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Abstract

Malignant ovarian tumors bear the highest mortality rate among all gynecological cancers. Both late tumor diagnosis
and tolerance to available chemical therapy increase patient mortality. Therefore, it is both urgent and important to
identify biomarkers facilitating early identification and novel agents preventing recurrence. Accumulating evidence
demonstrates that epigenetic aberrations (particularly histone modifications) are crucial in tumor initiation and
development. Histone acetylation and methylation are respectively regulated by acetyltransferases-deacetylases and

ovarian carcinoma.

methyltransferases-demethylases, both of which are implicated in ovarian cancer pathogenesis. In this review, we
summarize the most recent discoveries pertaining to ovarian cancer development arising from the imbalance of
histone acetylation and methylation, and provide insight into novel therapeutic interventions for the treatment of
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Background

Malignant ovarian tumor has the highest mortality rate
among all gynecological cancers [1]. Epithelial ovarian
cancer (EOC) is the most common type of ovarian
cancer [2]. In general, the majority of EOC patients are
diagnosed in advanced stage (Stage III or IV) disease,
due to the non-specific symptoms characteristic of early
stage EOC and the lack of available EOC-specific
screening biomarkers. Standard EOC therapy consists
of debulking surgery followed by platinum-based chemical
therapy [3, 4]. While the initial tumor response is frequently
promising, unfortunately, tumors recur rapidly due to
chemo-resistance. Acquired chemo-resistance is a daunting
challenge in EOC treatment [5]. Thus, the identification of
novel cancer-specific biomarkers capable of detecting early
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stage disease, as well as efficient therapeutic agents against
EOC recurrence, is vital for EOC treatment.

The genesis of cancer lies within gene alteration [6].
However, epigenetics (the phenotypic alteration in gene
expression without modification of the DNA sequence
itself) has increasingly been recognized for its role in
tumor formation. Recently, a series of cancer-associated
genes, regulated by epigenetic modification, has been
implicated in the onset and progression of malignant
ovarian tumor [7]. Epigenetics includes DNA methylation,
nucleosome repositioning, histone post-translational modifi-
cation, and post-transcriptional gene regulation by miRNAs
[8]. Specifically, histone modification, regulated by histone
modifying enzymes, manipulates gene expression [9, 10].
Histone modification alters chromatin structure, and is
heritable, passing to daughter cell generations. The
basic building blocks of chromatin, each nucleosome
harbors an octameric core, assembled by two copies of
each histone (H2A, H2B, H3, and H4) protein wrapped
by 145-147 DNA base pairs (bp). The linker histone
H1 binds nucleosomes together, which fold into higher-
order chromatin structures [11]. The amino-terminal
tails of histones are flexible and unstructured, capable
of directly altering the structure of chromatin and

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12943-018-0855-4&domain=pdf
mailto:whjscdx@163.com
mailto:ljzhao89@163.com
mailto:taotaovip2005@163.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Yang et al. Molecular Cancer (2018) 17:109

ultimately affecting gene expression via enzyme modifi-
cation. Histone modification dynamically maintains the
steady state of chromatin. At least eight different histone
modifications exist: acetylation, methylation, phosphoryl-
ation, ubiquitination, glycosylation, sumoylation, ADP-
ribosylation, and carbonylation [12, 13]. The balance of
histone acetylation and methylation is respectively con-
trolled by histone acetyltransferases-deacetylases and
histone methyltransferases-demethylases. Disruption of
the steady state may cause abnormal cellular function,
possibly even ovarian cancer (Fig. 1) [14, 15].
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Potential biomarkers of histone modifications for
ovarian cancer

Decades of study have detected a variety of biomarkers
for diagnosis and prognosis of ovarian cancer. The most
widely used is the biomarker CA125 (also known as mucin
16). The CA125 blood test is not an effective screening
test when used alone, given that CA125 levels are only
increased in 50% of stage I ovarian cancers and can also
be increased in benign disorders, such as uterine fibroids,
ovarian cysts and other conditions such as liver disease
and infections [16, 17]. Increased levels of CA125 are most
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Fig. 1 A schematic mechanism of histone acetylation and methylation. The balance of histone acetylation and methylation is respectively
controlled by histone acetyltransferases-deacetylases and histone methyltransferases-demethylases. Acetylation of histone tails is associated with a
relaxed chromatin structure and transcriptional activation. Conversely, methylation of histone tails is linked with a condensed chromatin structure
and transcriptional suppression. Disruption of the steady state of histone acetylation and methylation may cause abnormal cellular function,
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frequently observed in high grade serous carcinoma(HGSC),
with lower levels of CA125 in other non-serous subtypes.
The combination of the CA125 blood test and radiographic
imaging, such as transvaginal ultrasonography, has been
evaluated for use as a screening strategy. One of the largest
studies to examine this combination was the PLCO Cancer
Screening trial, which enrolled 78,216 women 55-74 years
of age [18]. Ovarian cancer was diagnosed in 212 women
(5.7 per 10,000 person-years) in the screening group and in
176 women (4.7 per 10,000 person-years) in the usual care
group (rate ratio: 1.21; 95% CI: 0.99-1.48), and the stage
distributions of cancer were similar for the two groups
(stage III and stage IV cancers comprised almost 80% of
cancers in both groups). Although the CA125 test alone as
a screening marker has been considered ineffective, the
UKCTOCS study evaluated longitudinal measurements of
CA125 levels for the screening of ovarian cancer in an
algorithm termed ‘risk of ovarian cancer algorithm’ (ROCA)
[19]. The mortality reduction was not significant between
any of the research groups in this trial and thus, the ROCA
test cannot currently be recommended as a screening
strategy for ovarian cancer; further follow-up of this study is
necessary to understand the long-term potential of this
screening strategy. Another ovarian cancer biomarker is
human epididymis protein 4 (HE4; also known as WFDC2)
[20]. A systematic review reported better sensitivity, specifi-
city and likelihood ratios for HE4 compared with CA125,
but this has not yet been analysed within a screening
strategy [21]. The use of other novel markers for ovarian
cancer screening are under investigation, including, for
example, DNA analysis of uterine lavages or Pap smears
for TP53 mutations [22]. In this sense, currently none
of these biomarkers could be used as an exact index for
diagnosis and prognosis prediction of ovarian cancer
patients due to the lack of sensitivity and specificity.
Despite the mechanisms of how these histone modification
alterations arise in ovarian cancer remain unclear, the fact
that aberrant histone modification occurs frequently in
malignant ovarian tumors and are thought to contribute
both to the initiation and development of ovarian cancer.
Hence, the exploration of histone modification holds great
promise in revealing attractive biomarkers for diagnosis,
prognosis and therapeutic targets in women with malig-
nant ovarian tumors.

Histone acetylation

In general, histone acetylation relates to the relaxed
chromatin state, which facilitates gene transcription. The
overall level of histone acetylation is a dynamic process,
controlled by two opposing enzymes: histone acetyltrans-
ferases (HATs) and histone deacetylases (HDACs) [23].
These enzymes have a profound effect upon the structure
of chromatin. Imbalance between HATs and HDACs con-
tributes to the pathogenesis of ovarian cancer [15].
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Histone acetyltransferases (HATs)

Utilizing acetyl coenzyme A (acetyl-CoA) as a common
acetyl donor, HATs catalyze the transfer of the acetyl
group to the e-amino group of lysine side chains. This
action directly abolishes the positive charge of lysine,
eliminating the electrostatic bond between DNA and
histone [23]. HATSs, therefore, unfold the local chromatin
structure, rendering it more accessible to non-chromatin
proteins.

Classification and biology of HATs

Two major HAT types exist: nuclear (A-type) and cyto-
plasmic (B-type) (Fig. 2) [24]. Type-A HATs are catego-
rized by structural homologies and functional similarities
into three subfamilies: the MYST (Moz-Ybf2/Sas3-Sas2-
Tip60) family, the GCN5-related N-acetyltransferases
(GNAT) family and the p300/CREB-binding protein
(CBP/CREBBP) family. The MYST family contains a
specific sequence region (called MYST domain), made
of an acetyl-CoA binding motif and a zinc finger. Some
MYST family members also possess additional structural
features termed chromo-domains (MOF, Esal, and Tip60)
[25]. The GNAT enzyme superfamily is widespread in
nature [26]. In spite of substrate diversity, GNAT super-
family members are generally characterized by a highly
conserved GNAT domain (composed of 6-7 anti-parallel
B-strands and 4 o-helices in the topology Pl-al-a2-
B2-B3-p4-a3-p5-a4-p6-p7 [26, 27]), and can acetylate
lysine residues on histones H2B, H3, and H4. GNAT
domain contains three conserved motifs in the order of
D-A-B. Motifs A and B are highly conserved, and par-
ticipate in acyl-CoA and acceptor substrate recognition
and binding. Motifs D preserves the stable state of
these proteins. Some other members of GNAT family
harbor another conserved motifs C that is located at
the N-terminus of these proteins [27, 28]. Although the
structure of p300/CBP family has not yet been fully
elucidated, several studies have shown that the structure
and the catalytic mechanism of this group of proteins are
obviously distinct from the MYST and GNAT families
[29]. Except for a large HAT domain (about 500 residues)
and a bromodomain, most importantly, the p300/CBP
family possesses three putative zinc finger domains (ZZ,
PHD and TAZ) that mediate protein-protein interaction,
as well as two protease-resistant domains connected by a
long protease-sensitive loop, which are not seen in other
HAT members [28—30]. Moreover, it has been observed
that the p300/CBP family employs a Theorell-Chance,
or “hit” and “run” mechanism which differ from the
mechanism of GNAT proteins (a sequential mechanism)
and MYST proteins (a ping pong mechanism) [29]. Hatl
(histone acetyltransferase 1), which was the first histone
acetyltransferase identified, is the only representative
member of B-type HATs [31]. This enzyme is primarily
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Fig. 2 a Type A HAT families. AT: acetyltransferase domain; Zn: Zic finger domain; Bromo: bromodomain. GNAT domain includes three key motifs
and these motifs in structure is in this order: D-A-B. Some of GNAT family members contain another conserved motif C that is located at the N-terminus
of these proteins. b Topological diagram of the core GNAT fold. The highly conserved GNAT domain composed of 6-7 anti-parallel 3-strands and 4
a-helices in the topology 31-a1-a2-B2-33-34-a3-35-04-B6-37. Motifs A and B participate in acyl-CoA and acceptor substrate recognition and binding,
and the feature of motif A is the “P-loop” that connect helix a3 and strand 4. Motifs C and D preserve the stability of proteins
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located in the cytoplasm. It acetylates free (not nuclear)
histones. Interestingly, Hatl is also found in the nucleus
[31]. Type-B HATs acetylate newly synthesized histone
H3 and H4 (Type-B HATs are mainly responsible for
newly synthesized H4K5 and H4K12). Newly synthesized
histones H3 and H4 are rapidly acetylated and then the
modifications of acetylation are removed after the
assembly of the histones into nucleosomes in the mature
process of chromatin [31, 32].

The role of HATs in ovarian cancer

Human males lack hMOF (also known as MYSTI, a
member of the MYST family of HATs), the human
ortholog of the Drosophila MOF protein [33]. MOF
contains a chromodomain and acetyl-CoA binding

motif. Biochemical purifications reveal hMOF forms
two distinct multicomplexes in mammalian cells: MSL
(Male Specific Lethal)-associated MOF and NSL (Non-
Specific Lethal)-associated MOF [34]. MSL-associated
MOF exhibits strong specificity for histone H4K16 [27, 35].
NSL-MOF exhibits relaxed substrate specificity [36], and
acetylates histone H4 at K5, 8, and 16 [27, 34, 37, 38].
Depletion of hMOF reduces histone H4K16 acetylation,
gene instability, and cell cycle disorder. Although the
specific mechanisms hMOF plays in tumor development
and progression are unclear, several studies demonstrate
that abnormal hMOF gene expression in various cancers,
including breast, renal cell, colorectal, gastric, and non-
small cell lung cancer [39-42]. Recent studies demon-
strated that HCP5 (human leukocyte antigen (HLA)
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complex 5) is a target gene of hMOF, and marked
down-regulation of hMOF and HCP5, and loss of H4K16
acetylation were observed in ovarian epithelial cancer
tissues [38, 43]. Immune system, as we known, prevents
or controls tumor by monitoring cell biological behavior
and identifying and eliminating abnormal cells. The
aberrant expression of immune molecules like HLA-class
I and II has been found in ovarian cancer (The human
leukocyte antigen (HLA) system or complex is a gene
complex encoding the major histocompatibility complex
(MHC) proteins in humans) [44]. Moreover, HCP5 is
localized within the MHC class I region and plays a key
role in immunity to retrovirus infection [45]. Therefore,
hMOF may have a role in modulation of tumor antigen-
specific immune responses in ovarian cancer through
modulating the expression of its target gene HCPS5.
Decreased hMOF levels are associated with reduced
overall patient survival [43]. As such, hMOF protein
expression is an independent risk factor influencing
malignant ovarian tumor prognosis [38, 43]. hMOF may
therefore have value as both a novel epigenetic biomarker
for the diagnosis of malignant ovarian tumor, as well as a
target for EOC treatment.

Histone deacetylases (HDACs)

HDACs remove acetyl residues, restoring the positive
charge of lysine. Consequently, HDACs are associated
with condensed chromatin structures and transcriptional
repression [23].

Classification and biology of HDACs

Heretofore, the family of HDACs includes 18 isoenzymes,
sorted into four classes (I-IV) based upon homology to
yeast HDACs and sequence similarity (Fig. 3) [46]. Classes
I, II, and IV are zinc-dependent enzymes. Class III (also
known as sirtuins/SIRTs) are NAD+ dependent enzymes.
Class I HDACs include HDAC 1, 2, 3, and 8 (all nuclear
proteins). Of these, HDAC3 shuttles between the cyto-
plasm and nucleus. Class II HDACs include HDAC 4,
5, 6, 7,9, and 10. All Class II HDACs shuttle between
the cytoplasm and the nucleus. Class II consists of two
subfamilies: Ila (HDAC 4, 5, 7, and 9) and IIb (HDAC 6
and 10). Subfamily Ila possess a highly conserved 600-
residue long N-terminal extension. The N-terminal
extension possesses sites that bind myocyte enhancer
factor 2 (MEF2) and 14-3-3 proteins. HDACI1 is the
sole member of Class IV HDACs and share properties
with both Class I and II. Class III HDACs are mammalian
homologs of the yeast silent information regulator (SIR2),
and include seven members (SIRT1-7) with possessing
distinctive targets. Class III HDACs act as deacetylases for
histones and non-histones [47-49].
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The role of HDACs in ovarian cancer
Classical HDACs

Class I (HDAC 1, 2, and 3) Class I HDACs (1, 2, and
3) promote ovarian cancer progression. Class I HDACs
are over-expressed in ovarian cancer tissues, and play a
critical role in ovarian carcinogenesis [50]. Moreover,
expression of class I HDACs increases gradually from
benign, borderline, and malignant ovarian tumors. Class I
HDAC expression levels are markedly different in various
histological ovarian cancer subtypes. Class I HDAC
expression is most positive in mucinous subtypes,
followed by high-grade serous, clear cell, and endometrioid
subtypes. Strongly proliferating tumor tissues exhibit in-
creased Class I HDAC expression. In addition, increased
Class I HDAC expression is an independent risk factor for
poor malignant ovarian tumor prognosis [50, 51]. The spe-
cific mechanisms underlying how Class I HDAC:s facilitate
ovarian carcinogenesis and chemo-resistance remain
incompletely understood. Recently, a study further
demonstrates the downregulatiom of RGS2 in drug-resistant
ovarian cancer cells partly because Class I HDACs suppress
the promoter region of RGS2 [52]. RGS2 (Regulator of
G-protein Signaling 2) is an inhibitor of G-protein coupled
receptors (GPCRs) via accelerating the deactivation of
heterotrimeric G-proteins. The level of RGS2 dropped
sharply in ovarian epithelial cells resistant to chemotherapy
compared with chemo-sensitive cells has been observed
[53]. HDAC1 enhances cellular proliferation via of cyclin A
promotion [54]. HDAC2 remodels chromatin in response to
platinum-based chemical therapies in ovarian epithelial
cancer cells [15]. HDACS3 facilitates cellular migration by
suppressing E-cadherin expression [54].

Interactions between the immune system and tumor
critically impact prognosis. Recently, it has been demon-
strated that ovarian cancer generates an immunosuppressive
microenvironment to evade immune system attack. Proteins
0OX-40 ligand (OX-40 L/TNFSF4/CD134L/CD252) and
4-1BB ligand (4-1BBL/TNEFSF9/CD137L) regulate effector
cytotoxic T-cell (CTL) activity while programmed death
ligand-1 (PD-L1) exhibits immunosuppressive effects,
allowing the tumor to escape immune destruction [55].
Drug-resistant ovarian cancer cells exhibit repression of
OX-40 L and 4-1BBL (immune-stimulatory molecules),
with concomitant augmented expression of immunosup-
pressive molecules PD-L1/CD274 [56]. Furthermore,
HDAC1 and HDAC3 exhibit aberrant association with
OX-40 L and 4-1BBL promoters in chemotherapy-resist-
ant ovarian cancer cells, contributing to suppression of
OX-40 L and 4-1BBL [56]. EOC is one of the first
malignancies demonstrating correlation between tumor-
infiltrating lymphocytes (TILs) and increased overall
survival rate [55, 57, 58]. Moreover, two HDACI1/
2-derived HLA ligands activate T-cells, prompting further
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elimination of HLA-matched cancer cells [59]. HDAC1
and HDAC7 maintain cancer stem cells (CSCs), both of
which are over-expressed in ovarian cancer CSCs com-
pared to non-stem tumor cells (NSTCs) [60]. Additionally,
accumulation of HDAC4 (generated by nuclear fibrillar
collagen matrices by PPla co-localization) suppresses p21,
facilitating ovarian cancer cell proliferation, increasing
invasive potential, and promoting migration [61].

HDAC10

The function of histone deacetylase 10 (HDAC10, a Class
IIb member) in EOC is poorly understood. HDAC9 and
HDAC10 are required for homologous recombination
[62]. Recent evidence suggests HDACI10 inhibitors may
augment platinum therapy efficacy in malignant ovarian
tumors [63].

SIRTs

Yeast SIR2 (silent information regulator 2, member of
the sirtuin family) was originally isolated during screening
for cancer silencing factors [64]. SIR2 is a nicotinamide
adenine dinucleotide (NAD+)-dependent enzyme, and is a
histone deacetylase [64—66]. It is implicated with calorie
restriction associated life span extension [67, 68]. Here-
tofore, 7 mammalian homologues (SIRT1-7) have been
defined, with SIRT1 closest evolutionarily to yeast SIR2.
Mammalian sirtuins target different sites, have diverse
substrates, and influence various cellular functions.

Sirtuin-1 (SIRT1)

Of the 7 sirtuin family members, SIRT1 is among the most
studied. SIRT1 has the highest homology to Yeast SIR2
[68]. SIRT1 protects against DNA damage and genomic
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instability, as well as cellular oxidative stress [69-71].
SIRT1 deacetylases both histones and non-histones (Fig. 4),
and directly decreases the degree of acetylation of histone
H1 K26, H3 K9, H3 K14, and H4 K16 [65, 72]. SIRT1
indirectly regulates histone methylation by interacting
with methyltransferase SUV39H1 during heterochromatin
formation [73]. The non-histone substrates of SIRT1
(transcriptional factors, DNA repair machinery elements,
nuclear receptor genes, and signaling molecules) are
critical in various biological processes, but are particularly
important in carcinogenesis [74-77]. SIRT1 mediates
deacetylation of p53, allowing cells with damaged DNA to
bypass cell-cycle control, enabling mutation accumulation
and, ultimately, carcinogenesis [78]. It may contribute to
EOC development. SIRT1 is markedly increased in malig-
nant ovarian tumors (especially, in serous carcinoma) com-
pared to corresponding normal tissues, and up-regulated
SIRT1 inactivates p53 by deacetylation [79]. SIRT1 overex-
pression is more common in early stage EOC [79]. EMT
(epithelial-to-mesenchymal transition) occurs during
early to invasive stage phenotypic tumor transition.
SIRT1 regulates EMT in ovarian cancer cells, crucial in
ALS-induced autophagy, antagonizing hypoxia-induced
EMT ([80]. SIRT1 is also implicated in LPA (lysophosphati-
dic acid)-induced EMT in ovarian cancer cells [59]. Ovar-
ian cancer cell resistance to platinum-based drugs is largely
attributed to increased SIRT1 expression [79, 81, 82]. The
tumor suppressor gene BRCA1 regulates SIRT1 expression
and NAD activity [83]. Crosstalk between SIRT1 and
BRCA1 has been demonstrated but via unclear precise
mechanisms. SIRT1 modulates cisplatin sensitivity in
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ovarian cancer via BRCA1-SIRT1-EGER signaling [83, 84].
SIRT1 over-expression is pivotal in malignant ovarian
tumor chemo-resistance, and may serve as a predictive
indicator of poor clinical outcome [85].

Sirtuin-3 (SIRT3)

The Class III HDAC member SIRT3 functions as a malig-
nancy inhibitor or facilitator dependent upon cancer type
[86]. SIRT3 inhibits ovarian cancer cell migration via Twist
down-regulation [87]. SIRT3 is requisite in the function of
Bcl-2 suppressors in EOC, regulating both S1-mediated
glucose metabolic and apoptotic effects [88].

Sirtuin-6 (SIRT6)

SIRT6 has been implicated in the development of colon
adenocarcinoma, pancreatic, breast, and liver cancer
[89-91]. As a tumor suppressor, SIRT6 is downregulated
in ovarian cancer. SIRT6 inhibits ovarian cancer cell
proliferation via Notch3 downregulation, and correlates
with ovarian carcinoma prognosis [92].

Histone methylation
Histone methylation mainly occurs upon lysine or arginine
residues. Methylation is required for various biological
processes, ranging from post-transcriptional regulation to
faithful chromosomal transmission during mitosis [93—95].
Unlike acetylation, however, histone methylation cannot
alter histone protein charge [96]. Histone lysine methylation
modulates either transcriptional activation (e.g. H3K4mel/
me2/m3, HK36me3, H3K79mel/me2/me3, H4R3mel,
H4K20mel) or gene silencing (e.g. H3K9me2/me3,
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H3K27me3) depending upon 1) the particular residue
methylated, 2) the degree of methylation, and 3) the site
of the methylated histone within a specific gene locus.
Moreover, histone methylation has stronger location-spe-
cificity than histone acetylation that generally links with
transcriptional activation [97-99]. Histone modification
leads to different biological consequences due to recruit-
ment of diverse effector proteins [98, 100]. The steady state
of histone methylation is maintained by a balance between
histone methyltransferases (HMTs) and histone demethy-
lases (HDMTs). HMTs add methyl groups to the side
chains of lysine and arginine. HDMTs catalyze methyl
group removal. Therefore, imbalance between HMTs and
HDMTs leads to aberrant gene expression, and carcino-
genesis may ensue, including ovarian cancer [101-104].

Histone methyltransferases (HMTs)

HMTs are a large family of protein methyltransferases,
adding methyl groups to lysine (HKMTs) or arginine
(PRMTs). Both utilize SAM (S-Adenosyl-1-Methionine)
as a methyl group donor. Lysine can be mono-, di-, or
tri-methylated. Arginine residues of the core or tails of
histones can be mono- or di- (asymmetric or symmetric)
methylated [105].

Classification and biology of HMTs

Lysine methyltransferases (HKMTs)

HKMTs are very sensitive and specific to the histone lysine
residue they target, as well as the degree of methylation
they can perform. Most lysine methyltransferases possess
an evolutionarily conserved SET domain, referring to a
multiprotein complex first identified in the Drosophila
polycomb group proteins, namely suppressor of variega-
tion 3-9 (Su(VAR)3-9), enhancer of zeste (E(z)), and
trithorax (TRX) (Fig. 5) [106]. Lysine methyltransferases
usually function within this multiprotein complex. The
SET methyltransferase is responsible for the catalytic
domain, while the others complex components account for
selectivity and activity [107]. Centromeric heterochromatin
is characterized by tri-methylated H3K9. Methylated H3K9
within the centromeric heterochromatin is requisite for
recognition and binding of HP1 (heterochromatin
protein 1). Suv39 loss directly induces down-regulation
of H3K9 tri-methylation, influencing mitosis and
meiosis [108]. Some SET demethylases are classified
into subfamilies by structural sequence features: SET1,
SET2, SUV39, EZ, RIZ, SMYD, and SUV4-20 subfamilies.
Other SET domain-containing methyltransferases have not
been classified into a specific group [107]. Additionally, the
DOT1 (disruptor of telomeric silencing)-like family
specifically methylates H3K79 at the histone globular
core, maintaining meiosis stability. It does not contain
the SET domain [109].
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Arginine methyltransferases (PRMTs)

The multiple arginine residues within histone tails are
mono- and di-methylated, affecting nucleosome remod-
eling and gene expression. Methylarginines have three
different forms: Mono-methylated arginine (MMA),
symmetric di-methylated arginine (SDMA), and asym-
metric di-methylated arginine (ADMA) [110, 111].
There are nine known PRMTs in mammals, which are
grouped into three classes: type-I, type-II, and type III
enzymes. The type-I enzymes catalyze mono- and
asymmetric di-methylation of arginine residues, and
they include PRMT1, 2, 3, 4 (also known as CARM1),
6, and 8. The type-1I enzymes catalyze mono- and sym-
metric di-methylation of arginine residues (PRMT5 and
PRMT9 fall into this category). The type-III enzymes
exclusively catalyze mono-methylation of arginine residues
and only includes PRMT7 [111-113]. All of these
enzymes catalyze the transfer of the methyl group to the
guanidine nitrogen atom of arginine residues in a variety
of histone, non-histone proteins, and various substrates.
The most relevant enzymes in histone arginine methyla-
tion are PRMT1, 4, 5 and 6.

The role of HMTs in ovarian cancer

EZH2

Enhancer of zeste homologue 2 (EZH2), a member of
SET1 family, is an integral subunit of the polycomb
repressive complex 2 (PRC2) and possesses histone
methyltransferase activity on lysine-9 and -27 of histone 3
or lysine-26 of histone 1 (Fig. 6). EZH2 is primarily respon-
sible for H3K27 methylation, and the tri-methylated
H3K27 (H3K27me3) is correlated with the gene silencing
[114, 115]. Additionally, the polycomb group protein
EZH2 can also serve as a platform to recruit DNA
methyltransferases and further directly control the
methylation states of DNA [116]. The mammalian PRC2
complex mainly contains four core components: EZH2
(catalytic core component of PRC2), EED (Embryonic
Ectoderm Development), SUZ12 (Zinc finger protein
suppressor of Zeste 12), and RbAp46/48 [117, 118]. Dif-
ferent forms of the EZH2 complex exist in cells, which
are distinguished by the different N-terminal lengths of
EED contained [118]. EZH2 is known to silence gene
expression via trimethylation of histone H3 on lysine
27 (H3K27me3) [119]. However, recent evidence implicates
a PRC2-independent role of transcriptional activation for
EZH2. In a castration-resistant prostate cancer model,
EZH2 acted as a co-activator for critical transcription
factors including the androgen receptor (AR) that was
independent of its transcriptional repressor function [120].
Moreover, EZH2 physically bridged the estrogen receptor
(ER) and components of Wnt signaling to induce the gene
expression in breast cancer cells [121]. EZH2 also activated
NE-«B targets of NOTCHI in breast cancer cells [122].
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Fig. 5 Histone lysine methyltransferases(HKMTs): classfication, histone targets, primary domain architecture. HKMTs are classified in two types: the
SET domain-containing proteins and the DOT1-like proteins. The SET domain-containing proteins can be subdivided into four families by
structural sequence features: SUV39, SET1, SET2 and RIZ. Except for these family listed above, there are other SET domain -containing
methyltransferases that have not been classfied into a specific group, for instance, SET8, SET7/9, SMYD subfamily and SUV4-20 subfamily
L

The expression of EZH2 is upregulated in many carcin-
omas, with the high level of EZH2 correlated with poor
outcome of human tumors. EZH2 is involved in tumor
initiation, development, progression, metastasis and che-
moresistance through gene silencing and chromatin remod-
eling [123]. EZH2, as an oncogene, mainly functions to
inhibit the expression of tumor suppressor genes through
upregulating their methylation level. There is mounting

evidence that up-regulation of EZH2 occurs in ovarian
carcinoma, and is positively correlated with worsening
histological grade and advanced stage [124]. EZH2 is
thought to be an independent forecaster of poor overall
survival for women with ovarian carcinoma [125-127].
Breast cancer 1 (BRCA1) gene is a well-recognized
tumor suppressor gene, and the loss of BRCA1 is closely
associated with ovarian carcinoma [128]. Recently, a study
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has revealed that knockdown of EZH2 can rescue BRCA1
protein expression and facilitate its nuclear translocation.
EZH2, therefore, may participates in biological behavior of
EOC via modulating the expression of BRCA1 [127].
Moreover, the correlation between EZH2 and transform-
ing growth factor-betal (TGF-P1) has also been observed
in ovarian carcinoma tissues. EZH2 promotes the ability
for invasion and metastasis of ovarian carcinoma cells
by regulating TGF-p1 [129]. In detail, Rao et al. demon-
strated that in ovarian carcinoma cell lines, EZH2
knockdown was found to reduce TGF-B1 expression
and increase E-cadherin expression either in the transcript
or in the protein levels. Furthermore, a significant positive
correlation between overexpression of EZH2 and TGEF-
betal in ovarian carcinoma tissues was observed,
suggesting a potential important role of EZH2 in the
control of cell migration and/or invasion via the regulation
of TGF-P1 expression.

Moreover, numerous studies support that EZH2 is
critical to maintain a stem cell state [125]. The high
expression of EZH2 has been implicated in mainten-
ance of the cisplatin-resistant subpopulation of cells in
ovarian carcinoma and contributes to acquired-toler-
ance for platinum-based chemotherapy [126].
Malignant ovarian tumor epigenetics could also be
regulated by tumor microenvironment. Recent work
has indicated that cancer-associated fibroblasts (CAFs)
have an ability to enhance the growth and invasion of
ovarian cancer cells, and this ability is partly due to
increasing EZH2 expression [130].

DOTIL

Disruptor of telomeric silencing-1-like (DOT1L), a human
homolog of yeast DOT], is a unique histone methyltrans-
ferase that lacks the SET domain and is only responsible
for methylating lysine-79 of histone H3 (H3K79) in the
core domain [131]. According to recent findings, DOT1L-
mediated H3K79 methylation serves as a key regulator in
a number of physiological and pathological processes
ranging from gene expression to DNA damage response
and cell cycle regulation [132]. Zhang et al. first demon-
strated that patients with ovarian carcinoma exhibiting
high-level of DOT1L have poorer overall survival and
progression-free survival as compared to those with low
expression of DOTIL. This observation also suggested
that DOT1L can directly regulate the transcription of G1
phase arrest genes CDK6 and CCND3 through H3K79
dimethylation to promote cell cycle progression [133].
The expression of DOT1L can be regarded as an inde-
pendent predictive factor and a potential area for thera-
peutic intervention in ovarian cancer.

PRMT1

Protein arginine methyltransferase 1 (PRMT1), is an
important arginine methyltransferase. It can serve as a
transcriptional promotor or inhibitor by modifying a
series of various substrates. PRMT1 is linked with many
biological processes, including carcinogenesis [134, 135].
PRMT1 is a predominant asymmetric arginine methyl-
transferase in humans. Asymmetric di-methylation of
histone H4 at arginine 3 (H4R3me2as) is mediated by
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PRMT1 and promotes transcriptional activation [136].
Increasing evidence has connected PRMT1 to the develop-
ment and progression of cancer. Abnormal expression of
PRMT1 has been seen with breast and prostate cancer
[137, 138], and may have a role in the progression of
ovarian carcinoma. Akter et al. suggest that PRMT1 is
critical for the development of ovarian carcinoma.
Knock-down of PRMT1 suppresses proliferation, mi-
gration, invasion, as well as colony formation of
ovarian cancer cells. It has been shown that FAM98A,
a new substrate of PRMT]I, is expressed in ovarian
cancer cell lines and is correlated with migration and
invasion of ovarian cancer cells [110].

PRMT5

Arginine methyltransferase 5 (PRMT5), the first identified
type II arginine methyltransferase [139], is the primary en-
zyme responsible for mono- and symmetric di-methylation
of arginine. PRMTS5 localizes to both the nucleus and the
cytoplasm and it methylates multiple histone and non-his-
tone proteins [111]. There is growing evidence that
PRMTS5 is involved in a wide variety of biological processes
including cellular differentiation [140], proliferation [141],
and apoptosis [142]. PRMT5 can directly methylate H4R3
and H3R8 to silence the tumor suppressor gene ST7 (sup-
pression of tumorigenicity 7) and NM23 (nonmetastatic
23) [111, 143]. Additionally, it also can alter cell biological
behaviors by methylating many other substrates, such as
P53 [141], E2F1 [142], cyclin E1 [144] and E-cadherin
[145]. Evidence has emerged that PRMT5 acts as an
oncogene in ovarian cancer. The high level of PRMT5
is expressed in EOC and associated with poor outcome.
Furthermore, the finding addresses that PRMT5 could
substantially promote growth and proliferation of ovarian
carcinoma cells depending on E2F-1 [146]. E2F-1 is a
complex family of transcription factors and participates in
the regulation of cell proliferation and cell cycle progres-
sion [147]. The down-regulation of PRMT5 may be a
potential therapeutic target in malignant ovarian tumors.
However, the precise role of PRMTs in ovarian cancer has
not been elucidated. More studies are needed to explore
the work of PRMTs in ovarian cancer.

Histone demethylases (HDMTs)

It had been thought that the methylation of histone was
stable and irreversible, until 2004, when Shi et al. discov-
ered lysine-specific demethylase 1A (LSD1; also known as
KDM1A). LSD1 specifically removes methylation from
mono- or di-methylated lysine 4 at histone H3 (H3K4mel
and H3K4me2) through its amine oxidase domain [148].
This revelation completely changed the concept of histone
methylation.
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Classification and biology of HDMTs
Lysine demethylases
Histone lysine demethylases (KDMs) are classified into two
categories: the flavin-dependent amine oxidase family and
the jumonjic (JMJC) domain-containing family. Although
these two families work on the lysine through different
catalytic mechanisms, they have similar effects [99, 148].
All members of the amine oxidase-related family
belong to the superfamily of the flavin adenine dinucleo-
tide (FAD)-dependent enzymes that form an imine inter-
mediate that is subsequently hydrolyzed to generate
unmodified lysine and formaldehyde [149]. During the
entire process, the cofactor FAD oxidizes the methyl-lysine
and then the reduced FAD is re-oxidized by oxygen.
Because the formation of the obligatory imine inter-
mediate in this reaction requires a lone pair of electrons
on the methy-lysine e-nitrogen atom, LSD1 only removes
mono—-/di-methylation, not tri-methylation [148, 149].
While proteins in this superfamily have a JmjC domain,
including six clusters (KDM2 to KDM?7), they are a kind
of enzymes apparently different from LSD-family, which
can utilize Fe** and a-ketoglutarate (a-KG) as cofactors
to remove all 3 lysine methylation states (tri-, di- and
mono-methylation) at H3K4, H3K9, H3K27, and H3K36,
as well as H1K26 [149]. The JmjC lysine demethylases
catalyze protein hydroxylation at the carbon of the Ne-
methyl group to produce an unstable hemiaminal inter-
mediate, and Ne-methyllysine demethylation by the
hydroxylation [150].

Arginine demethylases

The human peptidylararginine deiminases 4 (PAD4/PADI4)
is capable of transforming mono-methylated histone argin-
ine to citrulline (Cit). However, as methylated arginine and
non-methylated arginine can both be demethylated by
PAD4/PADI4 and this demethylation reaction produces
Cit, rather than arginine, PAD4/PADI4, to be exact, is not a
“strict” histone demethylase [151]. In 2007, Chang et al.
reported that Jumonji domain—containing 6 protein
(JMJD6) is the only known member of the JmjC family
that has the arginine demethylase activity and can de-
methylate histone H3 at arginine 2 (H3R2) and histone
H4 at arginine 3 (H4R3) [152]. JMJD6 can catalyze two
types of reactions: hydroxylation and demethylation.
However, the latter catalytic mechanism is controversial
[153]. Thus, the existence of a “true” histone arginine
demethylase remains unclear.

The role of HDMTs in ovarian cancer

KDM1 subfamily

Lysine-specific demethylase 1 (LSD1/KDM1A), the first
H3K4 lysine-specific demethylase to be recognized [148],
is a flavin-containing amine oxidase. It is a highly con-
served protein that specifically catalyzes demethylation
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reactions on mono- and di-methylated histone H3K4 or
H3K9. The structure of LSD1 bears three domains. It
contains a C-terminal amine oxidase-like domain
(AOL), a SWIRM domain located at the N-terminal,
and a Tower domain that is inserted into the AOL
domain and directly engages the SANT2 domain of
CoREST (also known as RCOR1) [154]. The substrate
specificity of LSD1 mainly lies on the type of partner.
For example, LSD1, as a suppressor, can inactivate
tumor suppressor genes via the activity of H3K4me2
demethylase. However, LSD1 can also promote transcription
if it interacts with nuclear hormone receptors such as the
androgen or estrogen receptors. Its enzymatic specificity
switches to H3K9me2 [155, 156]. LSD1 is not restricted
to histone and it is also able to demethylate other non-
histones, such as p53 [157, 158].

Aberrant overexpression of LSD1 has been strongly
correlated with poor prognosis in various kinds of
human tumor types, such as hepatocellular, colon, breast,
prostate, and non-small cell lung cancers [159-163].
Extensive studies have also demonstrated that LSD1 plays
a crucial role in the early stages of carcinoma formation
through chromatin remodeling [164, 165]. LSD1 can
suppress p53-mediated apoptosis via demethylation of
lysine-370 in p53 [158]. Previous reports have revealed
that the expression of LSD1 is abundantly expressed in
ovarian carcinoma tissues [166—169]. Moreover, one
study observed that the level of LSD1 is improved from
benign and borderline to malignant tumor in a stepwise
manner, both in subtypes of serous and mucinous, and
higher expression of LSD1 is linked strongly with FIGO
stage and lymphatic metastasis in both ovarian serous
cystadenocarcinoma and mucinous cystadenocarcinoma.
Patients with a low level of LSD1 live longer than women
with a high level of LSD1 expression [167]. A recent work
shows that overexpression of LSD1 promotes ovarian
carcinoma cell proliferation, migration, and invasion by
regulating EMT. Knockdown of LSD1 impairs the ability
of migration and invasion in ovarian cancer. Mechanistic
analyses suggested that overexpression of LSD1 induces
EMT and downregulates the transcription of E-cadherin
which plays vital roles in regulating adhesion of cell-cell
and maintenance of tissue architecture, with a concomi-
tant upregulation of the mesenchymal markers (including
N-cadherin, Vimentin and MMP-2). Furthermore, upregu-
lated LSD1 inhibits the transcription of E-cadherin by
demethylating H3K4me2 at the E-cadherin promoter. In
addition, this study also observed that overexpressed
LSD1 causes an increase in expression of transcription
factor Snail that induces EMT through decreasing E-cad-
herin expression, and the loss of LSD1 leads to the
downregulation of Snail [169]. Previous study showed that
LSD1 is recruited through Snail to the region of
E-cadherin promoter to inhibit the gene transcription of
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the E-cadherin consequently contributing to EMT-asso-
ciated tumor cells invasion [170]. Sox2, a pluripotent stem
cell (PSC) protein, is frequently expressed in many poor
prognosis tumors and co-expressed with Oct4 and Lin28
in ovarian cancer [171, 172]. Sox2 serves as a pivotal regu-
lator to confer certain stem cell properties to ovarian can-
cer cells to allow them to grow, differentiate and survive.
It has been reported that the expression of Sox2 strongly
depends on LSD1 expression [172, 173]. Downregulation
of LSD1 represses the expression of Sox2 and induces
cell-cycle arrest through directly increasing the methyla-
tion states of H3K4 and H3K9 on region of Sox2 and cell
cycle genes. Strikingly, downregulation of LSD1 influences
cellular differentiation through increase trimethylated
H3K27. However, the upregulated level of trimethylated
H3K27 is caused by the inhibition of Sox2 after the loss of
LSD1, rather than by LSD1 inactivation directly [173].
Thus, LSD1 is a critical factor in ovarian carcinoma cell
growth and differentiation via a Sox2-mediated histone
demethylation mechanism.

Many researchers have confirmed that overexpression
of epidermal growth factor receptor (EGFR) signaling is
closely correlated with poor outcome of ovarian cancer
[174-176]. Recently, a report indicated that the level of
LSD1 increases in parallel with increased the level of
EGER in ovarian cancer. More importantly, the high
level of LSD1 is induced by EGF signaling. Furthermore,
EGF increases LSD1 expression by activation of the
phosphatidylinositol 3-kinase (PI3K)/AKT signaling path-
way, with a decrease of H3K4me2 [169]. LSD1 is a critical
player in EGF-mediated ovarian cancer mechanism. These
findings suggest that LSD1 holds considerable promise as
a novel biomarker for diagnosis and a target for treatment
in ovarian cancer.

KDM3 subfamily

The KDM3 family histone demethylases, including KDM3A,
KDM3B and JMJDIC, are H3K9me2/mel demethylases
with a preference for dimethylated residues. They could
remove the methyl groups from H3K9me2 to induce target
gene expression activation [177]. They have been found to
actively participate in the development and progression of a
variety of cancers, including colorectal cancer [178], liver
cancer [179], breast cancer [180] and Ewin sarcoma [181].
Recently, this superfamily has been found to regulate the
malignant behaviors of ovarian cancers. Ramadoss et al.
reported that KDM3A is a critical regulator of ovarian
cancer stemness and cisplatin resistance [182]. KDM3A
is crucial for the ovarian cancer cells to successfully
progress through the critical stages of tumor progres-
sion such as cell proliferation, maintenance of CSCs
and development of chemoresistance. To regulate these
processes, KDM3A employs two distinct mechanisms;
one by demethylating histone (H3K9me2) and the other
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by targeting a non-histone protein, p53. Mechanistically,
while activating Sox2 expression by erasing the repressive
methylation (H3K9me2) mark, KDM3A modulates p21
and Bcl-2 expression possibly through p53-K372mel
demethylation. Consistently, KDM3A depletion inhibited
the growth of subcutaneously implanted cisplatin-resistant
human ovarian cancer cells in athymic nude mice.
Moreover, KDM3A is abundantly expressed and posi-
tively correlated with Sox2 expression in human ovarian
cancer tissues. Thus, this report has unraveled a novel
mechanism by which KDM3A promotes ovarian CSCs,
proliferation and chemoresistance, underscoring the
significance of KDM3A as a novel therapeutic target for
resistant ovarian cancer.

KDM4 subfamily

Members of the KDM4/JMJD2 subfamily contain JMJD2A
to JMJD2F. The KDM4/JMJD2 family is classified into
two groups, based upon N-terminal JMJN and JMJC
domain structure. JMJD2A, B, C belong to one group
since their N-terminal JMJN and JMJC domain are
followed by two PHD and two TUDOR domains [183].
The remaining members of the KDM4 subfamily
(JMJD2E and JMJD2F) are sorted into a second group.
JMJD2E and JMJD2F are currently regarded as pseudo-
genes because of a lack of intrinsic sequences in their
structure [184]. Various studies have shown that KDM4
is upregulated in many tumors and is unequivocally
needed for cancer cell proliferation [185]. Abnormal
tumor cell growth, proliferation and blood vessels for-
mation consume large amounts of energy and oxygen
and further lead to severe hypoxic microenvironment.
The hypoxic microenvironment in turn can contribute
significantly to a number of human tumors [186],
including ovarian carcinoma [187, 188]. The response
to hypoxia in human tumors primarily are mediated by
hypoxia-inducible factor (HIF) [186]. HIF is a heterodi-
mer (including a a and a p subunits) and participates in
a variety of tumor cell biological processes via inducing
invasion, metastasis, angiogenesis, stem cell mainten-
ance and resistance to chemotherapy and radiation.
Accordingly, the expression of HIF is linked tightly with
poor prognosis in human tumors [186, 189]. Multiple
Jumonji-domain histone demethylases (JMJC-KDMs)
can be regulated by HIF [190]. HIF-1a induces expres-
sion of several Jumonji-domain histone demethylases
(JMJC-KDMs), including the KDM4 family [185]. The
well-studied member of the KDM4 family is KDM4A/
JMJD2A/JHDM3A. In general, the KDM4 family is sup-
pressed in hypoxic microenvironment [185]. KDM4B/
JMJD2B is thought to influence gene expression by
demethylating di- and tri-methylated histone 3 at lysine
9 (H3K9me2/me3) and lysine 36 (H3K36me2/me3).
Recently, Wilson et al. demonstrated that hypoxia-
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inducible histone demethylase KDM4B is upregulated
in ovarian cancer, and the mechanism of KDM4B that
regulates the expression of metastatic genes and pathways,
and facilitates peritoneal seeding and growth of ovarian
cancer cells through hypoxic signaling [185]. Moreover,
the hypoxia-inducible KDM3A, which could demethylate
H3K9me2/1 in hypoxic states, may promote the function
of KDM4B in ovarian cancer [185]. Studies have shown
that KDM4A is either a promotor or suppressor in gene
post-transcription. KDM4A can compose complexes with
either androgen or estrogen receptors and then activate
these complexes’ activity through the KDM4A catalytic
domain [191, 192]. It remains unclear whether the inhib-
ition requires KDM4A enzymatic activity consistent with
an oncogenic function of KDM4A. The overexpression of
KDM4A in ovarian cancer has previously been estab-
lished. It is stabilized by hypoxia, independent of HIF, to
promote gene amplification, copy number heterogeneity
gain and drug resistance in ovarian cancer [193, 194].
Further researches investigating the mechanisms medi-
ated through the KDM4 family in ovarian cancer is still
warranted.

KDM5 subfamily

KDM5 subfamily (also known as JARID1) is composed
of four multidomain members: JARID1A (KDM5A/RBP2),
JARID1B (KDMS5B/PLU1), JARIDIC (KDM5C/SMCX),
and JARID1ID (KDM5D/SMCY). This family (with the
exception of JMJC and JMJN domains), are recognized by
the existence of ARID DNA binding [195], C5SHC2 zinc
finger motif, and several histone-interacting PHD domains
[196]. All KDM5 members are capable of removing methyl
groups from di- and tri-methylated histone 3 at lysine 4
(H3K4me2/me3). In actively transcribed genes, this occurs
at the starting region of transcription. Evidence suggests
that the KDM5 subfamily acts as a driver in carcinogenesis
[197]. KDM5A and KDM5B induces the growth of cancer
cells, reduces the expression of tumor suppressor genes, fa-
cilitates the acquired tolerance of cancer-fighting drugs,
and maintains tumor-initiating cells [198]. Recent data has
shown that KDM5B exhibits frequent gain of function for
alterations in ovarian cancer and the high level of KDM5B
is closely associated with poor outcome and acquired drug
resistance in malignant ovarian tumor [199]. KDM5B may
act as a key biomarker to predict prognosis and acquired
chemoresistance for patients with ovarian carcinoma.
More interestingly, high KDM5A/B expression characterizes
a small subpopulation of slowly cycling, tumor-initiating
cells that are intrinsically resistant to a wide variety of cancer
therapeutics, including both cytotoxic (e.g. Cis-platinum)
and targeted agents (tyrosine kinase inhibitors, Bortezomib,
B-raf inhibitors) [200-202]. Inhibition of KDM5A/B may
prove useful in combination with conventional therapies to
combat drug tolerance of ovarian cancer patients.
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Although the previously described demethylases have
been reported in ovarian cancer and implicated in
tumorigenesis, the exact mechanism is not completely
understood. It remains unclear whether the function of
the remaining enzymes of demethylases are responsible
for the onset and progression of ovarian carcinoma.

Clinical applications

Histone deacetyltransferase inhibitors (HDACis)

HDAC:s, as chromatin-modifying drugs, block HDACs
and subsequently induces an increase in the acetylated
level of histones. This stimulates the reactivation of
silenced tumor suppressor genes and reverses the aberrant
phenotype of malignant tumors. HDACis also induce
differentiation of CSCs from their quiescent state. Other
mechanisms of HDACis have also been identified, such as
the generation of oxidative stress [203]. The inhibitors of
histone deacetyltransferase represent a completely new
insight into the therapy of malignant ovarian tumor and
resistance to anti-cancer drugs. Several classes of HDACis
have been identified, including organic hydroxamic acids,
short-chain fatty acids, benzamides, cyclic tetrapeptides,
and sulfonamide anilides [202]. Only three HDAC in-
hibitors have been approved by the FDA: vorinostat,
romidepsin, and panobinostat. All three drugs have
been successfully tested on ovarian cancer, either alone
or in combination with other anti-cancer drugs such as
cisplatin [204].

Many other HDACis are undergoing rapid development
and have also been tested under preclinical and clinical
investigation with potential to become anti-cancer drugs
for ovarian cancer. For example, the HDAC inhibitor
Trichostatin A (TSA), a drug that displays great inhibition
for class I and II HDACs, can induce gene expression of
P73 and facilitate Bax-dependent apoptosis in ovarian
cancer cells with the acquired resistance of cisplatin [205].
Currently, TSA is still in the stage of preclinical stage for
the treatment of ovarian cancer. Belinostat (Bel, PXD101)
is a low molecular weight class I and II HDAC inhibitor
of the hydroxamate class which alters acetylation levels
of histone and non-histone proteins [206]. It has been
investigated as a potent anti-tumor agent in a variety of
cancers, including ovarian cancer. A Gynecologic Oncology
Group (GOG) study was conducted to evaluate the impact
of belinostat, in combination with carboplatin in women
with platinum-resistant ovarian cancer. This study had
29 women enrolled and 27 were evaluable. The median
number of cycles given was two (range 1-10). One
patient had a complete response and one had a partial
response, for an ORR of 7.4% (95% CI, .9-24.3%).
Twelve patients had stable disease while eight had
increasing disease. Response could not be assessed in
five (18.5%). Grade 3 and 4 events occurring in more
than 10% of treated patients were uncommon and
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limited to neutropenia (22.2%), thrombocytopenia (14.8%),
and vomiting (11.1%). The median progression-free survival
(PFS) was 3.3 months and overall survival was 13.7 months.
PES of at least 6 months was noted in 29.6% of patients.
Due to the lack of drug activity, the study was closed after
the first-stage [207]. Nevertheless, Dizon et al. further initi-
ated a phase 1b/2 study was performed, with an exploratory
phase 2 expansion planned specifically for women with
recurrent EOC to evaluate the clinical activity of belinostat,
carboplatin, and paclitaxel (BelCaP) [208]. Thirty-five
women were treated on the phase 2 expansion cohort.
BelCap was given as follows: belinostat, 1000 mg/m?
daily for 5 days with carboplatin, AUC 5; and paclitaxel,
175 mg/m? given on day 3 of a 21-day cycle. The pri-
mary end point was overall response rate (ORR), using
a Simon 2 stage design. The results showed that 54 %
had received more than two prior platinum-based combina-
tions, 16 patients (46%) had primary platinum-resistant dis-
ease, whereas 19 patients (54%) recurred within 6 months
of their most recent platinum treatment. The median num-
ber of cycles of BelCaP administered was 6 (range, 1-23).
Three patients had a complete response, and 12 had a par-
tial response, for an ORR of 43% (95% confidence interval,
26-61%). When stratified by primary platinum status, the
ORR was 44% among resistant patients and 63% among
sensitive patients. The most common drug-related adverse
events related to BelCaP were nausea (83%), fatigue (74%),
vomiting (63%), alopecia (57%), and diarrhea (37%). With a
median follow-up of 4 months (range, 0-23.3 months),
6-month progression-free survival is 48% (95% confidence
interval, 31-66%). Median overall survival was not reached
during study follow-up. The results showed that belinostat,
carboplatin, and paclitaxel combined was reasonably
well tolerated and demonstrated clinical benefit in hea-
vily-pretreated patients with epithelial ovarian cancer. The
addition of belinostat to this platinum-based regimen rep-
resents a novel approach to epithelial ovarian cancer ther-
apy and warrants further exploration. Other information
on the use of HDACis in ovarian cancer has been listed in
Table 1. Although HDACis as a new class of anti-cancer
drugs are quite frequently researched in the field of ovar-
ian cancer, the underlying mechanisms remain unclear.
Additionally, a huge issue concerning the development
of HDAC:is in the therapy of human tumor (including
ovarian cancer) is that most of them have severe side ef-
fects due to cytotoxicity to normal cells. Therefore, better
selective inhibitors of HDAC should be explored for ovar-
ian cancer treatment.

The inhibitors of HMTs or HDMTs

The balance between HMTs and HDMTs is required to
keep the level stable for histone methylation. The imbal-
ance between histone methylation and demethylation has
been frequently found in ovarian carcinoma and is caused
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Table 1 Inhibitors of epigenetic modifications for the treatment of ovarian cancer

Classification Drug Target Phase Reference
HDACi  Hydroxamic acid Trichostatin A(TSA) Class | and Il HDAC families Preclinical [214]
Panobinostat(LBH589) Class | and Il HDAC families Phase | [215, 216]
Belinostat(PXD101) Class | and Il HDAC families Phase Il [207, 208]
Short-chain fatty acid Valproic acid(VPA) Class | and lla HDAC families  Phase | and Phase Il NCT00529022; NCT00533299
Cyclic peptide Romidepsin(FK288) Class | HDAC family Phase || NCT00091195(Terminated);
NCT00085527(Withdrawn)
Benzamide Mocetinostat(MGCDO0103)  Class I HDAC family Preclinical [217]
HKMTi  S-adenosylhomocysteine  3-Deazaneplanocin Polycomb group proteins Preclinical [209]
hydrolase inhibitor A(DZNEP)
HDMTi  Polyamine analog Polyamine analog LSD1 Preclinical [218]

by mutations and aberrant gene expression. A number of
inhibitors have been studied to target HMTs and HDMTs
and are promising for ovarian cancer therapy. Develop-
ment of histone methylation modulators is still in its
preliminary stages. Currently, several inhibitors of HKMTs
have been developed. 3-Deazaneplanocin A (DZNEP), the
first indirect inhibitor of EZH2, was reported to be a
promising cancer-fighting agent for malignant ovarian
tumor, with potential to reduce proliferation, induce apop-
tosis, and inhibit metastasis [209]. More interestingly,
Bitler et al. demonstrated that EZH2 inhibitor, GSK126,
acts in a synthetic lethal manner in ARID1A-mutated
ovarian cancer cells and that ARIDIA mutational status
correlated with response to the EZH2 inhibitor [210].
PIK3IP1 was identified as a direct target of ARID1A and
EZH2 that is upregulated by EZH?2 inhibition and contrib-
uted to the observed synthetic lethality by inhibiting
PI3K-AKT signaling. Moreover, EZH2 inhibition caused
regression of ARID1A-mutated ovarian tumors in vivo.
Thus pharmacological inhibition of EZH2 represents a
novel treatment strategy for ovarian cancers involving
ARID1A mutations. In addition, a number of inhibitors of
LSD1 also have been applied in ovarian cancer. However,
most of them are non-selective to inhibit the activity of
LSD1 [211]. Currently, some selective and potent LSD1
inhibitors have emerged [212], such as $2101. S2101 could
suppress ovarian cancer cells via inducing autophagy and
apoptosis. Additionally, the inhibition of AKT/mTOR
signaling pathway also contributes to the anti-cancer
effect of S2101 in ovarian cancer cells [213]. The use of
nonselective compounds is restricted due to the undesir-
able side effects. Thus the synthesis of more selective
derivatives needs to be discovered.

Novel directions for epigenetic histone modification in
the clinical management of ovarian cancer

As epigenetic inhibitors are an emerging therapy in
ovarian cancer, and with development of more selective
HDAC; and perhaps targeting histotypes most likely to

respond, this approach may find a way into clinical care.
Moreover, with development of resistance to traditional
chemotherapeutic regimens and the emerging immuno-
therapy, a combinatory treatment with epigenetic inhibitors
might open a new avenue to fight against this deadly
disease. Modern computational biology approaches will
also guide the precision medicine therapy for the selection
of epigenetic inhibitors for the treatment of specific histo-
types of ovarian cancer. Studies of histone modification
proteins are more nascent, yet clinical trials in inhibitors of
these proteins are underway. Much more is needed to be
done to fully realize the potential that epigenetics holds for
ovarian cancer clinical care.

Conclusion and perspective

Malignant tumor formation is associated with gene alter-
ation and epigenetic change. Although genetic alterations
cannot be reversed, epigenetic changes are reversible and
thus are easy to modulate. Epigenetics may serve as the
basis of the development of diagnostic tools aiding in early
detection of malignant ovarian tumor. Aberrant histone
acetylation and methylation alter gene expression, with
potential clinical consequences of malignancy. In recent
years, the study of histone modification and the involved
regulatory enzymes have accelerated the identification of
potential diagnostic and prognostic biomarkers for ovarian
cancer. Epigenetic therapy, especially the modulators of
histone-modifying enzymes, has been under the spotlight
in ovarian cancer research. However, the comparative low
specificity of these epigenetic drugs might lead to undesir-
able side effects to human, hampering its widespread
clinical application. Modern scientist are endeavoring to
discover novel generations of epigenetic drugs based upon
the biological effects of this histone-modifying enzymes
with maximal therapeutic efficacy and minimal toxicities.
Although there is still a long way to go, epigenetics-based
biomarker profiling and therapeutic regimens may provide
a powerful weapon to fight against ovarian cancer.
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