Sun et al. Molecular Cancer (2020) 19:135
https://doi.org/10.1186/512943-020-01255-w

Molecular Cancer

REVIEW Open Access

The potential roles of exosomes in
pancreatic cancer initiation and metastasis

Wei Sun, Ying Ren, Zaiming Lu and Xiangxuan Zhao"

Check for
updates

Abstract

PaCa.

Pancreatic cancer (PaCa) is an insidious and highly metastatic malignancy, with a 5-year survival rate of less than
5%. So far, the pathogenesis and progression mechanisms of PaCa have been poorly characterized. Exosomes
correspond to a class of extracellular nanovesicles, produced by a broad range of human somatic and cancerous
cells. These particular nanovesicles are mainly composed by proteins, genetic substances and lipids, which mediate
signal transduction and material transport. A large number of studies have indicated that exosomes may play
decisive roles in the occurrence and metastatic progression of PaCa. This article summarizes the specific functions
of exosomes and their underlying molecular mechanisms in mediating the initiation and metastatic capability of
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Background

Pancreatic cancer (PaCa) ranks among the most com-
mon and devastating digestive tract cancers worldwide.
Besides early surgical resection, no effective regime
against this aggressive malignancy has been discovered
so far [1]. The 5-year overall survival rate of PaCa is
considered less than 5% and the survival period of ad-
vanced PaCa is only 3-6 months [2]. Remarkably, the
carcinogenesis of PaCa remains poorly characterized.
The majority of PaCa cases (over 85%) are attributed to
pancreatic ductal adenocarcinoma (PDAC) [3]. Some
studies have shown that acinar-to-ductal metaplasia
(ADM), induced by pancreatic injury, pancreatitis, or
genetic toxicity, is one of the most typical events ob-
served during PaCa development. ADM can further
evolve into a variety of pancreatic intraepithelial neopla-
sias (PanINs), which are, to some extent, still reversible.
Under the influence of many factors, PanINs eventually
progress into PDAC [4]. ADM can be recovered after
the elimination of oncogenic genetic insults or sustained
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environmental stress [5]. It has been shown that matrix
metalloproteinase-7 (MMP-7) [6], NAD (+) - dependent
protein deacetylase sirtuin-1 (SIRT1) [7], and polycomb
compressor complex 1 (PRC1) [8] are involved in the
regulation of ADM development. In addition, atypical
flat duct lesions (AFDL) have often been considered as
precancerous conditions of PaCa [9]. Recent studies have
also indicated that mutations on KRAS [10], m (6) A
demethylase gene ALKBHS [11], PDL-1 (CD274), and
various non-coding RNAs [12] may play key roles in
modulating the occurrence and development of PaCa.
Still, despite many reports describing a plethora of signal
pathways involved in PaCa initiation and progression,
the underlying mechanisms that orchestrate the develop-
ment of this malignancy are poorly known or still under
debate.

Exosomes, a general term for a particular class of
nano-extracellular vesicles are produced by various stro-
mal and transformed cells in the tumor microenviron-
ment (TME) [13, 14]. Exosomes can be transported by a
number of body fluids (i.e. blood, saliva, pancreatic duct
fluid, cerebrospinal fluid and amniotic fluid) to distal tis-
sues and organs, but, importantly, they can also function
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by autocrine and paracrine routes [15]. Exosomes can
modulate the activation of various signaling pathways in
target (recipient) cells. There is evidence showing that exo-
somes play crucial roles in the pathogenesis and evolution
of many pancreas precancerous conditions, including dia-
betes mellitus (DM), pancreatitis, pancreatic fibrosis and
other pancreatic-related disorders [16—-18]. Exosomes can
participate in promoting the transformation of various pre-
cancerous lesions to PaCa, including intraductal papillary
malignant neoplasm (IPMN) and PanIN but, moreover,
they may also play major roles in PaCa metastasis by indu-
cing angiogenesis, cell migration, epithelial-mesenchymal
transition (EMT), and apoptotic resistance [19, 20]. Our
current work aims to discuss the biological significance of
exosomes in PaCa carcinogenesis and metastasis.

Exosome overview

Characteristics of exosomes

Exosomes mainly consist of spherical, disc or cup-
shaped nanoparticles, coated by phospholipid bilayer,
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with a diameter of 40-150 nm (Fig. 1). These nano-
structures typically contain proteins, nucleic acids, lipid
molecules and other inorganic substances such as Ca**
[13, 14]. Although exosomes can be generated by various
types of cells, they all share similar structural proteins,
including Rab GTPases, major histocompatibility com-
plex class I and class II molecules (MHC I/II), Annexins,
ALG-2 interacting protein X (ALIX), tumor susceptibil-
ity gene 101 protein (TSG101), flotillin (FLOT1), integ-
rins, and tetraspanins (Tspans) [21].

Tspans belong to a 4-transmembrane protein family,
mainly comprised of CD9, CD63, CD81, CD82, CD53,
and CD37, which are ~ 100-fold more enriched in exo-
somes than in their parental cells [22]. Homodimers can
be formed between Tspans, or heterocomplexes can be
formed between Tspans and other proteins. Tspans may
also couple with cholesterol and gangliosides to further
generate distinct Tspan-enriched microdomains (TEMs).
Depending on the cellular requirements, TEMs may se-
lectively recruit membrane-related proteins, such as
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integrins, proteases and other related signal molecules,
thus operating as a specific signal transduction platform
[23].

The exosome surface also contains a variety of lipid
raft microdomains such as caveolae that integrates
caveolins as structural proteins that have a property to
resist against detergents. These exosome microdomains
(TEMS and caveolae) can transduce important signals,
such as apoptosis and cell cycle arrest, via lipid mole-
cules or proteins [24]. Exosomal lipids are comprised of
cholesterol, ganglioside, sphingomyelin, (hexosyl) cer-
amide, phosphotidylserine, and phosphotidylethanola-
mine [25]. Exosomal nucleic acids mainly correspond to
microRNAs (miRNAs/miRs), transfer RNAs (tRNAs),
ribosomal RNAs (rRNAs), messenger RNAs (mRNAs),
circular RNAs (circRNAs), long noncoding RNAs
(IncRNAs), lincRNAs, cell free DNAs (cfDNAs) and
mitochondrial DNAs (mtDNAs) [26]. According to the
necessity of the cells, the protein content of certain exo-
somes may integrate particular signal molecules, includ-
ing heat shock protein family proteins (such as HSP70/
90), as well as cell membrane receptors (such as EGFR),
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cytokines, cytoskeletal molecules, and other cytosolic
components such as ubiquitin, survivin, and Ca®* [26].
At the same time, the lipid membrane components as
well as the inner exosomal content may vary according
to the exosome function and the type of exosome-
producing cells.

Exosome secretion and uptake

Exosomes originated from early endosomes, formed by
invaginations along the cell membrane. Upon stimula-
tion by specific signals, early endosomes continually col-
lect a variable amount of cargoes from the cytosol,
leading to their maturation into late endosomes, i.e.
multivesicular bodies (MVBs) containing a large number
of intraluminal vesicles (ILVs) [27] (Fig. 2). The forma-
tion of ILVs is mainly mediated by an endosome sorting
complex required for transport (ESCRT) complex-
dependent machinery [24]. MVBs can be transported to
and fuse with the plasma membrane, culminating into
the release of the internal ILV to the extracellular envir-
onment to form the so-called exosomes. MVBs can also
fuse with lysosomes, by which their content is degraded
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Fig. 2 Exosome secretion and uptake. (i) Specific areas of the plasma membrane can invaginate along with cargo (es) to form an early endosome
structure. Early endosomes then further continue to collect various cargoes from the cytosol, during which with the assistance of ESCRTs and
other related proteins, the endosomal lipid membrane can wrap a range of wanted cargoes to form a variety of independently closed ILVs inside
the late endosomes (MVBs). MVBs can move to and combine with lysosomes to digest their content and recycle them or, alternatively, fuse with
the plasma membrane to secrete ILVs out of cells, thus forming exosomes. (i) Exosomes can be transported by the body fluids, including blood,
to reach their target or recipient cells. Exosomes function by directly transmitting signals upon binding to surface receptors of recipient cells, or
being absorbed into the recipient cells through different endocytosis mechanisms to form endosomes again. Inside the target cells, exosomes
can release their content into cytosol to fulfill various signaling transduction, be merged with lysosomes digest and recycle content, or re-fuse
with the plasma membrane to accomplish the transcellular transportation
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and recycled for further utilization. The movement
and fusion of MVB to the plasma membrane is
largely regulated by specific signaling pathways. It has
been shown that soluble N-ethylmaleimide-sensitive
factor attachment protein receptors (SNAREs) and
GTPase Rab family proteins (such as Rab27a/b) are
implicated in the process of MVB fusion to the
plasma membrane [28, 29]. Additionally, there is also
evidence supporting that the formation of MVB does
not depend on the existence of ESCRT complex. For
instance, upon gene silencing of all ESCRTs (under
the assistance of Tspans and ceramide), a large num-
ber of ILVs can still be formed in the MVB, which
eventually move to the plasma membrane for further
release of exosomes [30, 31]. GW4682, a small-
molecule compound, can reduce the production of
ESCRT-independent exosomes by inhibiting neutral
sphingomyelinase 2 (nSMase2), which then generates
ceramide from sphingomyelin [32]. Upon delivery of
exosomes into recipient cells via body fluids (such as
blood), these biological nanocarriers interact with cells
by recognition and conjugation to membrane-bound
receptors, therefore activating specific signal pathways
in target cells. Alternatively, exosomes can be also in-
ternalized into target cells by different mechanisms,
including clathrin-dependent, lipid raft (Caveolae/cav-
eolin-1)-mediated endocytosis, and macropinocytosis/
phagocytosis [33]. After entering the cells, MVBs (late
endosomes) containing exosomes either fuse with ly-
sosomes to recycle exosomal components, or release
their content into the cytoplasm to further act as sec-
ond messengers. Exosomes may also be secreted again
from cells by mechanisms involving transcellular
transport.

Exosomes and PaCa initiation

Pancreatitis and diabetes mellitus (DM) are both consid-
ered non-malignant pancreatic diseases that may pro-
mote abnormal secretion of hormones, such as glucagon
increase and insulin decrease, and tissue destruction that
could eventually evolve into PaCa, if no preventive or
therapeutic care is provided [34]. Furthermore, genetic
mutations, obesity, viruses, and alcohol intake are also
risk factors for PaCa occurrence [35, 36]. PaCa can de-
velop from pre-malignant lesions, such as intraductal
papillary mucinous neoplasm (IPMN) or pancreatic
intraepithelial neoplasia (PanIN). Meanwhile, some key
pro-oncogenic factors, including KRAS, CDKN2A (also
known as p16/MTS1), SMAD4, and p53, have been re-
ported be involved in the transition of pre-cancerous
conditions to PaCa [37]. In this section, we discuss how
exosomes are closely associated with the onset of pan-
creas precancerous diseases (Table 1).
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Exosomes and pancreatitis

Pancreatitis is usually divided into acute (AP), chronic
(CP), and autoimmune (AIP) pancreatitis. AP relates to
an acute auto-digestive inflammatory reaction of the
pancreatic tissue, which can lead into pancreatic edema,
hemorrhage and eventually necrosis, or parenchymal cell
apoptosis. Moreover, AP is often accompanied by local
or systemic complications and is considered highly le-
thal. AP-induced PaCa may occur independently of age,
country (or geographic region), and etiology [61, 62]. In
contrast, CP is correlated with various pro-inflammatory
pancreatic secretion diseases and fibrosis, thus increasing
the risk of PaCa by 12-fold [41, 63]. Generally, the risk
of CP to evolve into PaCa within a 20-year range is ~
5%, while the incidence of the disease increases annually
thereafter [64]. Lastly, AIP is a distinct type of auto-
immune pancreatic disease that is divided into diffuse
and focal/segmental subtypes, whose correlation with
PaCa is still unclear [65].

Increasing evidence has suggested that exosomes are
involved in the occurrence, development of pancreatic
inflammation (pancreatitis) as well as related carcino-
genesis. Compared with healthy subjects, the number of
circulating exosomes (cirExos) in the blood of AP pa-
tients (AP-cirExos) is significantly increased [66]. AP-
cirExos appear to originate from liver or immune cells,
and play a similar role as inflammatory factors by indu-
cing a series of molecular reactions that may result in ir-
reversible changes of interstitial fibrosis as well as
parenchymal calcification of the pancreas [66]. AP-
cirExos can break through the lung alveolar endothelial
barrier and induce the transformation of macrophages
from M2 to M1 to eventually promote an acute lung in-
jury (ALI) [66]. Recent studies have indicates that AP-
cirExos can induce the nucleotide binding
oligomerization domain (NOD)-like receptor protein 3
(NLRP3)-dependent inflammasome activation and pyr-
optosis in alveolar macrophages of AP mouse model
[67]. Moreover, AP can produce cirExos in ascites to
further induce injury in other related tissues and organs
via the hepatic or portal system [66]. In vivo studies
using a rat model with taurocholate-induced AP have in-
dicated that exosomes derived from pancreatitis-
associated ascitic fluid (PAAF-Exos) and plasma exo-
somes (AP-cirExos) are two distinct populations. For in-
stance, AP-cirExos exhibit much higher pro-
inflammatory activity on macrophages than PAAF-Exos.
One possible explanation for this difference is that the
former contains some pro-inflammatory miRNAs such
as miR-21/122/155, while the latter possesses high levels
of histones and ribosomal proteins [68]. Klotho, an anti-
aging protein is overexpressed in several malignancies,
including breast cancer [69] and hepatocellular carcin-
oma [70], to induce apoptotic resistance and cell growth.
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Table 1 Potential exosomes biomarkers involved in pancreas precancerous diseases

Biomarkers Sample Receipt cell ~ Exosome function Clinical Refs
significance
Calreticulin/Gp96/ Islet B-cells  DCs Increase activation of APCs T1DM [38]
ORP150
CCN2/miR-21 PSCs PSCs Stimulate the migration, proliferation, and division of PSCs as well as the CP [39]
collagen and fibronectin secretion
FABP4 1 Serum Not Exacerbate insulin resistance and result in hyperglycemia T2DM [40]
mentioned
GAD65/IA-2/Pro-insulin  Islet B-cells  DCs/T-cells Decrease (3-cell content and insulin secretion T1DM [38]
Klotho MSCs PACs Block inflammatory responses and apoptosis AP [41]
RBP4 Adipocytes  Macrophages Stimulate macrophages to secrete IL-6 or TNF-a IR [42]
TAAs 1 Serum B Prevent B lymphocytes from recognizing PaCa cells IS [43-
lymphocytes 45]
MiR-16 SKMs Islet B-cells  Inhibit B-cell proliferation IR and T2DM  [46]
MiR-16-5p/574-5p/21-  Serum Not Not mentioned TIDM [47]
5p ! mentioned
MiR-30/133b/342 1 Urine Adipocytes Not mentioned T2DM [48]
MiR-106b-5p/222-3p-c  BMCs Islet B-cells  Induce -cells proliferation T1DM [49]
MiR-142-3p/142-5p/155 T Islet B-cells  Induce apoptosis in B-cells T1DM [50]
lymphocytes
MiR-146a/b/195/497 Islet tumor  Islet tumor/  Induce apoptosis in islet tumor cells and B-cells T2DM [51]
cells B-cells
MiR-155/222/486 ADCs Not Not mentioned DM [52-
mentioned 54]
MiR-203 PaCa cells DCs inhibit the expression of TLR4, TNF-q, and IL-12 IS [55]
MiR-212-3p PaCa cells DCs Inhibit DCs from presenting antigens to T lymphocytes IS [56]
MiR-375 1 Serum Not Reduce insulin secretion and islet formation T2DM [57,
mentioned 58]
MiR-1260a/494-3p *PaCa cells  iPBMCs Not mentioned IS [59]
INcRNA ENST/mRNA PaCa cells DCs Not mentioned Not [60]
AEP/legumain mentioned

1, up-regulation; |, down-regulation

Abbreviations: ADCs adipose derived macrophages, MSCs mesenchymal stem cells, BMCs bone marrow cells, iPBMCs immunosuppressive peripheral blood
mononuclear cells, IR insulin resistance, IS immune suppression, IncRNA ENST IncRNA ENST00000560647, NF-kB nuclear factor-kB, *PaCa cells SMAD4™'~ pancreatic

cancer cells, PAC pancreatic acinar cells

Interestingly, exosomal Klotho derived from mesenchy-
mal stem cells (MSCs) can attenuate the caerulein-
induced activation of the nuclear factor-kB (NF-«B) sig-
naling in pancreatic acinar cells, which potentially block
inflammatory responses and apoptosis in AP. These ob-
servations suggest that exosomal Klotho could be uti-
lized as a potential therapeutic target for AP [41].
Repeated episodes of AP can eventually evolve into
CP. There are many pathogenic factors identified for CP,
which is mainly characterized by a slow but progressive
pancreatic tissue destruction and fibrosis that increase
the risk of PaCa [71]. Indeed, CP can cause some sub-
stantial pancreatic tissue destruction as well as exocrine/
endocrine insufficiency, which potentially activate rest-
ing pancreatic stellate cells (PSCs). The activated PSCs
have a high proliferation capacity, which can be trans-
formed into myofibroblasts [72, 73]. PSCs are able to

communicate with PanINs and promote their progres-
sion [74, 75]. It has been shown that connective tissue
growth factor 2 (CCN2/CTGF2), a fibrosis-related pro-
tein, can modulate a multitude of pancreatic cell func-
tions, such as p-cell proliferation and fibronectin
secretion in PSCs [71]. Clinical studies have also shown
that CCN2 is highly expressed in PSCs from CP patients
[39]. Mechanistic analyses have demonstrated that
CNN2 expression can be regulated by miR-21 [39].
Moreover, both CCN2 and miR-21 are found in exo-
somes produced by PSCs [39]. In vivo studies using a
mouse alcoholic pancreatitis model have demonstrated
that miR-21- and CCN2-positive exosomes can be re-
trieved by other PSCs in an autocrine or paracrine man-
ner, therefore stimulating the migration, proliferation,
division of PSCs as well as the collagen production [39].
These continuously activated PSCs-secreted collagens
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may precipitate and form extensive fibrotic lesions in
pancreas. Clinically, a higher density stroma or the in-
duction of fibrotic plaques by PSCs is typical characteris-
tics of both CP and PaCa. These coincident features
make these two pathological conditions hardly distin-
guishable [39].

Additionally, Zhao and coworkers have shown that rat
pancreatic acinar cells can also produce exosomal miR-
NAs that are capable of activating pancreatitis-
associated macrophages via MAPK signaling pathway
[76]. However its physiological significance remains to
be verified. Many viruses, including hepatitis viruses
[77], human immunodeficiency virus [78], epstein-barr
virus, [79] and coxsackie virus [80], can also cause pan-
creatitis. Among these viruses, coxsackie virus B3
(CVB3) infection has been reported to induce an in-
crease on the levels of intracellular Ca** as well as cyto-
skeleton depolymerization in host cells, promoting the
secretion of CVB3-positive exosomes that may propagate
virus transmission upon uptake by non-infected cells. Of
note, alcohol consumption has been referred to increase
the incidence of CVB3-induced pancreatitis [81].

Exosomes and diabetes mellitus (DM)

DM is a metabolic disease driven by genetic and/or en-
vironmental factors [82]. DM-mediated fat toxicity,
chronic inflammation, and oxidative stress may modify
the function of a number of cells, such as pancreatic o/
[B-cells, adipocytes, hepatocytes, and T-lymphocytes, and
then increase the risk of PaCa [83]. There is also evi-
dence indicating that the incidence of PaCa is signifi-
cantly higher in DM patients than in the normal
population, for which, one possible explanation is that
insulin resistance and abnormal glucose metabolism can
act as driving forces behind PaCa predisposition in DM
patients [82]. In addition, blood glucose levels have been
correlated with the prevalence of PaCa [67], besides
serving as a predictor of tumor size and grading in PaCa
patients [84].

Recent studies have shown that exosomes also mediate
Type 1 DM (T1DM, mainly caused by autoimmune re-
action) [85] and Type 2 DM (T2DM) [86]. Specifically,
Delong and coworkers have found that exosomes appear
to play crucial roles in islet autoimmune response in
T1DM [87]. Antigen presenting cells (APCs)-derived
exosomes contain large amounts of major histocompati-
bility complex (MHC), which are able to induce the T-
cell immune response and activate B lymphocytes to ini-
tiate humoral immunity. These responses may specific-
ally support the generation of an autoimmune attack
towards islet p-cells, resulting in a decrease of [-cell
content and eventually an increase in blood glucose
levels and DM due to limited insulin secretion [38, 88].
Cianciaruso and colleagues have observed that exosomes
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released by both human and rat pancreatic islets contain
[B-cell autoantigens, such as glutamin acid decarboxylase
65 (GADG65), insulinoma-associated protein 2 (IA-2),
and pro-insulin. These particular exosomes are also cap-
able of entering and activating dendritic cells (DCs) [38].
Upon endoplasmic reticulum stress (ERS), T1DM-
related cytokines, including IL-1p and IFN-y, can induce
B-cells to release exosomes containing calreticulin, heat
shock protein Gp96, and oxygen-regulated protein 150
(ORP150) to further exacerbate T1DM-related auto-
immune diseases [38]. Besides exosomal proteins, it has
also been reported that certain miRNAs, including miR-
142-3p, miR-142-5p, and miR-155, are specifically
present in exosomes derived from murine and human T
lymphocytes, which can promote apoptosis by up-
regulating T1DM-related chemokines (i.e. Ccl2, Ccl7,
and Cxcl10) in pancreatic B-cells [50]. Furthermore,
Tsukita and colleagues have confirmed that miR-106b-
5p- and miR-222-3p-containing exosomes, produced by
bone marrow cells, can enter [ cells to reduce CIP/KIP
expression, resulting in P cell proliferation in vitro and
in vivo [49]. Specifically exosomal miR-106b-5p and
miR-222-3p can rescue streptozotocin-induced apoptosis
of B cells in a mouse model, thus improving hypergly-
cemia [49]. Hence, exosomal miR-106b-5p and miR-
222-3p may be exploited as potential therapeutic agents
for DM. Finally, serum levels of exosomal miR-16-5p,
miR-574-5p and miR-21-5p are significantly higher in
healthy subjects when compared to TIDM patients [47],
but their significance in PaCa initiation still require fur-
ther validation.

T2DM is mainly caused by insulin resistance, de-
creased hormonal sensitivity, or reduced insulin produc-
tion due to pancreatic B-cell dysfunction. Fatty acid-
binding protein 4 (FABP4) is released by adipose tissues
and may play a key role in the development of T2DM
[89]. Upon enhancement of lipolysis in obese T2DM pa-
tients, the amounts of exosomal FABP4 in plasma also
increase, exacerbating insulin resistance and then result-
ing in hyperglycemia and T2DM [40]. Additionally,
miRNA-positive exosomes, produced by pancreatic is-
lets, have been found to trigger elevated p-cell apoptosis
in T2DM. For instance, Guay and colleagues have
treated MIN6 pancreatic islet tumor cells with IFN-y,
TNEF-a, and IL-1B, and found that exosomal miR-146a/
b, miR-195, or miR-497, which are produced in response
to treatment, can induce apoptosis in MING6 cells as well
as in mouse pancreatic islet cells [51]. MiR-375 plays an
important role in maintaining glucose homeostasis [90].
It has been observed that overexpression of miR-375
suppresses glucose-induced insulin production in pan-
creatic B-cell lines and isolated primary f cells. In con-
trast, this overexpression can be abrogated by miR-375
inhibition or myotrophin gene silencing [91, 92].
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Importantly, serum miR-375-3p-positive exosomes de-
rived from the pancreas have been shown to mediate a
reduction on insulin secretion and islet formation, which
eventually results in T2DM [57, 58]. Still, miR-30, miR-
133b, and miR-342 are apparently up-regulated in urin-
ary exosomes isolated from T2DM patients [48]. Exo-
somes enriched with miRNAs, such as miR-155 [52],
miR-222 [53], and miR-486 [54] (isolated from adipose-
derived macrophages as well as MSCs and stem cells re-
spectively), can act as potential modulators of DM.
Nevertheless, the association between these exosomal
miRNAs produced by adipose-derived cells and PaCa
occurrence still requires further validation. Finally, miR-
200 overexpression induces B-cell apoptosis, which may
contribute to T2DM-related death [93]. Whether miR-
200 is localized in exosomes also requires further
evaluation.

Exosomes-mediated immune suppression

Exosomes produced by cancer cells can support their es-
cape of immune surveillance by inhibiting lymphocyte
activation and survival, and inducing loss of function in
lymphocytes [94]. Of all, DCs are the most important
APCs in the human body, functioning in the immune
system by inducing the expression of Toll-like receptors
(TLRs) and producing various interleukins (ILs). Among
TLRs, TLR4 expression is particularly vital for the anti-
tumor activity of DCs [95]. Exosomes produced by PaCa
cells (PaCaExos) have been shown to induce immune
suppression by deregulating DCs. For instance, miR-
203-containing exosomes produced by PaCa cells are
able to increase intracellular miR-203 levels and inhibit
the expression of TLR4, TNF-a, and IL-12 after being
uptaken by DCs, and eventually induce their dysfuction
[55]. It has also been shown that miR-212-3p-positive
PaCaExos can specifically diminish the levels of MHC II
transcription factor and regulatory factor x-associated
protein (RFXAP) and, subsequently, inhibit DCs from
presenting antigens to T lymphocytes [56]. Generally,
exosomes containing tumor-associated antigens (TAAs),
produced by cancer cells, can present MHC complexes
to DCs for further processing and then activate the im-
mune response by tumor-specific T lymphocytes [43,
44]. However, tumor cells are also shown to suppress
both adaptive and innate antitumor responses via exo-
somes. As an example, the lipid membrane surface of
cirExos from the plasma of PaCa patients contains a
large amount of TAAs. These exosomes can specifically
bind and harbor immunoglobulins in the plasma to pre-
vent B lymphocytes from recognizing tumor cells,
thereby enabling cancer cells to escape from the cyto-
toxic killing effects induced by immune cells [45]. In
vivo studies have further confirmed that PaCaExos can
effectively inhibit IL-2-mediated PI3K/Akt signal
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pathway in lymphocytes after being acquired by DCs
and macrophages, which may eventually promote apop-
tosis [96]. Moreover, PaCaExos can increase the levels of
IncRNA ENST00000560647 and asparaginyl endopeptid-
ase (AEP/legumain) mRNA in DCs [60]. However, the
precise function of these exosomes in immune escape
needs to be further investigated.

Integration into a specific tumor microenvironment
(TME) is considered a pre-requisite for cancer cell me-
tastasis, proliferation, and survival. The formation of this
microenvironment includes the transformation of im-
mune cells (towards a immunosuppressive and pro-
tumor phenotype) as well as fibroblast proliferation and
increased fiber hyperplasia [97]. There is evidence dem-
onstrating that, in PaCa TME, the amount of immuno-
suppressive T, cells, M2 polarized tumor-associated
macrophages (M2TAM), and immature myeloid-derived
suppressor cells (iMDSCs) are superior to those of im-
mune effective CD8" T cells, DCs, and M1 polarized
TAMs [98, 99]. In this context, the immunosuppressive
cells may help PaCa cells to escape immune surveillance.
Notably, ~50% of PaCa cases lack expression of the
tumor suppressor SMAD4 [100]. SMAD4-deficient PaCa
cells can produce exosomes that contain miR-1260a and
miR-494-3p. Upon uptake by immunosuppressive per-
ipheral blood mononuclear cells (such as gMDSCs and
mMDSCs), these miR-1260a and miR-494-3p-positive
exosomes can promote cell proliferation and glycolysis,
thereby creating an immunosuppressive TME [59].
There is also evidence that exosomes produced by PaCa
cells in rats can be uptaken by various leukocytes, lead-
ing to the inhibition of cell proliferation and weakness of
anti-apoptotic ability. Moreover, these particular PaCa
exosomes are capable of inhibiting IL-12-induced Ty, cell
proliferation and abrogate the chemotactic migration of
leukocytes to tumor sites [96], which contributes to
TME formation.

Exosomes-mediated metabolic disorders

Accumulating evidence has demonstrated that obesity
caused by high fat/caloric diet, contributes to PaCa initi-
ation, especially in Western countries [101-103]. It has
been shown that exosomes derived from adipose tissue
of obese B6 mice can induce the differentiation of per-
ipheral blood monocytes into activated macrophages
[42]. Functional analyses have demonstrated that adipose
tissues are capable of producing retinol binding protein
4 (RBP4)-positive exosomes to stimulate activated mac-
rophages that secrete IL-6 or TNF-a in a TLR4-
dependent manner, thus eventually inducing insulin re-
sistance [42]. In addition, the impact of palmitic acid,
isolated from edible palm oil, on metabolic diseases like
DM has attracted great attention from cancer biologists.
For instance, it has been discovered that mice fed with a
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high palmitic acid diet (HPAD) exhibit a subset of meta-
bolic symptoms including hyperglycemia, glucose in-
tolerance, and insulin resistance. Furthermore, HPAD
can promote myoblasts to produce more exosomes that,
in turn, may induce skeletal muscle (SKM) cell differen-
tiation [104, 105]. Specifically, HPAD is capable of
stimulating SKM to produce miR-16-positive exosomes
that can be uptaken by pancreatic p-cells, thus inhibiting
B-cell proliferation. This cell growth inhibition is driven
by the activation of intracellular Hedgehog-PTCHI sig-
naling pathway that may, ultimately, induce SKM insulin
resistance and promote T2DM progression [46]. There-
fore, SKM-specific exosomes exert both endocrine and
paracrine effects that may lead to insulin resistance due
to the reduction of p-cell content.

Obstructive sleep apnea (OSA) is known as a potential
cause of intermittent hypoxia (IH). Remarkably, this
condition appears to increase the risk of cancer, promote
cancer progression, and also elevate cancer-related mor-
tality. Specifically, IH is shown to promote tumor cell
proliferation and angiogenesis by increasing the produc-
tion of exosomes and regulating exosome content [106,
107]. Almendros and colleagues have demonstrated that
chronic intermittent hypoxia (CIH) may increase the
number of tumor-promoting exosomes in the blood.
Compared with normal sleep populations (or treated
OSA patients), serum exosomes derived from OSA pa-
tients can significantly promote the proliferation and mi-
gration of PaCa cells [108].

Exosomes and PaCa metastasis

Extensive evidence has demonstrated that tumor-derived
exosomes act as extracellular signalosomes, with roles
involving  TME remodeling [109]. On one hand,
PaCaExo can transport nucleic acids, proteins, or lipids
from parental to recipient cells, which induce pro-
inflammatory activities, mediate vascular leakiness, sup-
presses immune response, regulate apoptotic resistance,
and promote angiogenesis and proliferation, thereby fa-
cilitating tumor metastasis. On the other hand, PaCa-
related cells such as cancer-associated fibroblasts
(CAFs), tumor-associated macrophages (TAMs), cancer
initiating cells (CICs) and PSCs generate exosomes that
may promote growth, proliferation, drug resistance,
EMT, migration, invasion and metastasis of PaCa cells
(Table 2).

PaCa-produced exosomes and PaCa metastasis

PaCa exosomal proteins

PaCa-derived exosomes (PaCaExos) contain various pro-
tein molecules that can activate surrounding stromal
cells and induce extracellular matrix (ECM) remodeling
and neovascularization, thus establishing a TME to fa-
cilitate metastasis. In vivo studies using PaCa animal
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models have demonstrated that PaCaExos are rich in
Tspan8, CD106, and CD49d [118]. Upon uptake by rat
aortic epithelial cells (ECs), those PaCaExos activate the
intracellular expression of VWF (von Willebrand factor),
TSPANS, CXCLS, MIF (migration inhibitory factor),
CCRI1, VEGF and VEGFR2, which lead to neovasculari-
zation by inducing EC proliferation, migration, sprout-
ing, and progenitor maturation. Notably, Tspan8-
enriched exosomes produced by PaCa cells can induce
VEGF-independent angiogenesis around tumor tissues
[118]. Costa Silva and colleagues have pointed out that
PaCa can utilize exosomes to establish a pre-metastatic
niche in distal organs, such as liver or lungs [130]. In
this case, after exosomes derived from mouse PaCa cells
were injected into healthy mice, they could be found in
the liver [130]. Mechanistic analysis have shown that
MIF-positive exosomes derived from PaCa cells can pro-
mote liver metastasis by increasing TGF-f expression in
Kupffer cells (KCs) and also activating hepatic stellate
cells (HSCs) to secret fibronectin [130]. Compared with
healthy subjects or individuals with 5-year progression-
free PaCa, PaCa patients with liver metastases usually
exhibit elevated exosomal MIF levels in the serum [116].
Therefore, exosomal MIF may prominently function in
the formation of the liver pre-metastatic niche. Add-
itional evidence has demonstrated that PaCaExos that
are positive for integrin avP5 usually reach the liver,
whereas integrin a6p4- and a6f1l-containing exosomes
are transported to the lungs [116]. A recent study has
demonstrated that protein kinase D1 (PRKD-1) expres-
sion is significantly downregulated in PaCa tissues when
compared to non-tumor tissues [131]. Particularly,
PRKD-1 knockout can induce PaCa cells (Panc-1) to
produce more exosomes. Moreover, PaCa xenograft
mouse experiments have confirmed that PRKD-1 knock-
out can increase the content of exosomes in the serum,
thus promoting PaCa invasion. Mechanistic analysis has
showed that alteration on PRKD-1 may stimulate PaCa
cells to produce more integrin a6f4 positive exosomes
to promote PaCa lung metastasis [131]. Furthermore, Li
and colleagues have figured out that the formation of a
pre-metastatic niche also requires the generation of new
blood vessels [128]. Upon uptake by human umbilical
vein endothelial cells (HUVECs), PaCaExos can activate
Akt and ERK1/2 signaling pathways. This pathway acti-
vation promotes tube formation, by increasing Ras
homolog gene family member A (RhoA) activity, as well
as cytoskeleton remodeling, which drive a cell shrinkage
due to the decreased expression of tight junction ligand
protein Zonula occludens-1 (ZO-1), and also induce
endothelial barrier dysfunction by enhancing local
hyperpermeability [128]. In another study, Satake and
colleagues have injected double fluorescence-labeled
Mia-PaCa-2 cells into the spleen of nude mice and then
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Table 2 Potential exosomes biomarkers involved in PaCa metastasis
Biomarkers Sample Target cell  Exosome function Signaling pathway Refs
CD44v6 hPaCa-CM  hPaCa cells  Enhance migration and invasion Activate Wnt/B-Catenin pathway and increase  [110]
PAI-1, MMP and TIM-1
D151/ rPaCa-CM hPaCa cells  Promote EMT, migration and metastasis, and Increase expression of chemokine and receptor  [111,
Tspan8 increase drug resistance such as CXCR4 and EGFR3 112]
Claudin7  rPaCIC hPaCa cells  Promote migration and invasion Increase pAkt/Bcl-2/Bcl-XL /MDRI1, promote [113]
matrix degradation, and reprogram SC and HPC
ICAM-1/ hPaCa-CM  Macrophage Induce macrophage phenotype change and Increase VEGF, MCP-1, IL-6, IL-1(3, MMP-9 and [114]
AA promote tumor growth TNF-a
Lin288B hPaCa-CM  hPaCa/PSC  Promote metastatic invasion Activate Lin28B/let-7/HMGA2 /PDGFB axis [115]
MIF m/hPaCa- KC/HSC Promote the formation of the liver pre-metastatic ~ Up-regulate TGF-B expression and induce fibro-  [116]
M niche nectin secretion
Plectin hPaCa-CM  hPaCa cells  Induce migration, proliferation and invasion Not mentioned [117]
Tspan8/ rPaCa-CM EC Induce proliferation, migration, sprouting and Induce VEGF-independent angiogenesis [118]
106/49d progenitors maturation of EC
VEGF hPaCa cells  hPaCa cells  Enhance tumor growth and angiogenesis Activate VEGF signal pathway to stimulate [119]
angiogenesis and tumor growth
ZIP4 haPaCa-CM  hPaCa cells  Increase proliferation, migration, and invasion of Not mentioned [120]
non-metastatic PaCa cells
miR-27a hPaCa-CM  HMVEC Promote cell survival and growth Induce angiogenesis by inhibiting BTG2 [121]
expression
miR-222 CM/Serum  hPaCa cells  Enhance proliferation and invasion Induce decrease, phosphorylation and [122]
redistribution of p27 via PPP2R2A/Akt axis
miR-307Ta- hPaCa-CM  Macrophage Enhance migration and invasion, and induce Activate PTEN/PI3K signaling pathway (123]
3p macrophage phenotype change
miR-339-  mPaCa-CM  mPaCa cells  Enhance migration and invasion Decrease expression of zinc finger protein [124]
5p ZNF689
miR-501-  Macrophage hPaCa cells  Induce tumorigenesis and metastasis Decrease TGFBR3 levels and activate TGF-3 [125]
3p signaling
miR-1246/ hPaCa-CM  PSC Promote PSC proliferation and pancreatic fibrosis  Induce Akt/ERK activation and increase a-SMA  [126]
1290 and procollagen type | C-peptide
MRNA- hPaCa PHFF Induce proliferation and inhibit senescence Enhance telomerase activity [127]
hTERT serum
circ-lARS  hPaCa-CM  EC/HUVEC ~ Promote angiogenesis and metastasis by Down-regulate miR-122 and ZO-1, up-regulate ~ [128]
enhancing endothelial monolayer permeability and RhoA, RhoA-GTP, and F-actin as well as pro-
inducing HUVEC growth mote focal adhesion
circ-PDEBA  hPaCa hPaCa cells  Promote invasive growth Activate MACC/MET/ERK/Akt axis [129]
serum

Abbreviations: CM culture medium, EC rat aortic epithelial cells, haPaCa-CM culture medium from hamster pancreatic cancer cells, hPaCa-CM culture medium from
human pancreatic cancer cells, HPC hematopoietic cells, m/hPaCa-CM culture medium from mouse or human pancreatic cancer cells, mPaCa cells mouse
pancreatic cancer cells, PHFF primary human foreskin fibroblasts, rPaCa-CM culture medium from rat pancreatic carcinoma cells, rPaCiC culture medium from rat

pancreatic cancer initiating cells, SC stroma cells

demonstrated that PaCaExos reach the liver where they
are uptaken by KCs, but also appear in the bone marrow
and lung [132].

It has been shown that the knockout of CDI51 or
TSPANS expression (CDI517'~ or TSPANS™'~, respect-
ively) results in impaired metastasis of PaCa cells [111].
Remarkably, the re-introduction of regular PaCaExos
into CD1517~ or TSPANS™~ cells can restore metasta-
sis. Functional analysis has shown that CD151- and
Tspan8-postive exosomes are able to (i) activate the ex-
pression of EMT-related genes in PaCa cells, (ii) induce
ECM remodeling by activating stromal cells, and (iii) up-

regulate the expression of pro-inflammatory factors in
hematopoietic cells [111]. Furthermore, lymphangiogen-
esis is impaired and the hypersensitivity reaction is de-
layed in TSPAN8™~ mice, while angiogenesis is severely
impaired in both CD151™~ or TSPANS™~ mice. Still,
metastasis of PaCa cells transplanted into either 7SPA
N8~ or TSPAN8™~/CD1517"~ mice is effectively inhib-
ited, suggesting that host Tspan8 or CD151 can signifi-
cantly affect tumor progression [112]. Totally, PaCa
exosomal CD151 and Tspan8 may promote matrix deg-
radation and reprogramming of the stroma and
hematopoietic cells, which are essential steps for PaCa
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metastasis. CD44 variant isoform 6 (CD44v6) is highly
expressed in PaCa cells and can be integrated into exo-
somes [133]. Upon uptake of PaCa-derived CD44v6-
positive exosomes by other PaCa cells, they activate
Wnt/B-Catenin signaling and up-regulate the expression
of plasminogen activator inhibitor 1 (PAI-1), MMP, and
tissue inhibitor of metalloproteases 1 (TIM-1), thus en-
hancing PaCa cell migration and metastatsis [110]. Since
CD44v6 can promote TSPANS expression at the tran-
scriptional level, CD44v6 gene silencing effectively atten-
uates Tspan8-induced PaCa cell metastasis [134, 135].
Similarly, Jung and colleagues have observed that
CD44v6 gene knockout (CD44v6™") severely impairs
PaCa cell metastasis. Co-treatment of CD44v6 "~ cells
with soluble matrix (SM), produced by regular PaCa
cells and PaCa-derived CD44v6-positive exosomes, can
effectively restore the metastatic pattern of these cells,
suggesting that PaCa may form a (pre-)metastatic niche
microenvironment in distal metastasized organs by
synergized effects derived of produced exosomes and
other factors [136].

Myoferlin (MYOF) plays a crucial role in cell migra-
tion and invasion, as well as cell membrane endocytosis
and vesicle transportation [137, 138]. It has been re-
ported that MYOF can promote the migration and inva-
sion of PaCa cells by regulating the mitochondrial
structure and energy production [139, 140]. In PaCa
cells, MYOF mediates the inclusion of VEGF into exo-
somes to promote tumor growth and angiogenesis. Ac-
cordingly, knockdown of MYOF expression can largely
inhibit the growth and proliferation of PaCa cells [119].
Inhibition of MYOF function is also capable of reducing
the volume of exosomes produced by PaCa cells as well
as decreasing the levels of exosomal Rab7a and CD63.
Although these exosomes with smaller volume are upta-
ken by human ECs, they fail to promote EC proliferation
and migration, which eventually leads to inhibition of
angiogenesis [118]. LIN28 is a 25-kDa RNA-binding pro-
tein that has been shown to promote PaCa growth and
metastasis by inhibiting the biogenesis of a group of
microRNAs, including let-7. The NAD(+)-dependent
histone deacetylase sirtuin 6 (SIRT6) is able to induce
PaCa growth inhibition by reducing LIN28 in PaCa cells
[141]. Liver metastasis studies using PaCa tumor-bearing
mice have demonstrated that LIN28B-positive exosomes
produced by PaCa cells may reach target cells and acti-
vate the LIN28B/let-7/HMGA2/PDGFB signaling axis to
further promote PaCa metastasis after injection via cau-
dal vein [115].

Claudin 7 (Cld7) is a key structural protein present in
tight junctions that interconnect cells [142]. It has also
been shown that Cld7 can be distributed beyond T7J sites.
For instance, palmitoylated Cld7 (Palm-Cld?7) is localized
in  glycolipid-enriched =~ membrane  microdomains
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(GEMM) [113]. Cld7 in tight junction (TJ-Cld7) is
shown to regulate the entry of related proteins into
PaCaExos and affect the function of exosomes derived
from CICs (CIC-Exos) by modulating the composition
of exosomal transporters and lipid metabolites, while
Palm-Cld7-positive exosomes have the capability of
regulating cell migration [113]. Importantly, Kyuno and
colleagues have found that murine pancreatic cancer ini-
tiating cells (PaCICs) can produce Cld7-positive exo-
somes which are capable of inducing re-programming of
non-metastatic cancer cells to further increase their in-
vasiveness [113]. Another PaCa-derived Wnt5p-positive
exosomes have been reported to enter and activate the
Wnt5p signaling in other cancer cells lines such as PaCa,
A549 and Caco-2, where they stimulate migration and
proliferation. Wnt5f knockout and 7SGI01 silencing
can both abrogate the exosomal Wnt5p-dependent PaCa
cell proliferation and migration [143]. Under normal
physiological conditions, plectin is usually localized in
the cytoplasm where it functions as a scaffolding protein.
Plectin is expressed in PaCa, but usually undetectable in
non-PaCa tissues [144]. In PaCa cells, integrin p4 medi-
ates the transfer of overexpressed plectin into exosomes,
eventually leading to the proliferation, migration, and in-
vasion of these cells [117].

Zinc transporter ZIP4-positive exosomes, produced by
highly metastatic PaCa cells, can stimulate the prolifera-
tion, migration, and invasion of non-metastatic PaCa
cells [145]. Accordingly, exosomal ZIP4 from the serum
of PaCa patients can be used as a diagnostic marker for
cancer progression [145]. Compared with exosomes de-
rived from human pancreatic ductal epithelial cells
(HPDE), exposure of non-tumorigenic cells to PaCaExos
potentially induces transformation as well as tumorigen-
esis in vivo of non-malignant cells [120]. Functional ana-
lysis have indicated that PaCaExos are capable of
inducing random gene mutations in recipient cells, while
only certain cell populations with PaCaExo-induced mu-
tations can undergo transformation and, eventually, be-
come tumors. Considering the stochastic nature of
mutations, the mechanism of PaCaExo-induced tumori-
genesis in transformed cells may differ from each other
[120]. Specifically, it has been reported that mutated
DNA segments from KRAS, CDKN2A, P53, and SMAD4
can be internalized into PaCaExos. Thus, these exo-
somes may effectively promote the transformation of
normal cells as well as subsequent tumor formation
[146].

PaCa exosomal nucleic acids

It has been shown that miR-27a is overexpressed in can-
cer tissues from PaCa patients as well as PaCa cell lines
[147]. PaCa-derived exosomes containing miR-27a can
induce proliferation, invasion and angiogenesis in human
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microvascular endothelial cells (HMVECs) by suppress-
ing B-cell translocation gene 2 (BTG2), which promotes
PaCa cell survival and growth [121]. In contrast, in vivo
studies using PaCa animal models have demonstrated
miR-339-5p can inhibit cell invasion and migration by
down-regulating the expression the zinc finger protein
ZNF689. MiR-339-5p levels are significantly reduced in
exosomes from highly metastatic PaCa cells. Accord-
ingly, the exogenous introduction of miR-339-5p can ef-
fectively inhibit PaCa migration and invasion [124].
MiR-222 is overexpressed in highly invasive PaCa cells,
where it is assimilated into exosomes. Upon uptake by
poorly invasive PaCa cells, exosomal miR-222 is then re-
leased to further decrease the expression, phosphoryl-
ation, and nuclear exit of p27 via the PPP2R2A/Akt axis,
which ultimately promotes the proliferation and invasion
of respective cancer cells [122]. Moreover, abnormal
ECM accumulation and blood vessel depletion in the
TME can cause high desmoplasia and extreme hypoxia
in PaCa tissues, which in turn stimulates cancer cells to
ensure their survival by offsetting the hypoxic/ischemic
environment via compensatory metabolic mechanisms
that promote PaCa progression and apoptosis resistance
[148]. The hypoxic environment inside the tumor, which
is caused by rapid cell growth, can stimulate the produc-
tion exosomal miR-301a-3p in PaCa cells [123]. After
being acquired by other PaCa cells, miR-301a-3p-posi-
tive PaCaExos can promote the metastatic ability and in-
vasiveness of these cancer cells. Upon uptake by
macrophages, miR-301a-3p can also induce HIFla/2a-
dependent M2 phenotype transformation due to the ac-
tivation of PTEN/PI3K signaling cascade [123]. Hypoxia
has been shown to stimulate PaCa cells to generate more
of small-volume exosomes via HIFla, which increases
the survival, proliferation, and metastasis of PaCa cells
[149]. Additionally, exosomal miR-1246 has been found
in the serum from patients with breast and prostate can-
cers [150, 151]. High levels of miR-1246 have been asso-
ciated with GEM-resistance in PaCa cells, which can
promote PaCa metastasis, invasion, cancer stemness,
and angiogenesis due to the inhibition of CCNG2 ex-
pression [152]. However, it still remains unclear whether
miR-1246 can enter exosomes to affect the chemo-
resistance in pancreatic cancer.

Besides the above distinct miRNAs, cancer tissues
originated from PaCa patients have presented high levels
of circular RNA IARS (circ-IARS) [128]. Exosomal circ-
IARS produced by PaCa cells can promote cancer me-
tastasis by increasing endothelial monolayer permeability
and activating HUVECs to enhance angiogenesis. Mech-
anistic analyses have revealed that circ-IARS-positive
exosomes may contribute to tumor invasion by (i)
down-regulating miR-122 and ZO-1, (ii) up-regulating
RhoA, RhoA-GTP, and F-actin and (iii) promoting focal
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adhesion. The high expression of circ-IARS has been
positively correlated with liver metastasis, vascular inva-
sion, and tumor-node-metastasis (TNM) of PaCa [128].
Li and colleagues have verified that metastatic PaCa cells
in the liver present high levels of circular RNA PDESA
(circ-PDE8A). Serum circ-PDE8A-positive exosomes can
induce invasive growth of PaCa cells by counteracting
with miR-338 to activate the MACC/MET/ERK/ALkt sig-
naling axis [129]. Therefore, exosomal circ-PDE8A may
be considered as a putative marker to predict PaCa
metastatic progression. Additionally, exosomes from the
serum of PaCa patients may also contain human tel-
omerase reverse transcriptase (hWTERT) mRNA [127].
PaCa-derived exosomes that are ”TERT mRNA-positive
can induce the transformation of non-malignant pancre-
atic fibroblasts (PF) into cells with high telomerase activ-
ity, thus stimulating cell proliferation and delaying aging
[127].

Exosomes produced by other cells and PaCa metastasis
CAFs

Cancer-associated fibroblasts (CAFs) that comprise main
constituent cells of PaCa are essential for establishing
the TME [153]. In TME, CAFs are able to regulate vari-
ous behaviors and characteristics of PaCa cells, including
epithelial-mesenchymal transition (EMT), proliferation,
migration, invasion, metabolic transformation, and
chemotherapy resistance [154, 155]. It has been shown
that CAF-derived exosomes can reprogram the energy
metabolism and up-regulate mitochondrial oxidation in
PaCa cells, which induces glycolysis and glutamine-
dependent reductive carboxylation to provides amino
acids, fatty acids, as well as tricarboxylic acid cycle
(TAC) intermediates for PaCa cells that are nutritionally
deficient, thereby promoting the survival and growth of
these cancer cells [156]. CAF-derived exosomes induced
by gemcitabine (GEM) can activate miR-146a and the
Snail signaling cascade in PaCa cells, thus promoting
survival, proliferation, and drug resistance [157]. Inter-
estingly, extracellular vesicles (EVs) containing annexin
A6/LDL receptor-related protein 1/thrombospondin 1
(ANXAG6/LRP1/TSP1) are solely present in the serum
from PaCa patients. ANXA6/LRP1/TSP1-positive EVs
are only produced by CAFs from PaCa patients, which
are essential for liver metastasis [158]. Nevertheless, fur-
ther studies are required to validate whether the
ANXAG6/LRP1/TSP1 complex may enter exosomes to
support the aggressiveness of PaCa.

TAMs

Tumor-associated macrophages (TAMs), a class of
TME-infiltrating macrophages, are capable of promoting
the radio/chemotherapy resistance, angiogenesis, migra-
tion, invasion and metastasis of tumor cells [159]. It has
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been demonstrated that TAM-producing exosomes can
promote PaCa metastasis and progression. For instance,
exosomal miR-501-3p derived from M2 macrophages is
able to inhibit TGFBR3 expression and then activate
TGE-pB signaling, therefore inducing the formation and
metastasis of PaCa xenografts in nude mice [125]. Ana-
lysis of clinical PaCa tissue specimens has indicated that
miR-501-3p is also highly expressed in PaCa tissues.
Exosomes produced by different types of PaCa cells
(AsPC-1, BxPC-3, Panc-1, and MiaPaCa-2) contain dis-
tinct membrane proteins and lipid components that may
affect the communication between PaCa cells and
TAMs. For instance, exosomes produced by the ascites-
derived human PDAC cell line AsPC-1 (AsPC-1-Exos)
contain a large amount of ICAM-1 and arachidonic acid
(AA). Since ICAM-1 can recognize and bind to CDl11c
on the surface of THP-1-derived macrophages (TDMs),
AsPC-1-Exos can be uptaken rapidly by TDMs. The hy-
drolysis of AA in AsPC-1-Exos, catalyzed by phospholip-
ase A2, has been shown to effectively reduce the fusion
of AsPC-1-Exos with TDMs [114]. Treating non-
polarized MO macrophages with AsPC-1-Exos can in-
duce MO macrophages to transition into immunosup-
pressive M2 macrophages. Moreover, AsPC-1-Exos can
simulate TDMs to secrete a subset of cytokines, such as
VEGF, MCP-1, IL-6, IL-13, MMP-9, and TNF-q, thereby
promoting the growth and progression of PaCa [114].

CiCs
Cancer initiating cells (CICs) play a major role in the ini-
tiation of cancer cell migration and metastasis [160].
PaCa-related CICs (PaCICs) can induce tumor stroma
reorganization, stimulate angiogenesis, and promote
hematopoietic cells to generate immunosuppressive cells
via the production of exosomes (PaCIC-Exos), which
eventually create a (pre-)metastatic niche in the distal
metastatic organ [161, 162]. PaCIC-Exos can transfer
certain characteristics of CICs to non-CICs, therefore in-
ducing their reprogramming and promoting transform-
ation characteristics such as anchorage-independent
growth, apoptosis resistance, migration, and invasion,
until they are phenotypically modified into CICs [163,
164]. In addition, PaCIC-Exos can be uptaken by non-
CICs and then increase the levels of p-Akt, Bcl-2, Bcl-
Xy, and MDRI1, which potentially leads into the induc-
tion of metastatic growth, cisplatin resistance, EMT, mi-
gration, and invasion. Intravenous injection of Tspan8
antibody (CO029) has been shown to properly inhibit
the drug resistance of non-CICs induced by CICs via
exosomes [165], suggesting its use as a potential thera-
peutic target for PaCa.

In PaCa cells, the expression of Tspan8 and other CIC
marker proteins, such as integrin a6p1, CD104, EpCAM,
CXCR4, and CD44v6, are mutually regulated. It has been
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demonstrated that knockdown of CD44v6 expression is
capable of decreasing the invasiveness of PaCICs [165].
In contrast, CD151-positive exosomes produced by CICs
can induce EMT and migration of PaCa cells [111].
CIC-produced Cld7-positive exosomes exhibit some ac-
tivity to promote non-metastatic PaCa dissemination
and metastatic growth, by increasing cell migration, in-
vasion, and angiogenesis. Still, Cld7-positive exosomes
do not have an apparent impact in apoptotic resistance,
proliferation and EMT of tumor cells [166]. Functional
studies have demonstrated that CIC-Exos can rescue the
defects caused by Cld7 loss in CLD7 ™~ PaCa cells, by
activating integrin signaling pathway, proteases (such as
uPA) and lymphangiogenic receptor (for instance, VEGF
R3). Interestingly, the ability of CIC-Exos to promote
tumor progression by activating receptor tyrosine kinase
(RTK) can be blocked by the RTK inhibitor Sunitinib,
indicating that RTK inhibition could be serves as a
therapeutic approach in PaCa [166]. Furthermore, incu-
bation of rat PaCa cells with Tspan8-positive exosomes
carrying Cld7-specific miRNA may cause CLD7 gene si-
lencing in vitro. Tspan8 can significantly enhance the
targeting of exosomal Cld7-related miRNAs to PaCa
sites, leading to decreased Cld7 levels and further reduc-
tion on the expression of other CIC markers and
Notch1, which suppress tumor cell growth, motility, and
invasion [167]. Therefore, these modified exosomes may
effectively load and carry nucleic acid fragments to
tumor sites and help inhibit tumor progression.

PSCs

Pancreatic stellate cells (PSCs) play crucial roles in
chronic pancreatitis and pancreatic fibrosis [72]. These
cells are capable of interacting with tumor and sur-
rounding stromal cells (such as immune and endothelial
cells) to respectively promote cell growth and distant
metastasis [168]. Exosomes produced by PSCs can
stimulate PaCa cells to express a number of chemokines,
including CCL20, CXCL1/2, PDZK1IP1l, SAA1/2,
SMCR7L, and ZNF619, which in turn promote the pro-
liferation and migration of PaCa cells [169]. PaCa cell
lines including Panc-1 and SUIT-2 can produce miR-
1246 and miR-1290-positive exosomes to induce cell
proliferation and migration of PSCs by up-regulating the
expression of a-smooth muscle actin (a-SMA/ACTA?2),
increasing procollagen type I C-peptide production, and
activating ERK/Akt signaling cascades [126]. Activated
PSCs subsequently produce exosomes containing CDO9,
CCN2 and miR-21, which exacerbate tumor tissue fibro-
sis by stimulating other PSCs to secret and deposit more
collagen [39]. Thus, PSCs communicate with PaCa cells
via exosomes in the TME, which is essential for PaCa
progression.
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Fig. 3 Crosstalk between PaCa cells and PaCa-related cells. PaCa cells can interact with a variety of PaCa-related cells to fulfill their metastatic
progress. On one hand, PaCa-related cells (CAFs, TAMs, PSCs, and PaCaClCs) generate exosomes that can promote PaCa cell survival, proliferation,
apoptotic resistance, drug resistance, EMT, migration and metastatic invasion. Notably, MSCs can produce exosomes that induce apoptosis, cell
cycle arrest and growth inhibition in PaCa cells. On the other hand, PaCa cells can also produce exosomes to stimulate various related cells to
secrete various cytokines or exosomes, which may create a facilitating tumor microenvironment for their own survival and metastasis. Specifically,
PaCa-derived exosomes can stimulate TAMs to produce many cytokines, including VEGF, which in turn can induce a variety of metastatic
characterization changes such as EMT in PaCa cells. PaCa -derived exosomes can recruit and stimulate PSCs to proliferate, migrate and secrete
more fibronectin, thereby creating a metastasis microenvironment. PaCa cells may additionally produce exosomes to deregulate the body
metabolism, impairing the functions of ICs, IECs, SGCs and SKMs. PaCa-derived exosomes can stimulate the proliferation and migration of VECs,
thus forming new blood vessels, inducing KC and HSC activation to form a distant metastasis microenvironment in the liver, as well as targeting

Conclusion and perspectives

Our current study discusses the roles of exosomes to-
wards PaCa initiation and metastatic progression. To
date, most of the published studies have started to un-
cover the notion that exosomes exert their biological

function in definition of PaCa pathogenesis and may
serve as culprits behind PaCa metastasis. On one hand,
exosomes mediate pancreas precancerous diseases
caused by various conditions, including diabetes, inflam-
mation and viral infections, which can promote and
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accelerate their transformation into PaCa. This suggests
that targeting relevant exosomes may help preventing
PaCa from precancerous stages, restoring the abnormal
pancreas to a healthy state, and developing earlier diag-
nostic methods. On the other hand, key nodal studies,
such as the identification of exosomes and their detailed
molecular mechanisms involved in ADM or AFDL are
still limited and may need to be strengthened and fur-
ther explored. During recent years, it has been seminal
to elucidate whether some newly discovered important
regulatory factors, such as m (6) A modified regulatory
factors, PDL-1, and non-coding RNAs, participate in the
development of PaCa through exosomes-mediated sig-
naling cascades. More importantly, a variety of PaCa-
related cells, including PaCaCICs, CAFs, PSCs, MSCs,
DCs, HSCs, TAMs, and PaCa-NODM-related cells, can
crosstalk with PaCa cells through exosomes (Fig. 3). This
intercommunication can not only establish a facilitating
microenvironment for PaCa metastasis by generating
exosomes around the tumor or in the distant organs, but
can also render particular properties to PaCa cells such
as apoptosis resistance, migration, EMT, and ultimately
metastasis.

It is worth noting that, along with the occurrence
and metastasis of PaCa, the human body also drives
some biological reactions, including immune response
to limit PaCa progression, even though these antitu-
mor effects may not be dominant. For instance, the
abovementioned MSCs can produce some special exo-
somes after differentiation into various subgroups,
which induce apoptosis, cycle arrest and growth in-
hibition of PaCa cells. In addition, studies have con-
firmed that these endogenous exosomes may carry
various substances without causing an immune re-
sponse in the body, suggesting their utilization as pu-
tative drug carriers [170]. As an example, it has been
found that exosomes derived from macrophages may
carry chemotherapeutic drugs (doxorubicin), which
are toxic to PaCa cells [171]. Interestingly, exosomes
generated by PaCa cells also contain some tumor sup-
pressor components, which may exert anti-cancer ac-
tivity by inducing apoptosis and inhibiting
proliferation of related cancer cells [172]. These find-
ings have revealed the potential therapeutic value of
exosomes. Therefore, to exploit these favorable vari-
ables may contribute to the diagnosis and treatment
of PaCa in the near future. Nevertheless, it must be
said that studies focusing on PaCa-related exosomes
are still under progression. Some technical limitations,
such as an effective exosome delivery, high pure and
bulk exosome preparation with standard protocol, and
exosome target specificity, are the biggest challenges
and still need to be properly considered before any
diagnostic or therapeutic applications are established.
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