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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death and is one of the
most difficult-to-treat cancers. Surgical resection and adjuvant therapy have limited effects on the overall survival of
PDAC patients. PDAC exhibits an immunosuppressive microenvironment, the immune response predicts survival,
and activation of immune system has the potential to produce an efficacious PDAC therapy. However, chimeric
antigen receptor T (CAR-T) cell immunotherapy and immune checkpoint blockade (ICB), which have produced
unprecedented clinical benefits in a variety of different cancers, produce promising results in only some highly
selected patients with PDAC. This lack of efficacy may be because existing immunotherapies mainly target the
interactions between cancer cells and immune cells. However, PDAC is characterized by an abundant tumor stroma
that includes a heterogeneous mixture of immune cells, fibroblasts, endothelial cells, neurons and some molecular
events. Immune cells engage in extensive and dynamic crosstalk with stromal components in the tumor tissue in
addition to tumor cells, which subsequently impacts tumor suppression or promotion to a large extent. Therefore,
exploration of the interactions between the stroma and immune cells may offer new therapeutic opportunities for
PDAC. In this review, we discuss how infiltrating immune cells influence PDAC development and explore the
contributions of complex components to the immune landscape of tumor tissue. The roles of stromal constituents
in immune modulation are emphasized. We also predict potential therapeutic strategies to target signals in the
immune network in the abundant stromal microenvironment of PDAC.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the fourth
leading cause of cancer-related death in the USA and the
seventh leading cause of cancer-related death worldwide,
with a 5-year relative survival rate of less than 8% [1, 2]. This
dismal prognosis is mostly because PDAC is usually diag-
nosed at an advanced stage and is resistant to therapy [3].
Even in patients who undergo surgical resection, more than
80% suffer disease relapse. Furthermore, chemotherapy and
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radiotherapy have not substantially improved the survival of
patients over the last several years [4].

The prevention and elimination of cancer cells are
dependent on the host’s immune system. Impaired im-
mune effector cell infiltration and inactivation of the im-
mune response contribute to the poor prognosis of
PDAC patients. Immunotherapies hold great promise for
the future and have produced remarkable recent
achievements in different cancers [5]. However, most
clinical trials of immune checkpoint blockade (ICB)
monotherapies have failed to show activity in PDAC [6].
The combination of gemcitabine with a CD40 agonist,
which can promote the accumulation of tumoricidal
macrophages, produced a preliminary effect on some
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selected patients with advanced PDAC [7]. This finding
indicates that targeting immune network signals is a
promising strategy, but the immunoregulatory mecha-
nisms in PDAC are more complex than expected and
need more exploration.

What makes the response of PDAC to immunotherapy
different from the responses of other solid tumors is the spe-
cific host tissue. PDAC is characterized by an abundant
tumor stromal content, where immune cell distribution and
function are affected by interactions with other cellular com-
ponents; these interactions result in the immunosuppressive
tumor microenvironment (TME) being relatively compli-
cated [8]. The immunosuppressive TME of PDAC is charac-
terized by T cell exhaustion resulting in the loss of cytotoxic
effector functions. The infiltration of multiple types of
tumor-promoting immune cells, including myeloid-derived
suppressor cells (MDSCs), tumor-associated macrophages
(TAMs), regulatory T cells (Tregs) and other immune cells,
mediates immune evasion and tumor progression [9]. Some
tumor cell-inherent resistance mechanisms, such as the
tumor mutational burden and aberrant expression of onco-
genic pathways, restrain antitumor immunity [10]. However,
the poorly immunogenic nature of PDAC is more likely due
to the pronounced desmoplastic microenvironment. The
histological hallmark features of PDAC consist of abundant
cancer-associated fibroblasts (CAFs), sparse vascular struc-
tures, nerve fibers, soluble cellular factors and extracellular
matrix (ECM), such as hyaluronan (HA) and collagen [11].
Disrupting the immunosuppressive network and promoting
the tumoricidal activity of immune cells might provide new
opportunities in the treatment of PDAC [12].

In this review, we explore how infiltrating immune
cells influence PDAC development and provide an over-
view of the principal mechanisms that cellular and other
components utilize to impact immune cells in the TME.
Considering that PDAC is a desmoplastic tumor associ-
ated with immune evasion, we also discuss the immuno-
regulatory functions of stromal constituents and
potential immunotherapeutic targets involved in the in-
teractions between immune cells and host tissue.

Immune infiltrate contributes to PDAC outcomes

The PDAC immune microenvironment is characterized
by cytotoxic T lymphocyte (CTL) exhaustion and a
strongly suppressive immune cell infiltrate dominated by
macrophages [13]. The observed restricted T cell func-
tionality has been shown to be associated with a myeloid-
inflamed stroma, which is mediated by myeloid cells such
as macrophages, MDSCs and neutrophils [14—16] (Fig. 1).

T lymphocytes

T lymphocytes represent one of the predominant im-
mune cell subsets and exert both tumor-promoting and
tumor-suppressing effects on PDAC. According to their
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effector functions, mature T cells are classified as CD8+
CTLs and CD4+ helper T (Th) cells, which include Thl,
Th2, and Th17 cells and Tregs [17, 18].

With the development of multiplex staining, it has been
demonstrated that the proximity of intra-tumoral T cells to
PDAC cancer cells is correlated with patient survival. Exclu-
sion of CTLs from the TME represents a tumor escape strat-
egy and results in tumor progression [19-21]. CTLs
eliminate tumor cells mainly through IFN-y-mediated direct
effects on malignant cells. However, most CTLs in the PDAC
stroma are characterized by upregulated expression of inhibi-
tory receptors, such as T cell immunoglobulin and mucin-
domain containing-3, lymphocyte-activation gene-3 and
programmed death receptor-1 (PD-1). Signaling through
these receptors transforms CTLs into a dysfunctional state
named exhaustion, and exhausted T cells have a diminished
proliferation ability and lose their cytotoxic functions [22].

Thl cells may secrete IFN-y and aid CTLs in tumor
rejection, resulting in a positive relationship with pro-
longed survival [23]. Th2 cells exhibit a tumor-
promoting function in PDAC and are related to a poor
prognosis [24]. However, the Th2 immune phenotype
can be reversed into a preexisting Thl immune pheno-
type in a specific context. The ratio of Th1/Th2 tumor-
infiltrating lymphocytes predicts survival after surgery in
patients with stage IB/III PDAC [25-27]. The tumor-
promoting functions of Th2 cells are mediated by the
production of cytokines, such as interleukin (IL)-4, IL-5
and IL-13. Th2 cells thereby enhance cancer cell activa-
tion, contributing to fibrosis by increasing ECM depos-
ition and collagen synthesis and educating macrophages
to differentiate into an M2 immunosuppressive pheno-
type [28, 29]. Th17 cells exert functions by secreting IL-
17, but the influence of Th17 cells on PDAC is paradox-
ical [23]. Th17 cells have shown an antitumor effect on
a mouse model, but studies have also suggested that the
IL-17 signaling axis is a potent driver of pancreatic
intraepithelial neoplasia [30]. Furthermore, Th17 cells
are associated with immune tolerance and diminished
survival in PDAC [31]. It is currently unknown what
causes Th17 cells have these contradictory effects, but
this information may hold the key to the development of
successful immunotherapy. The complex crosstalk be-
tween T cells and the TME may lead to Th17 infiltration
with different impacts on survival.

Tregs are a prominent component of the T lympho-
cyte population and can be identified with CD4+/
CD25+/FOXP3+. Tregs are presumed to exert both pro-
tumorigenic and antitumorigenic functions in some
tumors. Tregs generally serve as a negative prognostic
biomarker and produce suppressive effects on PDAC
[32-34]. Tregs can inhibit CTL activation by engaging in
extended interactions with tumor-associated CD11c +
dendritic cells (DCs), restraining their immunogenic
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Fig. 1 Immune infiltration contributes to PDAC outcomes. PDAC tumor tissue has complex interactions with multiple immune cells, mainly T
cells, MDSCs, macrophages and neutrophils. CD8+ T cells eliminate cancer cells by releasing IFNy and TNFa. CD4+ T cells can be divided into Th1,
Th2, and Th17 cells and Tregs. Th1 cells assist CD8+ T cells in antitumor immunity. Th2 cells, which can be reversed into Th1 cells, can drive
cancer cell growth and fibroblast activation and can promote the transition of the M1 macrophage into the M2 phenotype. The function of Th17
cells is still not clear, but the functions of these cells mainly depend on IL-17. Tregs inhibit the cytotoxic function of CD8+ T cells via IL-6 and
TGFP. Both MDSCs and M2 macrophages suppress CD8+ T cell functions through the secretion of cytokines. M1 macrophages have antitumor
functions that are mediated by releasing IL-12, IL-23, TNFa and NO. M2 macrophages promote tumor progression by secreting cytokines to affect
tumor cells, fibroblasts and the vasculature. The role of neutrophils is not clear, but it is known that these cells can exert effects through IL-6

M2 macrophage

function by suppressing the expression of the costimula-
tory ligands necessary for CTL activation [35]. Similar to
the number of CTLs, the number of CD4+ T cells that
secrete IL-17 and IFNy was shown to increase when
Tregs were depleted in PDAC, producing an immunosti-
mulatory environment [36]. The complexity of the im-
mune context is proven by the fact that all T
lymphocyte components experience dynamic changes.
Dynamic interactions between cancer cells and their
microenvironment may contribute to the evolution from
immune equilibrium to immune escape.

Myeloid cells

Myeloid cells have been recognized as important media-
tors of immune evasion in tumor tissue and are associ-
ated with the poor clinical outcome of PDAC. Tumor-

associated myeloid cells mainly include macrophages,
neutrophils and MDSCs. Recently, these cells have
attracted intense interest in PDAC research [37].
Macrophages in PDAC are derived from both inflam-
matory monocytes and tissue-resident macrophages and
play critical roles in the regulation of tumor progression.
Based on their distinct functional abilities, they can be
categorized into two different states, M1 and M2. The
states can change during tumor progression in response
to microenvironmental stimuli [38]. M1 macrophages
are considered antitumor immune cells that efficiently
recognize and destroy cancer cells through phagocytosis
and cytotoxicity [39]. These macrophages produce high
levels of proinflammatory cytokines, such as IL-12, IL-
23, TNFa and chemokines. They also mediate the syn-
thesis of reactive oxygen species (ROS) and the release
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of nitric oxide (NO) [40]. Increased frequencies of M1
macrophages indicate reduced tumor malignancy, while
an elevated M2 macrophage presence suggests decreased
survival. TAMs are predominantly considered to exhibit
the polarized M2 phenotype in the TME.

TAMs promote tissue repair, immunosuppression and
tumor growth by secreting a variety of cytokines, chemo-
kines, and proteases [41, 42]. TAMs regulate vascular
structure via the expression of CXCL1, CXCL8 and vas-
cular endothelial growth factor (VEGF). Pharmacological
depletion of macrophages in a genetically engineered
mouse model (GEMM) of PDAC markedly reduced me-
tastasis formation and was associated with impaired
angiogenesis [43, 44]. TAMs are key components of tis-
sue repair that function during chronic wound healing
in tumors by releasing profibrotic cytokines [45]. It has
been reported that macrophage-secreted granulin
supports PDAC metastasis by inducing liver fibrosis.
Granulin activates resident hepatic stellate cells, trans-
forming them into myofibroblasts and resulting in a fi-
brotic microenvironment that sustains metastatic tumor
growth [46]. M2 macrophages are widely acknowledged
to be an immunosuppressive population within tumors,
and M2 macrophage depletion can unleash T cell re-
sponses under several therapeutic conditions. iNOS
expressed by TAMs can inhibit T cell proliferation ac-
cording to the potential direct effects of NO on T cells
[39]. Interestingly, macrophages could also initiate T cell
diapedesis and tumor rejection by generating precisely
the amount of NO that promotes endothelial activation
[47, 48]. These seemingly contradictory results suggest
that the amount of macrophage-derived NO may be valu-
able for investigation in clinical cancer immunotherapy.

MDSCs are a heterogeneous population that in-
cludes immature macrophages, granulocytes and DCs.
MDSCs mediate immunosuppression, facilitate tumor
progression and correlate with clinical cancer stage.
In tumors, MDSCs inhibit proliferation and induce
apoptosis in activated T cells. Targeted depletion of
granulocytic MDSCs in an autochthonous GEMM of
PDAC was shown to increase the intra-tumoral accu-
mulation of CTLs [49]. MDSCs have been shown to
exert effects on T cells and other immune cells [50].
They also amplify the immunosuppressive activity of
M2 macrophages and DCs via crosstalk and suppress
natural killer cell cytotoxicity through cell contact-
dependent mechanisms [51]. Moreover, Zhang et al.
showed that MDSCs supported immune evasion in
PDAC through EGFR/MAPK-dependent regulation of
PD-L1 expression on tumor cells [37]. This crosstalk
between MDSCs and tumor cells suggests a new way
to restore antitumor immunity mediated by CD8+ T
cells, a finding with implications for the design of im-
munotherapies for PDAC.
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Neutrophils and polymorphonuclear MDSCs share an
origin and many morphological features [52]. Systemic
granulocytic expansion has been reported in cancer, cor-
relating with an increased tumor grade and a reduced
survival period. Nywening et al. recently showed that
targeting neutrophils with small molecule inhibitors aug-
mented antitumor immunity and improved the response
to chemotherapy in PDAC [53]. However, the role of
neutrophils in pancreatic oncogenesis remains unclear.
Recent reports have suggested that neutrophils in tumor
tissue can oppose or potentiate cancer progression,
which is controlled by signals from cancer cells or stro-
mal cells within the TME [54].

Immune landscape is shaped by host tissue components
The immune cell composition and functional state vary
considerably across tumors, suggesting that the host tis-
sue plays a role in programming the tumor immune
landscape. PDAC comprises two distinct components,
tumor parenchyma and abundant surrounding stroma.
Recent studies have established that dynamic interac-
tions between cancer cells and stromal components
modify the immune contexture (Fig. 2).

Tumor-intrinsic features affect the immune infiltrate

As one type of epithelial-derived carcinoma, PDAC de-
pends on E-cadherin as an intercellular junction protein
before undergoing epithelial-to-mesenchymal transition
[55]. In addition to this cohesive cellular structure, the
basal lamina can separate carcinoma cells from the sur-
rounding tissue. These two structures constitute a physical
barrier and limit the entry of some immune cells [56, 57].
MUCI, which is a transmembrane protein produced by
epithelial cells, is overexpressed in 90% of PDAC patients
and helps cancer cells escape CTLs [12, 58].

In addition to the physical barrier, cancer cell genetic
aberrations also have close relationships with the im-
mune cell composition of the TME. Studies have shown
that tumors with high mutational burdens, such as non-
small-cell lung cancer and melanoma, have higher T cell
activity and abundance [59-61]. Although genomic se-
quencing studies of PDAC have revealed a small set of
consistent mutations in most tumors [62], a recently
performed genomic analysis identified molecular sub-
types of PDAC and found that a small fraction of human
PDAC tumors exhibited an immunogenic profile [63].
This evidence indicates additional determinants in can-
cer cells that contribute to immune contexture in
addition to the mutational load.

Balli et al. observed that in sharp contrast to other
tumor types, PDAC with high cytolytic immune re-
sponse levels were linked to genomic copy number alter-
ations rather than the mutational burden. PDAC cases
with low cytolytic activity exhibited significantly
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increased genomic structural variations, such as recur-
rent amplifications of MYC and NOTCH2 and recurrent
deletions and mutations of CDKN2A/B [64]. By studying
a mouse model of PDAC, Wormann et al. found that
p53 deficiency induced macrophage and neutrophil infil-
tration while reducing CD8+ T cell levels via JAK2-
STAT3 and ROS activation [65]. In addition, a study
found that FAK amplification also increased the MDSC,
TAM and Treg frequencies and decreased the CTL fre-
quency via STAT3 signaling [66]. A large number of
studies have indicated that specific genetic aberrations of
cancer cells affect the PDAC immune landscape by
orchestrating inflammatory conditions. Inhibition of en-
dogenous MYC led to a significant decrease in infiltrat-
ing macrophage and neutrophil frequencies and resulted
in tumor regression [67]. Studies in a pancreatic mouse
model have demonstrated that MYC amplification stim-
ulates the production of the potent proinflammatory cy-
tokines IL-1p and CCL5, leading to the recruitment of
pro-tumoral mast cells in tumor tissue [68, 69].

The effects of genetic determinants on the tumor immune
landscape are not limited to only the genes and pathways
mentioned above; several other genetic events and down-
stream immune effects have been described. KRAS is a

famous oncogene in PDAC and has been reported to facili-
tate myeloid cell accumulation in tumors via cytokine release.
KRAS-induced secretion of granulocyte-macrophage colony-
stimulating factor (GMCSF) results in an influx of CD11b +
Grl+ immunosuppressive cells in PDAC, and ablation of this
cytokine impairs immunosuppressive cell accumulation in
PDAC tumor tissue, consequently resulting in an increase in
the CD8+ T cell frequency [70]. Moreover, loss of both the
KRAS and PTEN oncogenes promotes marked activation of
NF-kB and its cytokine network, which is accompanied by
infiltration of immune cells with known tumor-promoting
properties. PTEN/PI3K pathway alteration is a common
event in PDAC development, and loss of PTEN results in in-
creased activation of the NF-kB pathway, driving the expres-
sion of several immunoregulators, such as G-CSF, IL-23 and
CXCL1, by cancer cells [71].

The studies reviewed above suggest that genetic alter-
ations in PDAC cells not only exert an intrinsic effect on
the fate of cancer cells but also have a profound influ-
ence on the tumor immune landscape. However, most
research concentrates on a particular gene and ignores
the multitude of genetic and epigenetic alterations that
occur simultaneously in tumor progression. In addition,
most studies focused on the primary tumor, and events
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leading to metastasis are largely unaddressed. The inter-
play between cancer cells and the immune microenvir-
onment will be evaluated in depth with increasingly
sophisticated methodologies. Further help is needed to
maximize the potential of immunological combination
therapies based on the genetic profiles of tumors.

Stromal components impact immune composition

The tumor mutational burden and intrinsic features of
cancer cells can explain immune evasion in PDAC, but
they may not explain the whole picture. One of the hall-
marks of PDAC is an intensely desmoplastic stroma. Be-
yond immune cells, the stromal compartment of PDAC
includes CAFs; ECM components such as collagen,
blood and lymphatic vessels; nerves; and a microbiome,
all of which have been shown to affect the antitumor im-
mune response. This section primarily focuses on the
strong influence of the stroma on the creation of an im-
munosuppressive environment in PDAC.

Heterogeneous fibroblasts

The abundance of activated fibroblasts and the fibroblast-
derived matrix tends to be the most prominent feature of
the PDAC microenvironment [72]. The effects of CAFs
on cancer progression can be pleiotropically involved in
distinct processes, reflecting that CAFs are a population
characterized by heterogeneity and plasticity, which may
depend on their different origins to a large extent. CAFs
originating from the same cellular sources can transdiffer-
entiate into functionally distinct subtypes depending on
the context. Heterogeneous fibroblasts shape the architec-
ture of PDAC by creating the tissue ECM structure and
secreting cytokines, chemokines and growth factors [73,
74]. In addition to the effects of CAFs on cancer cells,
CAFs also impact cancer evolution by programming im-
mune populations, which is dependent on the cellular
subtype and complex TME [75].

Given the key role of ECM components in creating
the physical barrier in PDAC, CAFs can have a strong
impact on restricting access by infiltrating immune cells.
Dense collagen networks, which are released from CAFs,
represent a physical barrier that can rearrange the T cell
distribution and lead to the inhibition of activated T cell
migration in dense collagen [76, 77]. However, CAFs
mediate ECM remodeling, which can release proinflam-
matory cytokines and unmask cryptic binding sites, and
may promote immune cell adhesion to cancer cells.

Ohlund et al. identified inflammatory cancer-associated
fibroblasts (iCAFs) as a subpopulation of CAFs distinct
from myofibroblasts in cocultures of murine pancreatic
stellate cells (PSCs) and PDAC organoids. iCAFs are lo-
cated distantly from neoplastic cells and are characterized
by intensely elevated expression of cytokines and chemo-
kines such as IL-6 and CXCL1 [78]. High levels of IL-6
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production in pancreatic CAFs have been reported to pre-
vent macrophage differentiation and lock recruited mono-
cytes in an immature, suppressive state in a STAT3-
dependent manner [79-81]. In addition to interleukins,
the cytokines GM-CSF and CCL2 secreted by CAFs medi-
ate an influx of MDSCs into tumor tissue and support
metastatic outgrowth [82, 83]. Garg et al. reported that in
addition to exerting an influence on the modulation of
MDSCs, NF-kB activity in CAFs prevented CTLs from in-
filtrating PDAC by increasing the expression of CXCL12
[84]. CAFs are also a major source of TGFp, and recent
studies have implicated TGFp in Th17 cell differentiation,
indicating that the CAF immunomodulatory functions
have additional complexity [85]. These studies revealed
that the secretome heterogeneity of CAFs was implicated
in directly regulating antitumor immunity. However, due
to CAF secretome heterogeneity and its differential im-
pacts on tumor progression at different states, it is difficult
to firmly define the crucial functions of CAF-derived cyto-
kines in regulating immunomodulatory responses. A more
precise, functional list of the immunomodulatory cyto-
kines and chemokines produced by CAFs is needed. A
fibroblast-specific deletion of crucial cytokines and che-
mokines in preclinical tumor models may be a promising
approach to address this issue.

Recent secretome analyses have reinforced the no-
tion that CAFs modulate immune cell recruitment to
the tumor site and immune cell activation by releas-
ing inflammatory molecules, while stromal cells in the
lymph node have been shown to induce CD4+ T cell
dysfunction through a mechanism involving peptide-
MHCII complexes [86]. These observations suggest a
potential mechanism by which CAFs exert influence
on the immune contexture of tumors. Recently,
Elyada et al. applied single-cell RNA sequencing to
PDAC tumor tissue samples from six human patients
and KPC mice and identified a new CAF subtype
named antigen-presenting CAFs (apCAFs). These
CAFs could express MHC class II on the cellular
membranes and possess the capacity to present anti-
gens to CD4+ T cells. Furthermore, as these apCAFs
lacked the costimulatory molecules needed to induce
T cell proliferation, CD4+ T cells were hypothesized
to be deactivated and to differentiate into Tregs [87].
This study supports the premise that CAFs have the
capacity to act as nonprofessional antigen-presenting
cells (APCs) and inhibit T cell responses. Some stud-
ies on colon tissue and lung cancers have reported
that a subset of CAFs expressing PD-L1 and PD-L2
can exert an immunosuppressive effect on T cell acti-
vation [88, 89]. In previous studies, we also found
PD-L2 expression in the PDAC stroma, but the role
and mechanism of PD-L2 in PDAC remain to be fur-
ther explored [90]. Because PDL1 is difficult to detect
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in PDAG, it is difficult to investigate immunosuppres-
sive signaling mediated by molecules on the CAF
membrane.

Changes in CAF phenotypes during tumor progression
exert a heterogeneous and dynamic influence on antitu-
mor immunity. However, these dynamic changes may
challenge the dominant view of the immunosuppressive
and tumor-promoting roles of CAFs. It has been reported
that CAFs may restrain cancer progression as depletion of
aSMA+ stromal cells promote an immunosuppressive
tumor milieu and exacerbates cancer progression, result-
ing in diminished survival of PDAC patients [91].

Sparse vascular system
For immune cells to exert an effect on cancer cells, they
first need to penetrate deep into the tumor through the
vascular system [92]. Compared with a normal vascular
system, the vascular system in tumor tissue possesses an
abnormal structure and facilitates the extravasation of im-
mune cells [93]. Recently, a study demonstrated that the T
cell response to an ICB might involve cells that had just
recently entered the tumor rather than preexisting tumor-
specific T cells [94]. This finding offers strong evidence
that the vasculature contributes to regulating immune in-
filtration and the efficacy of cancer immunotherapies.
PDAC angiogenesis is directly controlled by the proan-
giogenic factor VEGF, but the continued production of
VEGEF results in excessive vessel proliferation and rapid
but aberrant blood vessel formation [95]. The extensive
deposits of fibrotic stroma in PDAC induce elevated
interstitial hypertension and vascular compression, lead-
ing to a hypoxic microenvironment and excessive VEGF
production. The low oxygen levels contribute to a sparse
and leaky PDAC vascular system, which is highly specific
with a defective basement membrane and abnormal
pericyte coverage. These features lead to adjacent endo-
thelial cells (ECs) being loosely attached to one another,
which results in leaky tumor blood vessels and subse-
quently decreases the recruitment of effector immune
cells [96]. Hypoxia also increases the accumulation of
MDSCs and Tregs within the TME and facilitates the
differentiation and polarization of macrophages into the
immunosuppressive M2 phenotype [97, 98]. Hypoxia in-
duces high concentrations of the metabolites adenosine
and lactate in the TME, resulting in T cell anergy and
exhaustion [99]. Excessive VEGF generally inhibits the
expression of vascular adhesion molecules such as
ICAM-1 and VCAM-1, producing ECs that cannot gen-
erate the interactions with T cells necessary for the T
cells to cross the endothelial layer and transit into the
tumor site [100, 101]. It is not surprising that the sparse
immune cell presence in the PDAC stroma is highly re-
sistant to cancer immunotherapies [102].
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Furthermore, a study observed that ECs in PDAC
expressed relatively high levels of addressins, which
could interact with their specific ligands expressed spe-
cifically on Tregs. This interaction allowed the selective
transmigration of Tregs from the peripheral blood to the
tumor tissue and facilitated the immunosuppressive en-
vironment [103]. ECs also preferentially attract immuno-
suppressive Tregs by upregulating the multifunctional
endothelial receptor CLEVER-1/stabilin-1 [104]. In vivo
studies will be required to further investigate these
selective interactions between Tregs and the tumor vas-
culature mediated by addressins and their respective
ligands.

In addition to having effects on immune cell adhesion,
transmigration and extravasation into tumor tissue, ECs
also shape the tumor immune landscape by expressing
immunomodulatory molecules. Recent work has demon-
strated that VEGF can enhance the expression of PD-L1
in ECs, thus disabling the cytotoxic function of PD1-
positive T cells [105, 106]. A study analyzing tissue mi-
croarrays of human cancers showed the existence of
FASL in addition to PD-L1 on ECs in ovarian cancer le-
sions. FASL-expressing ECs assisted immune tolerance
by triggering apoptosis in Fas-expressing CD8+ T cells
and killing effector T cells [107]. These mechanisms
consequently lead to a potent barrier that disables CTL
infiltration into the tumor and provide suggestions for
further investigations of PDAC.

The features of blood vessels have been widely ex-
plored, but the influence of lymphatic vessels on the im-
mune landscape is poorly understood. Lymphatic vessels
communicate information and transport immune cells,
antigens, and signals from the periphery to the draining
lymph node (dLN), implying that lymphatic vessels are
required for initiating an immune response against a
growing tumor. However, some reports have observed
that an increased density of tumor-associated lymphatic
vessels correlates with poor patient survival in melan-
oma and other cancers [108, 109]. The confusing actions
of lymphatic vessels in the antitumor immune response
and tumor evolution require further investigation.

Other stromal factors

Recent reports have generated insights into cancer
microbiomes due to revolutionary omics technologies
[110], and the potential contribution of the microbiome
in pancreatic carcinogenesis has been recognized [111].
Concrete mechanisms are mainly involved in the modu-
lation of the immune microenvironment and antitumor
immunity because of the intimate associations of both
microbes and cancer with inflammation [112]. Pushalkar
et al. showed that bacterial ablation in an orthotopic
PDAC mouse model protected against invasive PDAC
by reshaping the TME, including reducing MDSC
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numbers, polarizing macrophages into the M1 pheno-
type, promoting Th1 differentiation and activating CD8+
T cells. Mechanistically, the PDAC microbiome im-
proved immune surveillance and increased sensitivity to
immunotherapy by differentially activating select toll-
like receptors (TLR), including TLR2 and TLR5 in
monocytic cells [113-115]. Bacterial products may be
recognized by TLRs, as has been previously described, or
may stimulate the inflammasome-mediated secretion of
cytokines, such as the lung microbiome-stimulated IL-13
and IL-23 cytokines produced by myeloid cells, which in
turn induces the proliferation and activation of lung-
resident y§ T cells [116]. Furthermore, Riquelme et al.
demonstrated that the gut microbiome modulates the
PDAC tumor microbiome landscape, such as an intra-
tumoral microbiome signature (Pseudoxanthomonas-
Streptomyces-Saccharopolyspora-Bacillus clausii), which
is highly predictive of long-term survivorship [117]. That
study was the first report that showed microbiota recon-
stitution in PDAC patients with stool containing the gut
microbiome, supporting a causal role for the gut micro-
biome in shaping the cancer immune environment and
PDAC progression. However, the concrete mechanism
of how fecal microbiota transplantation induces changes
in the tumor microbiome and immune activation in hu-
man PDAC patients requires further study. The different
taxa of the microbiome coexist in a carefully maintained
balance, and affecting one taxon may influence the
others. Therefore, more studies are required to investi-
gate the contributions of nonbacterial microbiota-like vi-
ruses and fungi to PDAC immune modulation and to
identify new specific components of microbiome-
immune crosstalk.

Increased innervation and neural hypertrophy are
common phenomena in dense pancreatic TME, but the
biological signaling of nerves in PDAC is not well under-
stood. Recent reports have highlighted the role of nerve
fibers in PDAC evolution, with the density and distor-
tion of the neuronal architecture associated with overall
prognosis [118, 119]. Nerve fibers generally elicit cellular
effects by releasing neurotransmitters such as catechol-
amines and acetylcholine, which then bind to a- and -
adrenergic receptors. Immunohistochemical staining
analysis in some studies has shown that there is a close
correlation between TAMs and nerve density in PDAC
tissue [120, 121], indicating a possible paracrine signal-
ing interaction between nerves and macrophages in
PDAC tissue. In addition to neurotransmitters, growth
factors, such as CSF1, are also released by enteric
neurons to communicate with macrophages in healthy
tissue [122], suggesting that cytokines are potential
mediators of neuro-immune crosstalk in PDAC. More
recently, studies have shown that nerve-derived nor-
adrenaline can modulate tumorigenesis by regulating
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oxidative metabolism in tumor ECs and promoting
tumor angiogenesis [123]. As we reviewed in the previ-
ous section, blood vessels and ECs are key regulators of
immune cell infiltration into the TME. This information
reminds us that nerve fibers may influence immune cell
infiltration indirectly through impacting vessels in
PDAC. A superior understanding and exploration of
neuronal signaling and its interactions with immune
cells are essential for the development of new
therapeutics.

New therapeutic opportunities

The list of approved ICB drugs has grown in recent years,
and many cancer therapies have been renewed because of
these drugs. However, ICB has not shown significant clin-
ical activity in patients with PDAC because of the low mu-
tational load [124]. As reviewed above, there are many
other mechanisms by which host tissue regulates the im-
mune response in PDAC. This suggests that patients re-
sistant to ICB may benefit from tissue-specific modulation
strategies. We can induce a favorable immune environ-
ment that is sensitive to immunomodulatory drugs by
selectively targeting these mechanisms (Fig. 3).

Aberrant signaling pathways in cancer cells lead to the
establishment of an immunosuppressive microenviron-
ment in PDAC by recruiting immunosuppressive cells.
FAK amplification in pancreatic cancer cells has been
identified as an important regulator in the TME, with in-
creases the MDSC, TAM and Treg frequencies and con-
currently decreases the CD8+ CTL frequency. These
changes remind us that inhibiting FAK amplification in
PDAC may induce a favorable immune contexture. In-
deed, a study showed that FAK inhibition rendered the
previously unresponsive KPC mouse model responsive
to T cell immunotherapy and PD-1 antagonists [66].
This study indicates that interference with this cancer
cell-intrinsic signaling pathway promotes tumor sensitiv-
ity to immunotherapy. Other studies have shown that
some targeted drugs that work on cancer cells can indir-
ectly change the immune contexture of tumors by exert-
ing effects on cancer-immune cell crosstalk. Ibrutinib, a
drug targeting Bruton tyrosine kinase, can regulate B
cell- and macrophage-mediated T cell suppression and
can restore T cell-dependent antitumor immune re-
sponses to inhibit PDAC growth in PDAC-bearing mice
[125]. Insights into the combined effects of targeting
cancer cell-intrinsic features will help us expand therap-
ies based on immunomodulatory strategies.

In addition to cancer cell-intrinsic features, the in-
tensely desmoplastic stroma in PDAC exerts strong ef-
fects on immune cell infiltration. The immune response
is based on the presence of immunomodulatory cells
and molecules, such as fibroblasts, ECs in the vascular
structure, ECM components and other molecules. The
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Fig. 3 Therapeutic implications of targeting host tissue to activate immune cell infiltration. Implications of therapies that target host tissue, including
signaling pathway inhibition, cytokine neutralization, ECM degradation, vascular normalization, antibiotics and 3-blockers

stroma sustains the immunosuppressive environment
and affects the immune response in two ways. The first
is limiting immune cell influx physically through tight
stromal packaging and limited vascularization. The sec-
ond is reprogramming immune populations via the se-
cretion of chemokines and cytokines [126].

CAFs secreting ECM components cause stromal stiff-
ness and increased hydrostatic pressure. The increased
hydrostatic pressure within the PDAC TME is believed
to create a barrier to immune cell infiltration. Improving
immune cell accessibility to tumor tissue is a good way
to increase the efficacy of immunotherapies. Promising
results have been obtained with drugs targeting ECM
molecules, such as PEGylated human recombinant hyal-
uronidase (PEGPH20), which enzymatically degrades
HA. A phase 1II trial of PEGPH20 was established for pa-
tients with untreated stage IV metastatic PDAC, and the
results showed that this drug was well tolerated and
might have therapeutic benefits in patients with ad-
vanced PDAC, especially in those with high-HA tumors
[127]. Furthermore, Caruana et al. engineered chimeric
antigen receptor T (CAR-T) cells to express heparanase,
which improved their capacity to degrade the ECM and
found that T cell infiltration and antitumor activity were
promoted [128]. CAFs adopt a secretory phenotype, en-
abling the production of cytokines and chemokines im-
plicated in regulating antitumor immunity directly.

Studies have shown that disrupting IL-6 signaling using
anti-IL6R antibodies can improve the chemotherapeutic
efficacy in treating PDAC in KPC mice [79]. This finding
suggests that neutralizing cytokines from CAFs is a
promising way to establish a favorable immune context.
However, direct targeted depletion of fibroblasts in
PDAC has produced mixed results. Studies have shown
that depleting a-SMA+ fibroblasts induces immunosup-
pression and is related to poor survival in mice and pa-
tients [91, 129]. In contrast, in experiments where FAP+
fibroblasts were depleted, improved outcomes were
observed in mouse models of PDAC [130, 131]. These
divergent conclusions indicate that the distinctions be-
tween fibroblast populations are important and that
treatments must precisely target specific fibroblast popu-
lations in PDAC.

The tumor vasculature assists in establishing the im-
munosuppressive environment by impacting T cell trans-
migration and extravasation, by potentially expressing
immune inhibitory molecules such as PD-L1 and by en-
hancing the hypoxic microenvironment. Stromal hydro-
static pressure induces vascular compression within
PDAC, and the hypoxic microenvironment and excessive
VEGF production lead to a dysfunctional vascular struc-
ture, which influences immune cell infiltration [102].
These events suggest that vessel normalization can in-
crease vascular barrier function and tumor perfusion,



Liu et al. Molecular Cancer (2019) 18:184

subsequently facilitating the infiltration and activation of
effector immune cells to complement cancer immuno-
therapies. Jain et al. showed that vascular normalization
decreased the interstitial fluid pressure (IFP) within the
TME, thereby reducing the restrictions on effector
immune cell mobilization and tumoricidal functions [96].
In a preclinical study, Zhao et al. developed an
oligonucleotide-based inhibitor (CD5-2) that increased
VE-cadherin expression, subsequently normalizing vessel
structure and enhancing vessel function. CD5-2 could in-
crease tumor-specific T cell infiltration and spatially redis-
tribute CD8+ T cells within the tumor parenchyma [132].
It is interesting to note that T cells also play an important
role in vasculature reprogramming, resulting in immune re-
programming [133]. It is possible that vascular normalization
may be a prerequisite to maximizing T cell infiltration and
functions in a loop.

Translational research on suppressive cytokines, such
as the CXCL family, in PDAC tissue has been of interest
for a long time. According to basic research, inhibition
of CXCR4 in KPC mice treated with anti-PD-L1 resulted
in a modest tumor response (~ 15%) in short-term ex-
periments [134]. Although the related clinical trial
NCT02472977 was terminated because of a lack of effi-
cacy in the short-term acute phase, other clinical trials,
such as NCT02826486, have not been completed thus
far. Both cancer cells and the TME in PDAC have an in-
credible heterogeneity, and patients with KRAS muta-
tions or abundant FAP+ fibroblasts may have a positive
response to this strategy based on basic research. A
more precise exploration of this therapeutic strategy is
required in a select group of PDAC patients. We hope
that other clinical trials will provide promising results in
the future.

Although studies on the contribution of the micro-
biome in PDAC are far from sufficient, antibiotic treat-
ment has shown a preliminary effect. Microbiome
depletion leads to a significant increase in IFNy produc-
tion by T cells with corresponding decreases in IL-17A
and IL-10 production by T cells in PDAC [135], and an-
tibiotics were shown to increase intra-tumoral CD45+
cell infiltration in NOD/SCID mice [136]. Targeting
nerve fibers has been proven to be useful in the treat-
ment of PDAC in mouse studies. Renz et al. showed that
a P-adrenergic receptor agonist could increase the sur-
vival of patients with PDAC and that bilateral adrenalec-
tomy increased the survival of a murine Kras-driven
model of PDAC [137]. Neuro-immune crosstalk may be
a novel specific component to target, but more investiga-
tion is required to prove its contributions to the effects
of the abovementioned [-blockers.

Oncolytic viruses (OVs) are currently seen as an emer-
ging alternative therapy for patients with PDAC [138].
OVs can be engineered to express transgenes and

Page 10 of 14

replicate in tumor cells to directly induce tumor cell
lysis. OVs may be most usefully deployed with ICB as
they can be used to modulate the TME by recruiting
tumor-infiltrating lymphocytes (TILs), priming immune
responses or modifying the vasculature to alter the anti-
tumor immune response [139]. The combination of
pelareorep with pembrolizumab and chemotherapy in
patients with advanced, previously treated PDAC has
been administered in a phase Ib trial. Pelareorep is an
oncolytic reovirus that can induce an inflamed T cell-
infiltrated (hot) phenotype in PDAC. The safety profile
was acceptable, and the efficacy results were encouraging
[140]. However, the application of OV-ICB combina-
tions is still in its early stages. More precise studies are
required to identify suitable candidate patients and as-
sess the potential for rationally designed OV-ICB com-
bination treatments. The specific tumor contexture,
including the barriers for viral entry and the natural
tropism of viruses, should be well understood in pre-
treatment biopsies.

The immune context is programmed by direct and in-
direct interactions between cellular and molecular com-
ponents in PDAC tissue. Patients with PDAC are most
likely to benefit from a combinatorial but tailored use of
strategies that target cancer cells or stromal constituents
to prevent immunosuppressive mechanisms and drive
effective immune infiltration.

Conclusions

We conclude that PDAC is characterized by T cell ex-
haustion and the infiltration of tumor-promoting im-
mune cells, such as M2 macrophages and MDSCs,
resulting in poor clinical outcomes. Apart from genetic
alterations, PDAC is a type of tumor that has an in-
tensely desmoplastic stroma and a sparse vascular
system. Heterogeneous CAFs exert a heterogeneous and
dynamic influence on antitumor immunity during tumor
progression by remodeling the ECM and secreting cyto-
kines. The sparse vascular system limits immune cell in-
filtration into tumor tissue and determines the immune
landscape by expressing immunomodulatory molecules.
Other stromal factors, such as microbiome and nerve fi-
bers, also form a sophisticated interaction network that
determines the immune landscape within the TME and
has critical roles in the effectiveness of cancer immuno-
therapies. According to basic research and clinical trials,
the effects of therapies that target the stroma, such as
ECM degradation, cytokine blockage and vascular
normalization, may offer new therapeutic opportunities
for PDAC. Deep and dynamic knowledge of the interac-
tions between tumor tissue and the immune response
helps with understanding the mechanisms of immune
evasion and identifying strategies for combination
immunotherapies.
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