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The role of m6A RNA methylation
in human cancer
Xiao-Yu Chen, Jing Zhang* and Jin-Shui Zhu*

Abstract

N6-methyladenosine (m6A) is identified as the most common, abundant and conserved internal transcriptional
modification, especially within eukaryotic messenger RNAs (mRNAs). M6A modification is installed by the m6A
methyltransferases (METTL3/14, WTAP, RBM15/15B and KIAA1429, termed as “writers”), reverted by the demethylases
(FTO and ALKBH5, termed as “erasers”) and recognized by m6A binding proteins (YTHDF1/2/3, IGF2BP1 and
HNRNPA2B1, termed as “readers”). Acumulating evidence shows that, m6A RNA methylation has an outsize effect
on RNA production/metabolism and participates in the pathogenesis of multiple diseases including cancers. Until
now, the molecular mechanisms underlying m6A RNA methylation in various tumors have not been
comprehensively clarified. In this review, we mainly summarize the recent advances in biological function of m6A
modifications in human cancer and discuss the potential therapeutic strategies.
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Introduction
According to MODOMICS, 163 different chemical
modifications in RNA have been identified in all living
organisms by the end of 2017 [1]. Among these modifi-
cations, N6-methyladenosine (m6A), methylated at the
N6 position of adenosine, has been considered as the
most pervasive, abundant and conserved internal tran-
scriptional modification within eukaryotic messenger
RNAs (mRNAs) [2], microRNAs (miRNAs) [3] and long
non-coding RNAs (lncRNAs) [4]. RNA m6A is enriched
near stop codon and 3′ untranslated terminal region
(UTR) [5, 6] and translated near 5′ UTR in a cap-
independent manner [7], thereby affecting RNA tran-
scription, processing, translation and metabolism.
The deposition of m6A is encoded by a methyltransferase

complex involving three homologous factors jargonized as
‘writers’, ‘erasers’ and ‘readers’ (Fig. 1). Methyltransferase-
like 3 (METTL3) [8], METTL14 [9], Wilms tumor 1-
associated protein (WTAP) [10], RBM15/15B [11] and
KIAA1429 [12] are categorized as the components of
‘writers’ that catalyze the formation of m6A; ‘erasers’, fat
mass and obesity-associated protein (FTO) [13] and alkB
homologue 5 (ALKBH5) [14], selectively remove the

methyl code from target mRNAs; ‘Readers’ are capable of
decoding m6A methylation and generating a functional
signal, including YT521-B homology (YTH) domain-
containing protein [15], eukaryotic initiation factor (eIF) 3
[11], IGF2 mRNA binding proteins (IGF2BP) families [16]
and heterogeneous nuclear ribonucleoprotein (HNRNP)
protein families [17]. YTH domain can recognize m6A
through a conserved aromatic cage [18] and another two
proteins FMR1, LRPPRC “read” this modification [19, 20].
Contrary to the conventional ‘writer’-‘eraser’-‘reader’
paradigm, few studies reveal METTL3/16 as a m6A ‘writer’
or ‘reader’ [21].
M6A RNA modification is a dynamic and reversible

process which was corroborated by the discovery of
‘eraser’ in 2011 [13]. It is associated with multiple
diseases such as obesity, infertility and cancer [22]. In
this review, we summarize the function and therapeutic
advances of m6A modifications in human cancer and
provide their promising applications in the treatment of
these malignant tumors (Table 1).

Biological function of m6A modification in mammals
Recent years have witnessed a substantial progress of
m6A post-transcriptional modification in regulating
RNA transcription [23, 24], processing event [25–27],
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splicing [28–33], RNA stabilities [34–40] and translation
[42–49] (Fig. 2).

M6A modification in RNA transcript
METTL3 and FTO are implicated in regulating tran-
scription of CCAAT-enhancer binding protein (CEBP)
family. METTL3 is localized to the starting sites of
CEBPZ, which is required for recruitment of METTL3
to chromatin [23]. CEBPA is identified as an exclusive
transcription factor displaying a positive correlation with
FTO and regulating its transcription in acute myeloid
leukemia (AML) [24].

M6A modification in RNA processing
M6A modifications promote the initiation of miRNA
biogenesis [3] and regulate nuclear mRNA processing
events [25]. METTL3 recognizes the pri-miRNAs by
microprocessor protein DGCR8 and causes the elevation
of mature miRNAs and concomitant reduction of un-
processed pri-miRNAs in breast cancer [3]. METTL14
interacts with DGCR8 to modulate pri-miR-126 and
suppresses the metastatic potential of hepatocellular
carcinoma (HCC) [26]. FTO can regulate poly(A) site
and 3′ UTR length by interacting with METTL3 [25].
YTHDC1 knockout in oocytes exhibits massive defects
and contributes to extensive alternative polyadenylation
and 3′ UTR length alterations [27].

M6A modification in RNA splicing
M6A RNA modifications that overlap in space with the
splicing enhancer regions affect alternative RNA splicing
by acting as key pre-mRNA splicing regulators [28].
Inhibiton of m6A methyltransferase impacts gene
expression and alternative splicing patterns [29]. FTO
regulates nuclear mRNA alternative splicing by binding
with SRSF2 [25]. FTO and ALKBH5 regulate m6A
around splice sites to control the splicing of Runt-
related transcription factor 1 (RUNX1T1) in exon [28],
and removal of m6A by FTO reduces the recruitment of
SRSF2 and prompts the skipping of exon 6, leading to a
short isoform of RUNX1T1 [30]. Depletion of METTL3
is associated with RNA splicing in pancreatic cancer
[31]. WTAP is enriched in some proteins involved in
pre-mRNA splicing [32]. But, some studies show that,
M6A is not enriched at the ends of alternatively spliced
exons and METTL3 unaffects pre-mRNA splicing in
embryonic stem cells [33].

M6A modification in RNA degradation
M6A is a determinant of cytoplasmic mRNA stability
[34], and reduces mRNA stability [35]. A RNA decay
monitoring system is adopted to investigate the effects
of m6A modifications on RNA degradation [36]. Knock-
down of METTL3 abolishes SOCS2 m6A modification
and augments SOCS2 expression [37]. M6A-mediated

Fig. 1 Molecular composition of m6A RNA methylation. M6A methylation is a dynamic and reversible process coordinated by a series of
methyltransferases (METTL3/14, WTAP, RBM15/15B, and KIAA1429, termed as “m6A writers”), demethylases (FTO and ALKBH5, “m6A erasers”)
and identifiers (YTHDF1/2/3, YTHDC1, HNRNPA2B1, HNRNPC, eIF3, FMR1, and LRPPRC, “m6A. ‘Readers”)
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SOCS2 degradation also relies on m6A ‘reader’ YTHDFs
[37], which accelerate the decay of m6A-modified
transcripts [38] or target mRNA [39]. Knockout of m6A
methyltransferase attenuates YTHDF2 specific binding
with target mRNAs and increases their stability [40].
M6A RNA methylation also controls T cell homeostasis
by targeting the IL-7/STAT5/SOCS pathways [41] and
decreases the stability of MYC/CEBPA transcripts [24].

M6A modification in RNA translation
M6A modifications occur in mRNA and noncoding
RNA (ncRNAs) to regulate gene expression in its 5′ or
3′ UTR [7, 42]. METTL3 enhances mRNA translation
[8], while depletion of METTL3 selectively inhibits
mRNAs translation in 5′UTR [43] and reduces AFF4
and MYC translation in bladder cancer [44] but increase
that of zinc finger protein 750 and fibroblast growth
factor 14 in nasopharyngeal carcinoma [45].
M6A modifications facilitate the initiated translation

through interacting with the initiation factors eIF3,
CBP80 and eIF4E in an RNA-independent manner [46].
Heat-shock-induced translation of heat-shock protein 70
(HSP70) alters the transcriptome-wide distribution of
m6A [7] and affects DNA repair [47]. ABCF1-sensitive
transcripts largely overlaps with METTL3-modified
mRNAs and are critical for m6A-regulated mRNA
translation [43]. In addition, FMR1 binds to hundreds of

mRNAs to negatively regulate their translation [20].
YTHDF1 facilitates the translation of m6A-modified
mRNAs in protein-synthesis and YTHDF3 acts in the
initial stage of m6A-driven translation from circular
RNAs (circRNAs) [38, 48, 49].

M6A RNA modification in metabolic and developmental
diseases
The methyltransferases and demethylases of m6A are
associated with a variety of diseases, such as obesity [13,
50], type 2 diabetes mellitus (T2DM) [51], growth
retardation, developmental delay, facial dysmorphism
[52]. Besides, m6A modification affects infertility [14],
developmental arrest [22], neuronal disorder [53] and
infectious diseases [54, 55].

M6A modification in metabolic and infectious diseases
M6A modification is involved in metabolic abnormal-
ities in patients with T2DM and obesity [56]. FTO
regulates the energy homeostasis and dopaminergic
pathway through FTO-dependent m6A demethylation
[50, 51], and it is ubiquitous in adipose and muscle
tissues, influencing RUNX1T1 splicing in adipogenesis
[28, 30]. METTL3/14 reduce the abundance of
Hepatitis C virus replication, but FTO promotes its
production through YTHDF proteins [54]. M6A is
also identified as a conserved modulatory symbol

Fig. 2 Regulatory Functions of m6A modification in RNA splicing, processing, translation and degradation. M6A RNA modification is involved in
regulating the life cycle of RNA including RNA splicing (regulated by WTAP, FTO, ALKBH5 and YTHDC1), RNA processing (regulated by METTL3/14
and ALKBH5), RNA translation (regulated by METTL3, YTHDF1/3, eIF3 and FMR1) and RNA degradation (regulated by YTHDF2)
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across Flaviviridae genomes, including dengue, Zika
virus and West Nile virus [55].

M6A modification in infertility
Deficiency of demethylase ALKBH5 leads to the
aberrant spermatogenesis and apoptosis with impaired
fertility in testes and striking changes in DNA methyl-
transferase 1 (Dnmt1) and ubiquitin-like with PHD and
RING finger domains 1 (Uhrf1) [14]. YTHDF2 is
required for maternal transcriptome during oocyte
maturation [57]. YTHDC1/2 determine the germline
development in mouse [58], and YTHDC1 is essential
for spermatogonia in males and oocyte maturation in
females [27].

M6A modification in nervous system development
M6A modification regulates the pace of cerebral cortex
development [59] and m6A-regulated histone modifica-
tions enhances self-renewal of neural stem cells by
METTL3/14 [60]. M6A has dual effects on delaying
tempo of corticogenesis by two distinct pathways: in-
creased cell-cycle length and decreased mRNA decay
[59]. M6A depletion decreases the decay of radial glia
cells associated with stem cell maintenance, neurogen-
esis and differentiation [61].

M6A modification in inflammation and metabolism-related
cancer
Cacinogenesis is characterized by stepwise accumulation
of genetic/epigenetic alterations of different proto-
oncogenes and tumor-suppressor genes following other
diseases including chronic inflammation and metabolic
diseases. METTL3/14 and FTO influence Hepatitis C
virus replication and production, and endogenous
mediators of inflammatory responses (proinflammatory
cytokines, reactive oxygen, et al) can promote genetic/
epigenetic alterations [62]. FTO affects RUNX1T1 spli-
cing in adipogenesis [28, 30], and RUNX1T1 is essential
for pancreas development [63]. Transcription factor
forkhead box protein O1 (FOXO1) as another direct
substrate of FTO, regulates gluconeogenesis in liver [64]
and promotes the growth of pancreatic ductal adenocar-
cinoma [65].

M6A RNA modification in human cancer
Emerging evidence suggests that, m6A modification is
associated with the tumor proliferation, differentiation,
tumorigenesis [46], proliferation [66], invasion [46] and
metastasis [26] and functions as oncogenes or anti-
oncogenes in malignant tumors (Table 1 and Fig. 3).

Acute myeloid leukemia (AML)
FTO is highly expressed in AML with t(11q23)/MLL
rearrangements, t(15;17)/PML-RARA, FLT3-ITD and/or

NPM1 mutations and promotes leukemic cell transform-
ation and tumorigenesis [67]. METTL3/14 are expressed
in hematopoietic stem/progenitor cells (HSPCs) and
AML cells with t(11q23), t(15;17), or t(8;21), control the
terminal myeloid differentiation of HSPCs and promote
the survival and proliferation of AML [68]. WTAP acts
in cell proliferation and arrests the differentiation of
leukemia [69].
M6A promotes the translation of c-MYC, BCL2 and

PTEN in AML [70]. METTL14 acts an oncogenic role
by regulating its targets MYB/MYC through m6A
modification [68]. YTHDF2, responsible for the decay of
m6A-modified mRNA transcripts [40], is also associated
with MYC in leukemia [71]. Besides, YTHDF2 stabilizes
Tal1 mRNAs and increases its expansion in AML [72].
Collectively, these studies corroborate the functional

importance of m6A modifications in leukemia, such as
METTL3 [23, 70], METTL14 [68], FTO [24, 67] and
YTHDF2 [24, 40] and they provide profound insights
into development and maintenance of AML and self-
renewal of leukemia stem/initiation cells through the
downstream MYC and Tal1 pathways.

Glioblastoma (GBM)
METTL3/14 inhibit GSC growth, self-renewal and
tumorigenesis, but FTO and ALKBH5 indicate poor sur-
vival in GBM by regulating ADAM19 and transcription
factor FOXM1 [73, 74]. LncRNA antisense to FOXM1
(FOXM1-AS) promotes the interaction of ALKBH5 with
FOXM1 nascent transcripts in the tumorigenesis of
GSCs [73].

Lung cancer
M6A demethylase FTO is identified as a prognostic
factor in lung squamous cell carcinoma (LUSC) and
facilitates cell proliferation and invasion, but inhibits cell
apoptosis by regulating MZF1 expression [75]. METTL3
acts as a oncogene in lung cancer by increasing EGFR
and TAZ expression and promoting cell growth, survival
and invasion [46]. METTL3-eIF3 caused mRNA
circularization promotes the translation and oncogenesis
of lung adenocarcinoma [46]. Besides, SUMOylation of
METTL3 is of importance for the promotion of tumor
growth at lysine residues K177, K211, K212 and K215 in
non-small cell lung carcinoma (NSCLC) [76]. These
studies provide insights into the critical roles of
METTL3 and FTO in lung carcinoma.

Hepatocellular carcinoma (HCC)
METTL3 is related to a poor prognosis in HCC patients
and promotes HCC cell proliferation, migration and
colony formation by YTHDF2-dependent posttranscrip-
tional silencing of SOCS2 [37]. But, METTL14 is an
anti-metastatic factor and serves as a favorable factor in
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HCC by regulating m6A-dependent miRNA processing
[26]. MiR-145 down-regulates YTHDF2 through target-
ing its mRNA 3′ UTR [77]. In conclusion, METTL3 up-
regulation or METTL14 downregulation predicts poor
prognosis in patients with HCC and contributes to HCC
progression and metastasis [26, 37]. METTL3 suppresses
SOCS2 expression in HCC via the miR-145/m6A/
YTHDF2 dependent axis [37, 77]. Thus, these studies
suggest a new dimension of epigenetic alteration in liver
carcinogenesis.

Breast cancer and colorectal cancer (CRC)
METTL3 is associated with the expression of mammalian
hepatitis B X-interacting protein (HBXIP), displaying an
aggressiveness in breast cancer. HBXIP-induced METTL3
promotes the proliferation of breast cancer via inhibiting
tumor suppressor let-7 g [78]. Besides, ALKBH5 decreases
the levels of m6A in NANOG mRNA and enhances its
stability, leading to an increase of NANOG mRNA and
protein levels in breast cancer stem cells (BCSCs) [79].
Another m6A eraser ‘FTO’ polymorphism has no associ-
ation with the risk of CRC [80], but the m6A ‘writer’

WTAP is associated with carbonic anhydrase IV (CA4),
which inhibits the proliferation and induces apoptosis and
cycle arrest by repressing the Wnt signaling through
targeting the WTAP-WT1-TBL1 axis [81].

Brief summary of m6A modification-related carcinogenesis
M6A RNA modifications regulate RNA production/me-
tabolism and take part in the carcinogenesis. On the one
hand, m6A-modified genes usually act a oncogenic role
in cancer, leading to alterations of mRNA translation
and acceleration of tumor progression, and decreasing
m6A modification results in tumor development. On the
other hand, given that SUMOylation of METTL3 re-
presses its m6A methyltransferase capacity and results in
tumor growth of NSCLC, modification of m6A methyl-
ase can determine the tumor development.

M6A modification in cancer treatment
M6A modification indicates new directions for the
treatment of various cancers. Regulators or inhibitors of
m6A modifications may provide the potential therapeutic
strategies for cancers, such as MA2 in GBM [74],

Fig. 3 The role of m6A RNA modification in human cancer. M6A RNA modification is associated with the tumorigenesis of multiple malignancies
including AML, GBM, HCC, CRC, NPC, breast cancer, lung cancer, pancreatic cancer, bladder cancer and endometrial cancer
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R-2HG/SPI1/FB23–2 in AML [24, 68, 82] and CA4 in
CRC [81]. Meclofenamic acid (MA) as one of the selective
FTO inhibitors is a non-steroidal anti-inflammatory drug
by competing with FTO binding sites [83]. MA2, the ethyl
ester derivative of MA, increases m6A modification,
leading to the suppression of tumor progression [74, 83].
The expression of ASB2 and RARA is increased in
hematopoiesis and they act as key regulators of ATRA-
induced differentiation of leukemia cells [84]. FTO
enhances the leukemogenesis of AML by inhibition of the
ASB2 and RARA expression [67]. FB23–2, as another
inhibitor of m6A demethylase FTO suppresses AML cell
proliferation and promotes the cell differentiation and
apoptosis [82].
ALKBH5 and FTO are α-ketoglutarate (α-KG)-

dependent dioxygenases [85], which are competitively
inhibited by D2-hydorxyglutarate (D2-HG) and elevated
in isocitrate de-hydrogenases (IDH)-mutant cancers for
transferring isocitrate to α-KG [86]. R-2-hydroxyglutarate
(R-2HG), an metabolite by mutating IDH1/2 enzyme,
exhibits anti-leukemia effects through increasing m6A
levels in R-2HG-sensitive AML [24].
S-adenosylmethionine (SAM) serves as a cofactor

substrate in METTL3/14 complex and its product S-
adenosylhomocysteine (SAH) inhibits the methyltrans-
ferases by competing with adenosylmethionine [87]. 3-
deazaadenosine (DAA) inhibits SAH hydrolase and
interrupts insertion of m6A into mRNA substrates [88]
and its analogs suppress the replication of various
viruses editing m6A- mRNA in cancers [89, 90].
METTL14 acts an oncogenic role by regulating MYB/

MYC axis through m6A modification [68]. SPI1, a
hematopoietic transcription factor, directly inhibits
METTL14 expression in malignant hematopoietic cells
[68] and may be a potential therapeutic target for AML.
CA4 inhibits the tumorigenicity of CRC by suppressing
the WTAP-WT1-TBL1 axis [81].

Future prospect
M6A RNA modifications act by regulating RNA
transcript, splicing, processing, translation and decay
and participate in the tumorigenesis and metastasis of
multiple malignancies. However, the underlying mecha-
nisms of m6A modifications in cancer should be further
addressed.. Besides FMR1 and LRPPRC, the function of
ALKBH family in m6A RNA methylation is undeter-
mined. METTL14 has different expression levels in vari-
ous tumor tissues. Given a dual role of METTL14 either
as a tumor suppressor [26] or an oncogene in cancer
[68], its role in other cancers need be further elucidated.
Though some inhibitors of m6A methylation have shown
promising effects on cancer development [68, 81], novel
therapeutic strategies for m6A RNA methylation should
be further explored in the treatment of cancer.
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