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Abstract

Background: Chemotherapeutic agents that modulate cell cycle checkpoints and/or tumor-specific pathways have
shown immense promise in preclinical and clinical studies aimed at anti-cancer therapy. MASTL (Greatwall in
Xenopus and Drosophila), a serine/threonine kinase controls the final G2/M checkpoint and prevents premature
entry of cells into mitosis. Recent studies suggest that MASTL expression is highly upregulated in cancer and
confers resistance against chemotherapy. However, the role and mechanism/s of MASTL mediated regulation of
tumorigenesis remains poorly understood.

Methods: We utilized a large patient cohort and mouse models of colon cancer as well as colon cancer cells to
determine the role of Mastl and associated mechanism in colon cancer.

Results: Here, we show that MASTL expression increases in colon cancer across all cancer stages compared with
normal colon tissue (P < 0.001). Also, increased levels of MASTL associated with high-risk of the disease and poor
prognosis. Further, the shRNA silencing of MASTL expression in colon cancer cells induced cell cycle arrest and
apoptosis in vitro and inhibited xenograft-tumor growth in vivo. Mechanistic analysis revealed that MASTL
expression facilitates colon cancer progression by promoting the B-catenin/Wnt signaling, the key signaling
pathway implicated in colon carcinogenesis, and up-regulating anti-apoptotic proteins, Bcl-xL and Survivin. Further
studies where colorectal cancer (CRC) cells were subjected to 5-fluorouracil (5FU) treatment revealed a sharp
increase in MASTL expression upon chemotherapy, along with increases in Bcl-xL and Survivin expression. Most
notably, inhibition of MASTL in these cells induced chemosensitivity to 5FU with downregulation of Survivin and
Bcl-xL expression.

Conclusion: Overall, our data shed light on the heretofore-undescribed mechanistic role of MASTL in key
oncogenic signaling pathway/s to regulate colon cancer progression and chemo-resistance that would
tremendously help to overcome drug resistance in colon cancer treatment.
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Background

Loss of cell-cycle control, a key regulatory aspect of nor-
mal growth, is a hallmark of neoplastic growth and
malignancy, including in CRC. It is remarkable that due
to the deregulation of cell cycle control, cancer cells
evade programmed cell death despite accumulation of
the genomic instabilities that would normally make
them prime targets for apoptosis and cause them to div-
ide rapidly. Unfortunately, currently available therapeutic
drugs aimed at controlling the cell cycle in cancer cells
have lacked the therapeutic index required to achieve a
robust response against cancer cells while having little
or no cytotoxic effect on normal cells. Thus, one of the
strategy might be to target cell-cycle regulatory features
distinctive to tumor cells.

In this regard, cell cycle kinases play a key role in pro-
moting cell cycle progression through its different phases.
Among these kinases, MASTL (named Greatwall in Xen-
opus and Drosophila) was identified recently and is now
demonstrated to be important for mitosis, especially the
G2/M checkpoint. More specifically, MASTL kinase activ-
ity prevents cells from premature entry into mitosis, and
therefore minimizes chromosomal mis-segregation. To
promote the G2/M transition, MASTL inhibits PP2A
activity by phosphorylating ARPP19 and a-endosulfine
(ENSA). As would be expected, genetic depletion of
MASTL in young mice compromised survival, and this
was due to severe proliferation defects [1]. MASTL
expression, however, also helps to regulate recovery fol-
lowing DNA damage and inhibiting MASTL has been
demonstrated to be beneficial for DNA damage-based
therapies [2]. In line with known significance of these
traits in malignant growth, upregulated expression of
MASTL has been reported in breast, head, and neck can-
cers and is correlated with aggressive clinico-pathological
features [2]. Moreover, a causal role for MASTL in resist-
ance against anti-cancer therapies has been demonstrated
using cell lines derived from initial and recurrent tumors
of head and neck squamous cell carcinoma [3]. These
studies suggest a critical role for MASTL in oncogenic
growth and tumorigenesis. However, a causal association
of MASTL in regulating colon cancer growth and pro-
gression and its potential role in resistance to conven-
tional therapy, a critical factor in unrelenting patient
death, remains an area of active investigation.

In this study, we demonstrate, using a comprehensive
investigative scheme, a significant upregulation of MASTL
expression in stage-specific manner in CRC progression
and an inverse correlation with patient survival. We fur-
ther show its causal significance in cancer progression and
resistance to anti-CRC therapy. Mechanistically, we pro-
vide strong evidence for a novel role for MASTL in regu-
lating Wnt/p-catenin signaling to modulate c-Myc and
Survivin expression in promoting colon cancer. Overall
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these data identify MASTL as a novel therapeutic target
in limiting colon cancer malignancy and reducing death
from the disease.

Methods

Cell culture, plasmids and transfection

The human colon cancer cell lines HCT116, SW620,
SW480, HT29, DLD-1, CaCo2, Ls174T, and IEC-6 cells
were obtained from ATCC (Manassas, VA, USA) and
cultured in RPMI-1640 containing 10% fetal bovine
serum and 1% antibiotic and antimycotic (thermoFisher).
Cells were transfected as described previously using
effectene reagent [4]. Mastl-knockdown cell population
was selected using puromycin (1 mg/ml). The activated
[-catenin (S33Y) mutant was described previously [5].

Human tissue, microarray platforms and statistical
analysis

RNA from human samples was hybridized to Affymetrix
Human Genome U133 Plus 2.0 GeneChip Expression
Array.The protocols and procedures for the procurement
of human tissue samples and details of the microarray
platforms and statistical analysis have been described pre-
viously [6, 7].

Immunoblot, immunohistochemistry and
immunofluorescence analysis

These analyses were performed using the standard pro-
tocols as described before [4]. Anti-MASTL Antibody
(clone 4F9, MABT372, EMD Millipore), anti-E-cadherin
antibody (BD transduction laboratories, USA), B-catenin
(BD transduction laboratories, USA), GSK3beta (Cell
Signaling Technology, Danvers, MA,USA), p-GSK3beta
(Cell Signaling Technology, Danvers, MA,USA) Bcl-xL
(Cell Signaling Technology), Survivin (Cell Signaling
Technology) and anti-b- actin (Sigma, St. Louis, MO),
were used for immunoblotting.

Cell proliferation MTT assay and soft agar assay

To assess cell proliferation, MTT assay was performed as
described previously [7]. Anchorage-independence growth
assay were used to determine the growth potential of
MASTL knockdown cells as described previously [7].

Oncogenic Array

Oncogenic array analysis was performed using proteome
profiler human xl oncology array kit (R&D Systems,
Minneapolis, MN)) as per manufacturer’s instructions.

Invasion assay

Invasive potential of cells was measured in transwell
filter insert with 8.0 pm pore polycarbonate membrane
(Corning) coated with Matrigel (BD, Franklin Lakes, NJ,
USA) as described previously [7].
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Edu proliferation

The 5-ethynyl-2’-deoxyuridine (EdU), a thymidine analogue,
is incorporated into cellular DNA during DNA replication
[8]. The incorporated EAU can be detected through a reac-
tion between ethynyl group of EdU and a fluorescent azide
in a copper-catalyzed [3 + 2] cycloaddition (“Click” reaction)
using Click-iT™ EAU imaging kit (Invitrogen, Carlsbad, CA)
as per manufacturer protocol.

Caspase-3 activity assay

CaspACE™ Assay System (Promega Corp., Madison, W1I)
was used to detect caspase-3 activity as per manufac-
turer protocol.

Annexin V-fluorescein isothiocyanate/ propidium iodide
staining

We used the Hoechst/annexin V-fluorescein isothio-
cyanate (FITC)/ propidium iodide (PI) triple staining
detection system to assess cell apoptosis. FITC Annexin
V Apoptosis Detection Kit II (BD Biosciences, San Jose,
CA) was used as per the manufacturer’s instructions.

RNA extraction and real-time RT-PCR

Total RNA was extracted using RNeasy Plus Mini Kit
(QIAGEN) according to manufacturer instructions as
described [7].

Cell cycle analysis

Transfected cells were harvested and plated in six-well
plates and cultured for 72 h in serum-free medium after
which cells were treated with RO3306 (Sigma, St. Louis,
MO), a CDK1 inhibitor for 16 h. After 16 h, media was
replaced with fresh media and cells were grown for 1 h,
and then fixed and cell cycle analysis was carried out.
The percentage of cells in G0/G1, S, and G2/M phases
of the cell cycle was determined using flow cytometer
(FACS Calibur, BD Biosciences, San Jose, CA) after PI
staining.

Xenograft-tumor studies

All animal experiments were conducted with the approval
of the Institutional Animal Care and Use Committee
(IACUC) of UNMC. The tumorigenicity of cells under
study was assessed using subcutaneous flank inoculation
of 1 x 10° cells in 6-week-old athymic nude mice. Animals
were assessed for 5 weeks after the inoculation for tumor
incidence and growth and then were sacrificed Tumor
volume was measured using the formula Tumor volume
=1/2(length x width?)/2 as previously described [2, 7].

Statistical analysis

Statistical analyses were performed using Graphpad
Prism software (San Diego, CA) for t-test analysis, where
comparisons between two groups were involved, and
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analysis of variance were, more groups are present to
determine statistical significance, and differences were
considered statistically significant at P < 0.05.

Results
MASTL is markedly upregulated in colorectal cancer
To characterize the potential role of MASTL in colon car-
cinogenesis, we first assessed its expression in a high
through-put transcriptome analysis of a large patient
cohort (combined Moffitt Cancer Center/Vanderbilt Med-
ical Center expression array data set using 250 CRC patient
tumors and 10 normal adjacent tissue samples as described
previously [demographics; [7]]). We found robust
stage-specific up-regulation of MASTL transcript levels
compared to normal adjacent mucosal specimens (Fig. 1a;
P<0.001). We found a similar significant increase in
MASTL expression in all stages of colon cancer compared
to normal samples, analyzing the TCGA database (Fig. 1b).
To examine if the observed increase in MASTL mRNA
expression was translationally relevant, we determined
MASTL expression in a panel of colorectal cancer cell lines,
animal models of colon cancer as well as a commercial
colon cancer tissue array [immunohistochemical (IHC)
analysis; 50 samples]. We found that immunoblotting using
lysates from confluence matched cell lines indeed demon-
strated a similar increase in MASTL expression in colon
cancer cells versus non- transformed intestinal epithelial
cells (IEC-6) (Additional file 1: Figure S1A). IHC analysis
also revealed marked increase in MASTL expression in
CRC tissue samples (compared to normal colon; Fig. 1c).
To corroborate these findings, we further determined
MASTL expression in colon tumor samples from a murine
model of sporadic colon cancer (CRC; the APCmin mice)
and colitis- associated cancer (CAC; AOM/DSS induced
mouse model). A significant increase in MASTL expression
was observed in tumors from both colon cancer models
(Fig. 1d). These findings validated a positive association be-
tween MASTL expression and colon cancer progression.
We further determined whether high MASTL expres-
sion could also identify high-risk colon cancer patients.
Overall survival estimates based on MASTL expression
were determined in the CRC patient database as
described previously [7]. We used a median cut-off for
MASTL expression (higher-than-median = high MASTL
expression; lower-than-median =low MASTL expres-
sion). We noted a significant association of better overall
survival for patients with lower-than-median MASTL
expression (Fig. le, p =0.03) while patients exhibiting
high MASTL expression had worse overall survival. We
found a similar trend using disease-specific survival as
an outcome measure (Fig. 1f, p =0.05). Our additional
analysis, wherein we divided patients into four quartiles
based on MASTL expression values and performed
Kaplan-Meier analysis, revealed a similar trend
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Fig. 1 MASTL expression is upregulated in colon cancer. Patients were evaluated by tumor stage and expression levels were compared to expression
levels of normal adjacent samples. a 250 patients were analyzed from the VMC/MCC data set. Wilcoxon rank sum test was used to test for significance
between each stage and normal (P < 0.001). b 315 patients were analyzed from the TCGA database. Kruskal- Wallis rank sum test was used to test for
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(Additional file 1: Figure S1B). These data rendered
strong evidence that MASTL can serve as a prognostic
biomarker for latent disease aggressiveness among colo-
rectal cancer patients.

Inhibiting MASTL expression in colon cancer cells inhibits

neoplastic growth and invasive mobility

In further studies, to identify the causal significance of
MASTL expression in CRC progression and the specific

tumorigenic trait that is affected by MASTL expression,
we evaluated tumorigenic and invasive properties of
HCT116 and SW620 cells in response to inhibition of
MASTL expression. Selection of cell lines for these studies
was based on known tumorigenic/metastatic potential and
high MASTL expression. Anti-human MASTL shRNA
was expressed in these cells and silencing efficiency was
confirmed by qRT-PCR, immunoblotting and immuno-
fluorescence analyses (Fig. 2a (i&ii), Additional file 1:
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Figure S2). HCT116MKD and SW620MKD cells (with in-
hibition of MASTL expression) were analyzed using the
anchorage-independent growth and matrigel-coated
transwell-based invasion assays. Inhibition of MASTL
expression significantly inhibited cell invasion (P < 0.05)
and the ability of these cells to form colonies in soft agar
by 60-80% (P < 0.05) {Fig. 2b (i&ii) and Additional file 1:
Figure S3}. These data supported a necessary role of
MASTL in promoting the oncogenic and metastatic prop-
erties of colon cancer cells.

MASTL knockdown arrests cell cycle at G2/M and induces
apoptosis in colon cancer cells
To ascertain specific cellular function affected by MASTL
expression for these observed changes, we performed cell
cycle analysis using HCT116MKD and SW620MKD and
respective control cells.

Confluent cell monolayer was serum-starved for 72 h
to achieve cell synchronization.

Thereafter, cells were treated with RO3306 (10 uM),
widely used to arrest cell cycle at G2/M interphase [8] for
16 h. Cells were released into the cell cycle by exposing
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them to fresh medium for 1 h. At this time, cells were col-
lected for cell cycle analysis. As shown in Fig. 3, control
cells progressed in the cell cycle to the GO/G1 phase.
MASTL knockdown cells, however were unable to over-
come the G2/M block by RO3306 so as to enter mitosis.
As expected, beyond this, the percentage of cells in G2/M
was 3-5 fold higher in HCT116MKD cells (Fig. 3a,
p<0.05) and SW620MKD cells (Fig. 3b, p <0.05) com-
pared to respective control cells.

G2/M arrest can lead to apoptosis in various cancer
cell lines, including colon cancer cells [9-11]. We thus
next determined whether MASTL knockdown modu-
lated proliferation or apoptosis by inhibiting the cell
cycle at the G2/M interphase. To determine potential
changes in cell- proliferation, MASTL knockdown and
control cells were subjected to Edu-incorporation assay
where it was observed that inhibiting MASTL expres-
sion significantly inhibited proliferative capacity of
HCT116MKD and SW620MKD cells (Fig. 4a (i&ii)). To
determine potential changes in apoptosis, cells were sub-
jected to annexin-V and caspase activity assays. The
annexin-V analysis revealed significant increases in both
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early and late apoptosis in HCT116MKD (Fig. 4b(i)) and
SW620MKD cells (Fig. 4c(i)) compared to control cells
(p <0.05). Caspase 3/7 activity was also increased — 3-4
fold in these cells, suggesting a necessary role for
MASTL in the regulation of processes determining cell
multiplication and death (Fig. 4b (ii), C(ii)).

MASTL regulates the anti-apoptotic proteins, Survivin and
Bcl-xL, by modulating Wnt/B- catenin signaling to
promote colon tumorigenesis

To further examine the precise molecular mechanisms
modified by genetic silencing of MASTL expression to
induce aggressive phenotype, we performed an analysis
of the global changes in protein expression, especially
for proteins implicated in promoting oncogenesis, using
a well-controlled and commercially available oncogenic
array (Additional file 1: Figure S3). We focused on pro-
teins which were reproducibly altered in both colon can-
cer cells (HCT116™*P and SW620™%P). As shown in
Additional file 1: Figure S4, we found consistent and sig-
nificant alterations in the expression of Survivin and
Bcl-xL, key proteins of anti-apoptotic pathways and
upregulated in cancer cells [12-15], in MASTL-silenced
cells versus control cells. We further confirmed signifi-
cant downregulation of Bcl-xL and Survivin expressions
using immunoblotting in MASTL-inhibited colon cancer

cells compared to respective controls (Fig. 5a, b). Of
note, Survivin is one of the downstream target genes of
the Wnt/B-catenin signaling pathway [15, 16]. A critical
significance of hyper-activated Wnt/B-catenin signaling
in colon tumorigenesis is well established [16, 17].
Moreover, B-catenin expression is elevated during the
G2/M interphase of the cell-cycle progression [18, 19].
We therefore reasoned that there might be a causal
correlation between MASTL and Wnt/B-catenin signal-
ing in promoting colon carcinogenesis through modulat-
ing Survivin and/or Bcl-xL expressions. Therefore, we
further determined the effects of MASTL-knockdown
upon [-catenin expression, cellular localization, and
transcriptional activity (Fig. 5c¢ (i&ii)). We found that
knockdown of MASTL also resulted in sharp decreases
in B-catenin expression, as well as expression of c-Myc,
a Wnt/B-catenin signaling target gene. Further determi-
nations demonstrated marked decreases in the nuclear
accumulation of B- catenin and transcriptional activity,
as measured by the TOP-Flash reporter activity, in
MASTL inhibited colon cancer cells. In contrast, forced
overexpression of full-length MASTL cDNA in colon
cancer cells induced sharp increases in the expression of
these proteins (Additional file 1: Figure S5). To see if
similar correlation between these proteins existed in
CRC patient samples, we interrogated expression levels
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of the c-Myc, Bcl-xL and MASTL in the 260-patient
CRC database used to determine MASTL expression in
CRC. It was quite encouraging that levels of c-Myc and
Bcl-xL (BCL2L1) expression associated with MASTL in
a similar fashion in patient samples as noted in vitro
(Additional file 1: Figure S6).

Of importance, glycogen synthase kinase 3 (GSK3), in
complex with Axin and adenomatous polyposis coli (APC),
phosphorylates f-catenin at Thr41, Ser37, and Ser33. Phos-
phorylated p-catenin is specifically recognized by B-TrCP, a
subunit of the SCFF"™™® E3 ubiquitin ligase complex. The
SCEPT™P ubiquitin ligase poly-ubiquitinates B-catenin,
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leading to [-catenin degradation via the proteosome path-
way [20].

In contrast, phosphorylated and/or inactive GSK-3f
promotes cellular accumulation and nuclear transloca-
tion of B-catenin, and initiation of the T-cell factor
(Tcf)-dependent transcription. In agreement with this,
GSK-3p phosphorylation (S9, inactive form) was seen to
be markedly reduced in MASTL knockdown cells,
resulting in active GSK-3f to induce [B-catenin degrad-
ation (Fig. 5d). Further analysis showed no significant
change in B-catenin mRNA expression, well in accord-
ance with potential post-transcriptional regulation (data
not shown).

Inhibiting MASTL expression inhibits xenograft tumor
formation by colon cancer cells in vivo

To determine if inhibiting MASTL expression can similarly
modulate colon tumorigenesis in vivo, we performed a
subcutaneous xenograft tumor assay using HCT116MKD
and respective control cells in athymic nude mice (n =6/

group). The same mice received control and MASTL
knockdown cells on opposite flanks. In line with previous
reports [7], mice receiving HCT116C cells demonstrated
tumor development as early as two weeks post-injection of
cancer cells, and average tumor volume was 1068 +
161.2 mm3 at 4-weeks post-injection. By contrast, tumors
resulting from injection of HCT116MKD cells were signifi-
cantly smaller, with average volumes of 309 +50.6 mm3
after the same period of growth (Fig. 6a, c). Tumor weight
followed a similar pattern and was lower (P<0.05) in
mice injected with MASTL-inhibited cells compared
to those injected with control cells (Fig. 6b). Resulting
tumors were then evaluated for expression of MASTL,
[-catenin, Survivin, and Bcl-xL expression. Also effects of
MASTL inhibition on cell proliferation, and apoptosis in
tumors were determined (Fig. 6d, e). Similar to in vitro
findings, MASTL inhibition reduced expression of
B-catenin, Survivin and Bcl-xL expression in tumors
resulting from HCT116MKD cells. Further, an increased
rate of apoptosis, as determined by cleaved PARP
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expression, while decreased proliferation as determined by
Ki67 immunoreactivity in tumors resulting from
HCT116MKD was observed. This suggests that inhibiting
MASTL expression restores a cell death program and in-
hibits proliferation. These data from xenograft tumor as-
says provide further support for the role of MASTL in
tumorigenesis in CRC.

Forced expression of genetically stabilized B-catenin
rescues cellular apoptosis induced by inhibiting MASTL
expression

Encouraged by these findings, we asked whether effects on
apoptosis mediated by MASTL can be ameliorated by sim-
ply upregulation of -catenin expression. We overexpressed
a mutant [-catenin (S33Y) construct (which resists
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proteosomal degradation and thus is highly stable) in both
HCT116MKD and SW620MKD cells. Overexpression of
[-catenin and its expected effect on promoting Wnt/[3-ca-
tenin signaling was confirmed by immunoblotting and
TOPFlash promoter reporter (Fig. 7a, b). Overexpression of
activated [-catenin in MASTL-inhibited cells inhibited
apoptosis (40-50%) and levels were similar to controls cells
(Fig. 7c) suggesting effects of MASTL on cell viability are
mediated by modulating -catenin expression and activity.

MASTL expression induces resistance to anti-colon cancer
therapy

In head and neck cancer, up-regulation of MASTL expres-
sion promotes cancer progression and tumor recurrence
after initial cancer therapy [2]. In the light of our data that
MASTL expression is directly proportional to the CRC pro-
gression, we reasoned that MASTL expression may
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similarly promote resistance against conventional anti-CRC
therapy using 5-FU. To determine the validity of this sup-
position, control, HCT116M*P, and SW620™ " cells were
subjected to 5FU-treatment (10 or 20 pM). Immunoblot-
ting using cell lysate prepared from these samples demon-
strated significant increases in MASTL expression, along
with Survivin and Bcl-xL expressions, suggesting a potential
role for these molecules in chemotherapeutic resistance
(Fig. 8a). Further analysis showed that the increase in Survi-
vin and Bcl-xL expressions in 5FU-treated control cells was
significantly reduced in MASTL-inhibited cells even in the
presence of 5FU probably making these cells more sensitive
to chemotherapy (Fig. 8a). Similar results were obtained in
SW620 cells (Additional file 1: Figure S7).

We then hypothesized that inhibition of MASTL
would reduce survival signaling downstream of MASTL
and induce chemosensitivity. We again subjected control
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Fig. 7 Overexpression of 3-catenin-S33Y mutant rescues MASTL knockdown cells from apoptosis. 3-catenin-S33Y mutant was transiently
overexpressed (48 h) in MASTL knockdown cells and overexpression of activated (3-catenin was confirmed by immunoblotting and topflash
reporter assay in HCT116 (a) and SW620 (b) cells. ¢ Caspase-3/7 activity as measured by luminescence in HCT116M® and SW620® cells as
compared to control cells and modulation due to overexpression of activated form of 3-catenin in these cells
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Cancer progression

and MASTL knockdown cells to 5FU-treatment (both
cell lines being highly metastatic and chemoresistant).
Treatment with 5FU could only induce 25-30% cell
death in control HCT116 cells. However, 5- FU treat-
ment was significantly more effective in the same cells
in the absence of MASTL expression (HCT116™MXP),
with cell survival significantly reduced (60-70%) (Fig. 8b,
P <0.001). Similar results were observed in SW620C and
SW620M P cells. These observations further support a
key role for MASTL in resistance to chemotherapeutic
agents for colorectal cancer. A postulated model depicting
MASTL-dependent regulation of P-catenin to regulate
cmyc/Survivin/Bcl-xL expression, associated signaling and
cellular functions is presented in Fig. 8c.

Discussion

The central role of the uncontrolled and/or dysregulated
cell division in promoting malignant growth means that
targeting the cyclin-dependent kinases (Cdks), key regu-
lators of the cell cycle, is the most desired line of
anti-cancer drug development, by university researchers
and pharmaceutical companies. Several Cdks, including
Polo-like and Aurora kinase, have recently emerged as
important regulators of the cell-cycle progression with a
causal association to cancer progression [21, 22]. How-
ever, attempts to employ these have been hindered pri-
marily by significant side effects associated with killing
of the normal cell division that is essential for maintain-
ing function of several organs. In current studies, we
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identify MASTL as a therapy target in colon tumorigen-
esis that appears to be highly upregulated in cancer cells,
and thus promises minimal toxicity. Our data that this
protein not only shows stage-specific increases in CRC pa-
tients but negatively associates to patient survival further
support its use as a promising anti-cancer therapeutic tar-
get. Our additional data that depletion of MASTL expres-
sion significantly suppresses chemoresistance in CRC cells
against conventional anti-CRC therapy agent 5-FU further
highlights its efficacy in effective clinical management of
the disease.

Of importance, the MASTL protein has been shown
to be critical for mitosis [23]. The MASTL/Greatwall
kinase is activated during the G2/M transition due to
phosphorylation by cyclin- B-Cdkl, followed by auto-
phosphorylation of the C-terminal activating site. Activa-
tion of this kinase, in turn, promotes inhibition of
PP2A-B55 through phosphorylation of its substrates,
Arpp19 and ENSA [1, 24-26]. This inhibition results in
stable phosphorylation of cyclin-B-Cdkl substrates and
mitotic entry. Once mitosis is complete, the cell must
exit mitosis, and to do this, the prevailing phosphoryla-
tion(s) has to be removed. Removal is suggested to be
accomplished by reversing the inhibitory effect of
MASTL on phosphatases by PP1 [27]. Our data are well
aligned with the understanding of the regulatory role for
MASTL in cell cycle regulation in colon cancer cells,
given that inhibiting MASTL was sufficient to inhibit
cell cycle progression and mitosis. Furthermore, MASTL
depleted colon cancer cells demonstrated cell cycle ar-
rest at the G2/M phase and significant increase in apop-
tosis. The novelty of our studies is in our observation
that MASTL regulates Wnt—/(-catenin signaling hyper-
activation, critical regulator of colon tumorigenesis, to
promote colon carcinogenesis. Mechanistically, based on
our data, we postulate that MASTL inhibition leads to
activation of Gsk3p, which in turn induces phosphoryl-
ation and thus degradation of the oncogenic B-catenin
expression. This [-catenin downregulation leads to
decrease in cellular content of the c-Myc, Survivin and
Bcl-xL, which ultimately leads to apoptotic cell death.
Previous studies have shown c-Myc network is required
for the majority of Wnt target gene activation following
Apc loss within intestinal epithelium [28]. Whether
MASTL expression alone is sufficient for this function
or its phosphorylation or other activity is also involved
remains to be determined.

The role of MASTL in promoting colon cancer is sup-
ported by our findings that its expression is markedly
increased in colon cancer cells, in transcriptome and
protein expression analyses of a large CRC patient
cohort, in the cancer genomic atlas (TCGA) database,
and in colon tumors that result from mouse model of
sporadic or inflammation-induced colon cancer. These
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findings get strong support from similar upregulation of
MASTL through Akt pathway in a recent study using
another CRC patient cohort [29]. Moreover, our data
from colon cancer cells or xenograft tumor growth as-
says demonstrate that increased MASTL expression can
serve as an independent predictor of poor clinical out-
come in colon cancer. Most notably, our studies suggest
that normal colonocytes either don’t express MASTL or
express it at negligible levels. By contrast, cancer cells
demonstrate robust MASTL expression, especially by
cells that were highly tumoroigenic and metastatic, in-
cluding HCT116 and SW620 cells. Thus, inhibition of
MASTL expression in these cells negatively affected
their ability to grow in soft agar, invade through the
matrix, and to induce tumor growth in vivo. Further, in-
hibition of MASTL expression arrested cell cycle pro-
gression in colon cancer cells at the G2/M interphase,
and induced apoptosis. Apoptosis, the outcome of a
series of regulated cellular events often suppressed in tu-
mors, can induce a variety of genes involved in cell-cycle
inhibition by targeting the G2/M checkpoint [30, 31].

Upregulation of B-catenin signaling by its deregulation
or mutational activation has been shown to be present
in various human cancer types and is associated with
cancer progression and metastasis [32-34]. Additionally,
it has been observed that levels of B-catenin increases in
the S phase, reaching maximum accumulation at late
G2/M and further decreases by the next G1 phase [18].
Yet another study demonstrated a plausible mechanism
of G2/M cell-cycle arrest and abrogation of the Wnt/
B-catenin pathway, using withanolide-D (witha-D), a
steroidal lactone in pancreatic adenocarcinoma cells
[19]. B-catenin is a critical regulatory molecule of the ca-
nonical Wnt-signaling pathway and plays an important
role in regulating diverse cellular processes, including
cell proliferation, survival, migration, invasion, polarity,
differentiation, development, and stem cell self-renewal
[35]. c-Myc is a direct target of Wnt/p-catenin-signaling
and has been attributed to having roles in chromosomal
rearrangement and remodeling through telomeres [36]
as well as in G2/M arrest following DNA damage, lead-
ing to an inappropriate entry of damaged chromosomes
into mitosis [37]. Of interest, c-Myc is aberrantly
expressed in 60—80% in CRC and universally implicated
in promoting colorectal tumorigenesis [38, 39], including
colitis-associated colon adenocarcinomas [40-44] and
c-Myc expression confers resistance against 5FU [45-48].
Overexpression of c-Myc is responsible for altering G2/M
arrest in aberrant cells, which leads to the entry of damaged
chromosomes into mitosis [37], similar to MASTL overex-
pression. Our findings strongly indicate that MASTL regu-
late P-catenin expression and cellular localization to
modulate its transcription activity and c-Myc expression to
regulate colon cancer.



Uppada et al. Molecular Cancer (2018) 17:111

Inactivation of GSK-3p, a primary kinase in the -catenin
multi-protein destruction complex, is frequently found in
human cancers. Of note, Akt/GSK-3f phosphorylates
[-catenin on conserved serine and threonine residues in its
amino terminus to initiate its ubiquitination and subse-
quent proteasomal degradation [33, 49, 50]. Inactivation of
GSK-3B by phosphorylation reduces ubiquitination of
[-catenin, resulting in its nuclear accumulation and in-
creased transcriptional activity. In line with this, we de-
tected a decrease in the phosphorylation level of GSK-33
(inactive) that resulted degradation and significant down-
regulation of total B-catenin protein following inhibition
of MASTL expression in HCT116 and SW620 cells. Our
results suggest that the MASTL/GSK-3p axis, regulate
[-catenin expression. Recent studies using Boolean mod-
eling have also identified Greatwall/MASTL as an import-
ant regulator of the Aurora kinase (AURKA) network in
neuroblastoma. AURKA overexpression has been shown
to mediate pro-tumorigenic functions in addition to
mitosis, and drugs aimed at inhibiting its expression
to improve anti-cancer therapy are currently under
clinical trials [51-53]. Previous studies also demon-
strated that AURKA directly binds with GSK-3p, and
phosphorylates at Ser9. Whether MASTL associates
directly with GSK-3p or indirectly through AURKA,
and whether Akt plays a role in this regulation, re-
mains to be determined. GSK-3p has been previously
identified as key downstream target of the PI3-kinase/
AKT survival signaling pathway [54-56]. It is there-
fore possible that MASTL regulates GSK-3f phos-
phorylation through direct interaction, and/or through
a MASTL/AKT axis-dependent mechanism.

Another important observation in our studies is that
MASTL inhibition renders cells more sensitive to apoptosis
that has been induced by 5FU-treatment. Since many
anti-cancer drugs result in DNA cross-linking damage,
these findings are of high clinical relevance. Our findings
suggest that MASTL overexpression can contribute to
anti-cancer drug resistance in colon cancer cells by
up-regulating Survivin and Bcl-xL expressions. A similar
role of MASTL in tumor resistance has been demonstrated
in head and neck cancer patients. Of note, MASTL knock-
down in recurrent tumor cells re-sensitized their response
to cancer therapy in vitro and in vivo, and this was similar
to our findings in colon cancer cells [2]. MASTL targeting
specifically and importantly potentiated non-small cell lung
cancer cells to cell death in chemotherapy, while sparing
normal cells [1], revealing that MASTL upregulation helps
promote cancer progression and tumor recurrence after
initial cancer therapy, and strongly supporting MASTL as a
promising target of increased therapeutic efficacy of
anti-cancer therapies, including anti-CRC therapy.

We show that overexpression of MASTL correlates
with colon cancer recurrence and progression. Thus, the
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inhibition by MASTL of drug-induced cell death may
not only account for failure of standard chemotherapy,
but may also help explain why MASTL overexpression
contributes to the malignant phenotype of colon cancer.
The data presented in this study strongly supports a pro-
motive role for MASTL in colon cancer, and the poten-
tial association of MASTL with anti-cancer therapy
efficacy. Future detailed analyses of a large patient co-
hort and different publicly available datasets will help
confirm the putative role of this protein in prognostic
prediction for latent aggressiveness of CRC and resist-
ance to therapy.

Conclusion

The present study depicts a novel role for MASTL in
regulating Wnt/p-catenin signaling to modulate c-Myc
and Survivin expression in promoting colon cancer and
therapy resistance. Thus understanding the novel func-
tions of MASTL will help in the development of new
colon cancer therapeutic approaches.

Additional file

Additional file 1 Figure S1. (A) Immunoblotting for normal (IEC-6) and
colon cancer cells for MASTL expression. (B) Comparison of overall
survival in correlation with MASTL expression. Patients were divided into
quartiles 1-4 on basis of MASTL expression values. Kaplan-Meier analysis
performed, comparing patients in each quartile. Patients with higher
MASTL expression have greater overall survival (P=0.09, n =250). Figure
S2. Inhibition of MASTL expression in SW620 and HCT116 cells. SW620
and HCT116 control and MKD cells were immunostained for MASTL and
were co-localized with DAPI. Figure S3. Human Oncology array demon-
strates downregulation of anti-apoptotic Survivin and Bcl-xL in MASTL-
inhibited cells. A-15,16-Bcl-xL, G21,22-Survivin. Figure S4. MASTL overex-
pression induces expression of 3-catenin and percentage of viable cells.
(A) Immunoblot analysis demonstrated induction of 3-catenin, Survivin
and Bcl-xL in MASTL overexpressing (MOE) SW480 cells. (B) Cell viability
was also increased in even in presence of 5FU in MASTL overexpressing
cells as compared to control cells. Figure S5. Correlation between MASTL
expression and c-Myc, and BCL2L1. (A) MYC expression is significantly up-
regulated with MASTL expression (P < 0.0001, Spearman'’s Correlation =
0.4). (B) BCL2L1 (Bcl-xL) is significantly upregulated with MASTL expres-
sion (P=0.05, Spearman’s correlation = 0.1). Figure. S6 SW620 control
and MASTL knockdown cells treated with 10 and 20 uM of 5-FU. (A)
Western blot analysis demonstrated induction of 3-catenin, Survivin and
Bcl-xL in control cells. Inhibition of MASTL inhibited these protein expres-
sions even in presence of 5FU. (B) MTT assay and (C) caspase activity
assay in HCT116 and SW620 control and MASTL knockdown cells showed
significant reduction in viable cells as compared to control treated cells.
For graphs, data represent mean + SD; **, P < 0.001; ***, P < 0.0001 versus
control. (PDF 767 kb)
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