed. For example, Wnt5a antagonizes canonical
Wnt/β-Catenin signaling and exhibits tumor-suppressive
activity in some circumstances [221, 481–483], but other
studies have reported that Wnt5a controls both canon-
ical and noncanonical Wnt signaling [15, 16, 484]. Nusse
et al. explained that Wnt5a activates or inhibits
β-Catenin–TCF signaling depending on the receptor
context [485]. However, the switch and balance between
canonical and noncanonical Wnt signaling may involve

Table 7 Small molecules that degrade β-Catenin at the cytoplasmic level

Compound Target IC50/EC50 Development stage Ref.

Pyrvinium CK1α 10 nM FDA-approved antihelminth [437]

SSTC3 30 nM Preclinical [438]

CCT031374 GSK-3β 6.1 μM Preclinical [440]

Hexachlorophene Siah-1 7.03 μM Preclinical [442]

MSAB β-Catenin 0.583 μM Preclinical [435]

NRX-252262 3.8 ± 0.2 nM Preclinical [436]

2X-121 (E7449) TNKS1/2 50 nM Phase II (NCT03562832): Breast cancer;
Phase II (NCT03878849): Ovarian cancer;
Phase I/II (NCT01618136):
TNBC and other cancers;

[443, 444]

G007-LK 0.08 μM Preclinical [445, 446]

G244-LM 0.11 μM Preclinical [445]

IWR-1 0.18 μM Preclinical [403, 447]

JW55 470 nM Preclinical [448]

JW74 420 nM Preclinical [449]

K-756 31 nM (TNKS1),
36 nM (TNKS2)

Preclinical [450]

MN-64 6 nM (TNKS1),
72 nM (TNKS2)

Preclinical [451]

NVP-TNKS656 6 nM (TNKS2) Preclinical [452]

PJ34 1 μM (TNKS1) Preclinical [453]

RK-287107 14.3 nM (TNKS1),
10.6 nM (TNKS2)

Preclinical [454]

Tankyrase-IN-2 10 nM (TNKS1),
7 nM (TNKS2)

Preclinical [455]

WIKI4 26 nM (TNKS2) Preclinical [456, 457]

XAV939 5 nM (TNKS1),
2 nM (TNKS2)

Preclinical [133, 451, 458, 459]

KY1220 Axin 2.1 μM Preclinical [441]

KYA1797K 0.75 μM Preclinical [441]
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more profound mechanisms. We propose a bipolar
seesaw model to illustrate this ebb and flow: various
Wnt ligands and their receptors form a unique combin-
ation, and the activation of canonical or noncanonical
Wnt signaling depends on this unique combination.

Fzds–Dvls complex-guided downstream kinase cascades
differ in canonical and noncanonical Wnt signaling. The
switch mechanism may exist not only for the Wnts–Fzds
complex but also for downstream kinase cascades
(Fig. 11).

Table 8 β-Catenin inhibitors in cancers

Compound Target IC50/EC50 Development stage Ref.

2,4-diamino-quinazoline β-Catenin/
TCF

0.6 μM Preclinical [468]

BC21 15 μM Preclinical [469]

CGP049090 8.7 μM Preclinical [470, 471]

CWP232228 0.8 ~ 2 μM Preclinical [472]

iCRT3 8.2 nM Preclinical [473]

iCRT5 18.7 nM Preclinical [473]

iCRT14 40.3 nM Preclinical [473]

LF3 1.65 μM Preclinical [474]

PKF115–584 3.2 μM Preclinical [470, 471]

PKF118–310 0.8 μM Preclinical [470, 471]

PNU-74654 ND Preclinical [475]

Vitamin D3 ND Phase II (NCT01948128): Breast cancer;
Phase III (NCT01169259): Cancer and cardiovascular disease;
Phase III (NCT02786875): Breast cancer

[389, 390]

SAH-BCL9 β-Catenin/
BCL9

ND Preclinical [476]

ICG-001 β-Catenin/
CBP

3.0 μM Preclinical [477]

PRI-724 ND Phase I (NCT01302405): Advanced solid tumors [462]

BC2059 β-Catenin/
TBL1

ND Phase I (NCT03459469): Desmoid tumor [464]

Apicularen A V-ATPase 20 nM Preclinical [465, 478]

Bafilomycin A1 0.44 nM Preclinical [465]

KY02111 Unknown ND Preclinical [466]

SM04690 19.5 nM Phase II (NCT03706521): Knee osteoarthritis [467]

Fig. 11 The bipolar seesaw model between canonical and noncanonical Wnt signaling. (some compositional elements of this figure were
obtained from https://www.16pic.com and reference [486])
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Despite the potential safety and effectiveness concerns
regarding the therapeutic targeting of Wnt signaling in
breast cancer, constantly emerging novel inhibitors and
ongoing clinical trials may ameliorate these issues. Add-
itionally, the application of small-molecule libraries such
as Pfizer compounds and molecular docking algorithms
based on structural information may accelerate this
process. The decryption of underlying mechanisms, in-
cluding the molecular subtype, tumor stage, and micro-
environment context-dependent Wnt signaling activation,
as well as the switch and balance between canonical or
noncanonical Wnt signaling, is undoubtedly the rationale
to ameliorate the safety and effectiveness of Wnt-targeted
therapy, especially for breast cancer and other Wnt-driven
cancers.

Conclusions
Accumulating evidence corroborates that the aberrant
activation of Wnt signaling exists from breast tumor ini-
tiation to distant metastasis. An increasing number of
Wnt-targeted small molecules and biologics have en-
tered clinical trials for breast cancer treatment, suggest-
ing that Wnt signaling is an attractive target. The
identification of accurate targets and the development of
safe and effective drugs are rationales for subsequent
clinical trials to determine the appropriate dosage and
time of drug administration. Regarding the evolution of
Wnt inhibitors, monoclonal antibodies and ADCs will
be the mainstream drugs in the future, which is in line
with the trend of precision medicine and personalized
treatment. Given the unique roles of the noncanonical
Wnt pathway in breast cancer, more specific inhibitors
should be developed in the future.
Although numerous studies have verified that both ca-

nonical and noncanonical Wnt signaling pathways are
involved in the progression of breast cancer, there are
still no available Wnt-targeted inhibitors for breast can-
cer treatment in a variety of clinical contexts. Efforts to
seek suitable means to regulate Wnt signaling in breast
cancer and other Wnt-driven cancers are still ongoing,
but emerging discoveries suggest that Wnt-targeted
therapy will translate soon into real therapies [90].
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