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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant diseases worldwide. It is refractory to
conventional treatments, and consequently has a documented 5-year survival rate as low as 7%. Increasing
evidence indicates that activated pancreatic stellate cells (PSCs), one of the stromal components in tumor
microenvironment (TME), play a crucial part in the desmoplasia, carcinogenesis, aggressiveness, metastasis
associated with PDAC. Despite the current understanding of PSCs as a “partner in crime” to PDAC, detailed
regulatory roles of PSCs and related microenvironment remain obscure. In addition to multiple paracrine signaling
pathways, recent research has confirmed that PSCs-mediated tumor microenvironment may influence behaviors of
PDAC via diverse mechanisms, such as rewiring metabolic networks, suppressing immune responses. These new
activities are closely linked with treatment and prognosis of PDAC. In this review, we discuss the recent advances
regarding new functions of activated PSCs, including PSCs-cancer cells interaction, mechanisms involved in
immunosuppressive regulation, and metabolic reprogramming. It’s clear that these updated experimental or clinical
studies of PSCs may provide a promising approach for PDAC treatment in the near future.
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Background
Pancreatic ductal adenocarcinoma (PDAC) is an aggres-
sive cancer, which is characterized by rapid progression,
early metastasis, high recurrence, poor prognosis and
limited responsiveness to conventional therapies [1, 2].
Worldwide, PDAC is becoming increasingly common, and
has a 5-year survival rate of only 7% [3]. Despite numerous
methods in PDAC treatment, including new chemothera-
peutic agents, emerging immunotherapy, and advanced sur-
gical skills, the long-term survival rate has not shown
significant improvement over the past decade. There are
few effective therapeutics that can extend the overall sur-
vival of patients with PDAC [4].

In recent years, it’s commonly recognized that pancre-
atic tumor microenvironment (TME) plays a pivotal role
in PDAC carcinogenesis, progression and therapeutic re-
sistance [5]. As a key orchestrator of TME, pancreatic stel-
late cells (PSCs) aroused considerable attention for its
potential value in PDAC therapeutics [6]. In TME, the dy-
namic interactions between cancer cells and PSCs critic-
ally manipulate PDAC behaviors via diverse mechanisms.
The field of PSCs research emerged at the end of 20th

century. It has been well established that PSCs are respon-
sible for producing the desmoplastic reaction (fibrosis) of
PDAC [6–8]. In addition, with exponentially increasing ex-
perimental data, more details regarding biology and func-
tions of PSCs are coming to light [8, 9]. In particular, recent
evidence indicated that PSCs exert multiple functions in
paracrine actions, metabolic rewiring and intricate immune
responses in PDAC.
Undoubtedly, further explorations on molecular regu-

latory mechanisms, PSCs-cancer cells interactions, and
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the clinical value of PSCs may benefit patients with PDAC.
Targeting PSCs within the TME as a means of inhibiting
PDAC progression is an attractive idea, which may
revolutionize PDAC patient treatment and outcome [10].

Phenotypic and functional transition of PSCs
Pancreatic stellate cells (PSCs), a periacinar star-shaped
stromal cell type in healthy pancreas, were successfully
isolated and cultured in 1998 [11, 12]. PSCs share many
characteristics with hepatic stellate cells, including morph-
ology, storage of lipid droplets rich in vitamin A, locations,
and marker protein expressions [13, 14]. Under homeo-
static conditions, quiescent pancreatic stellate cells
(qPSCs) localize in basolateral aspects of acinar cells, or
surround perivascular and periductal regions. qPSCs are
capable of expressing several protein markers, such as glial
fibrillary acidic protein (GFAP), synemin, and desmin,
most of which are not specific [15, 16]. Even though the
physiological roles of qPSCs haven’t been fully delineated,
some functions are postulated and widely recognized.
These functions include retinoid storage, basic exo-/endo-
crine secretion, maintenance of pancreatic tissue architec-
ture, stimulation of amylase secretion, phagocytosis, and
immunity [16] (Table 1). In general, qPSCs are believed to
contribute to the normal status of the pancreas [15, 16].
During PDAC, resident qPSCs are activated by some

risk factors (e.g. ethanol and its metabolites, chronic in-
flammation, smoking), environmental stress (e.g. hypo-
perfusion, hypoxia, oxidative stress), cellular factors (e.g.
IL-1, IL-6, HIF1α, TGF-β, CCN2) and molecular regulating
pathways (e.g. Wnt/β-catenin signaling, PI3K pathway),
and then transform into an activated myofibroblast-like

phenotype [17–19]. Activated PSCs (aPSCs) lose cyto-
plastic lipid droplets, and express fibroblast activation
proteins, such as α-smooth muscle actin (α-SMA), and
fibroblast activation protein-α (FAP-α), which serve as
biomarkers for aPSCs identification and are negative
prognostic factors in PDAC [17–19]. Meanwhile, aPSCs
are the most important cellular source of cancer-
associated fibroblasts (CAFs). As a key component in
PDAC stroma, CAFs have high-level heterogeneity, the
distinct subpopulations show complicated effects on
growth and progression of PDAC [20, 21]. Moreover,
it’s been verified that CAFs derive from diverse cellular
origins, including bone marrow-derived cells (BMDCs),
epithelium, and resident fibroblasts. Actually, CAFs and
aPSCs are different stromal cell populations in PDAC.
Even though both of CAFs and aPSCs share some com-
mon markers, none of these biomarkers are specific
[20, 21]. The differences between the CAFs and aPSCs
are still under debate.
aPSCs also acquire proliferative capacity, and induce

desmoplastic response via synthesizing abundant extra-
cellular matrix (ECM) [19, 22, 23]. The desmoplastic re-
action is widely regarded as a hallmark of PDAC, more
importantly, it’s shown to be predominantly responsible
for intercellular signaling and TME reprogramming [23]
(Fig. 1). However, the contribution of TME-associated
desmoplasia to PDAC growth and progression is still ob-
scure and controversial. The ‘stiff ’ stroma impairs the
drug delivery, some investigations indicated that deple-
tion of tumor-associated stroma in mouse PDAC models
by using enzymatic degradation of hyaluronic acid (HA)
or Sonic Hedgehog inhibitor IPI926 could suppress

Table 1 Biological comparison of quiescent PSCs (qPSCs) and activated PSCs (aPSCs)

Biological behaviors or functions Specific/selective biomarkers

qPSCs -Store retinoids in droplets [13, 17]
-Function as an immune, progenitor and intermediary cell [16]
-Stimulate amylase secretion, phagocytosis and immunity [16]
-Secrete MMPs and TIMPs to maintain ECM turnover; prevent collagens deposition [17]
-Produce cytokines, growth factors; basic exo/endocrine secretions in a proper way [18]
-May contribute to acinar regeneration [18]
-Involve in maintenance of pancreatic tissue architecture [16, 18]
-Help to sustain homeostasis in pancreas microenvironment [16]

desmin [15, 16]
nestin [15, 16]
vimentin [18]
synemin [15, 16]
GFAP [15, 16]
NGF [15, 16]

aPSCs -Induce desmoplastic reactions in TME [19], elevate interstitial pressure [22]
-Induce hypovascularity and produce excess ECM [19, 23]
-Contribute to hypoxic and low-nutrient conditions [77, 79]
-Lose vitamin A lipid vacuoles [18]
-Develop spindle-shaped morphology [17, 18]
-Generate growth factors (GFs), cytokines, exosomes, micRNAs that enhance tumor survival,
proliferation, migration and metastasis [34, 73, 84, 85]
-Promote angiogenesis, PNI and EMT [44, 45, 54, 61]
-Mediate chemoresistance and radioresistance [70, 105]
-Contribute to complex metabolic networks in TME [112, 115]
-Interact with PDA cells or other stromal components [47]
-Contribute to immunosuppressive regulations and immune evasion [130–133]

α-SMA [17, 18]
FAP-α [19]
FSP-1 [17–19]
Fibrinogen [18, 19]

Notes: Biological behaviors and functions dramatically change during phenotypic transition of PSCs. Biomarkers of qPSCs are not specific.
Abbreviations: aPSCs activated pancreatic stellate cells, qPSCs quiescent pancreatic stellate cells, GFs growth factors, PNI perineural invasion, EMT Epithelial-
Mesenchymal Transition, TME tumor microenvironment, GFAP glial fibrillary acidic protein, α-SMA α-smooth muscle actin, NGF nerve growth factor, FAP-α fibroblast
activation protein-α, FSP-1 fibroblast-specific protein-1
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PDAC progression [24, 25]. Oppositely, some new pre-
clinical and clinical data suggested that stromal desmo-
plasia acts to restrain, rather than support PDAC
progression [26]. Depletion of myofibroblast and colla-
gen in PDAC displays immunosuppression, enhanced
tumor hypoxia, EMT program and cancer stem cell-like
phenotype [27]. Activation of Rho-associated protein
kinase2 (ROCK2) signaling can promote PDA cells pro-
liferation and invasiveness via matrix metalloproteinases
(MMPs) release and collagen degradation [28]. Clinically,
high stromal density in resected PDAC was found to be
significantly associated with longer disease-free [29].
Taken together, the TME-associated desmoplasia, repre-
senting aPSCs activity, plays a dual role in PDAC. Fur-
ther exploration of desmoplastic reaction is really
necessary.
Additionally, persistent PSCs activation results in dra-

matically increased secretion of a wide variety of cyto-
kines, chemokines, growth factors (GFs), and exosomes,
which perform various pathological functions of PDAC.
aPSCs-derived insulin-like growth factor 1 (IGF1), vascu-
lar endothelial growth factor (VEGF) and platelet-derived
growth factor (PDGF) may promote angiogenesis, epithe-
lial cancer cells proliferation and migration [16, 30, 31].
The overproduced matrix such as collagens, hyaluronic
acid (HA) and unbalanced expression of matrix

metalloproteinase and its inhibitors (MMPs, TIMPs), cause
sustained fibrosis and create a physical barrier to nutrients
or therapies [32, 33]. Recently, more studies suggested that
aPSCs play a reciprocal role in the stroma-cancer
cells interactions, which support PDAC malignant be-
haviors via inducing drug resistance, metabolic rewiring,
and immune evasion [33, 34].
Collectively, in contrast to qPSCs, aPSCs are morpho-

logically and functionally transformed. The activated
phenotype can accelerate TME formation, and frequently
promote PDAC progression through diverse pathways
[35] (Table 1).

PSCs related diverse paracrine and molecular pathways
that influence invasion, metastasis, and therapeutic
resistance of PDAC
PSCs are an important source of secretions in TME [7, 36].
A large number of GFs, chemokines, cytokines, miRNAs,
exosomes and other soluble substances secreted by PSCs,
act in an autocrine or paracrine manner to orchestrate con-
tinued PSCs activation and signaling transfer between
stroma and epithelial cancer cells [37–39].
(1) IL-6/JAK/STAT signaling: The presence of chronic

inflammation is a hallmark of PDAC progression [40].
Recent evidence implicated that PSCs is a main source
for large amounts of inflammatory signals. Interleukin-

Fig. 1 Phenotypic transition of PSCs and desmoplastic TME. qPSCs are activated by risk factors, local environmental stress, cellular and molecular
regulations. During the oncogenesis, aPSCs largely contribute to fibrotic microenvironment, which is a major characteristic of PDAC. The desmoplastic
TME consists of epithelial PDA cells and numerous stromal components, such as immunosuppressive cells, aPSCs, collagens and so on
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6 (IL-6), a cytokine that is produced in abundance by
components of stroma including PSCs and tumor-
associated myeloid cells [41–43], can exert versatile
functions to promote PDAC progression. In particular,
IL-6 in TME can activate downstream JAK/STAT sig-
naling via the transmembrane receptor gp130. It’s evi-
denced that IL-6/JAK/STAT signaling axis in TME
plays an important role in the transformation from
pancreatic intraepithelial neoplasia (PanIN) to carcin-
oma [44, 45], PDAC aggression, TME remodeling and
therapeutic resistance [41, 46]. IL-6/STAT axis activated
by aPSCs significantly upregulates some genes expres-
sion in PDA cells, such as major EMT regulator Snail,
mesenchymal marker CDH2, and invasion related genes
CCL20, CFB, LCN2 etc, which correlates PDAC migration
and evolution [42, 47]. Suppressor of cytokine signaling 3
(SOCS3) serves as a potently negative regulator that in-
hibits PDA cells migration, invasion, and enhances PDA
cells apoptosis. Recent study demonstrated that IL-6/
STAT3 axis could induce SOCS3 methylation via DNMT1,
which leads to PDAC growth and metastasis [48]. More-
over, PSCs-secreted IL-6 could not only induce PDA cells
proliferation via nuclear factor erythroid 2 (Nrf2)-mediated
metabolic reprogramming and reactive oxygen species
(ROS) detoxification [48], IL-6/STAT/Nrf2 pathway was
also implied to promote EMT in PDAC [47].
Additionally, recent findings suggested the IL-6/JAK/

STAT3 axis promotes the recruitment of immunosup-
pressive cells (e.g. MDSCs, Tregs), which hampers im-
mune responses of PDAC [49].
In general, paracrine IL-6/JAK/STAT signaling plays a

pivotal role in PSCs-PDA cells interaction and PDAC
progression. Pharmacologic blockade of IL-6/JAK/STAT
signaling may be a new therapeutic strategy for patients
with PDAC.
(2) Paracrine Sonic Hedgehog (SHH) signaling:

Current study shows paracrine sonic hedgehog (SHH)
signaling, which involves both epithelial cancer cells and
stromal cells , promotes cancer cells-stroma interactions
and ultimately contributes to PDAC progression [50].
To date, it’s clear that paracrine SHH protein, which is
secreted by PDA cells, serves as a hedgehog (HH) path-
way ligand. SHH signaling is mediated by HH ligand
binding to the membrane-localized receptor patched
(PTCH) on PSCs, which relieves the inhibitory effect on
a Smoothened (SMO) receptor. Derepressed SMO then
leads to a cascade of cytoplasmic events in PSCs that fa-
cilitates the activation of GLI family zinc finger tran-
scription factors, modulating targeted genes expression
and eventually resulting in PSCs activation [51–55]. In
turn, it’s increasingly apparent that aPSCs regulate TME
remodeling and promote malignant behaviors of PDAC,
including driving desmoplastic stroma [52], increased vas-
cularity [26], uncontrolled proliferation [53, 55],

perineural invasion (PNI) [54], and drug resistance [53–
55]. Despite the prevailing notion, that hedgehog-driven
stroma plays a critical role in neoplastic growth and
PDAC progression. Inhibition of SHH signaling seems to
enhance delivery of chemotherapy and improve the out-
comes of PDAC [24]. However, some current data pro-
vided more uncertainties of this opinion, and even shifted
to the opposite paradigm that SHH signaling may partially
act to restrain PDAC growth [26]. The studies demon-
strated that in spite of the success of IPI926 in treating
PDAC mouse models, treatment with SMO inhibitors
alone in PDAC trials showed poor clinical performance
[24]. In contrast, the administration of vascular endothe-
lial growth factor receptor (VEGFR) blocking antibody se-
lectively improved survival of SHH-deficient PDAC,
which suggested that SHH signaling-driven stroma may
suppress PDAC growth partly by restraining tumor angio-
genesis [26]. Generally speaking, SHH signaling exerts
complicated functions in PDAC. More details need to be
elucidated in the future.
(3) Vitamin D Receptor (VDR) pathway: Wide pro-

spective studies have demonstrated that there is a de-
fined inverse correlation between circulating levels of
Vitamin D and risk of developing PDAC or other malig-
nancies [56]. aPSCs express high levels of the VDR. As a
notably alternative pathway, Vitamin D Receptor (VDR)
signaling plays a critical role in driving conversion of
qPSCs to their activated state, which then results in stro-
mal remodeling of PDAC [57, 58]. Further investigations
shows after treated with Vitamin D analogue Paricalcitol,
PSCs activation can be partly reverted [16, 58]. It reveals
that PSCs related VDR pathway may serve as a promis-
ing molecular target in PDAC therapy [56–58].
(4) CXCL12/CXCR4 signaling axis: PSCs is a pre-

dominant source of C-X-C motif chemokine 12 (CXCL12)
in TME [59]. High-mobility group box 1 (HMGB1) se-
creted by stressed PDA cells can capture CXCL12 and
then form a heterocomplex. It’s evidenced that HMGB1-
CXCL12 complex interacts with C-X-C chemokine recep-
tor type 4 (CXCR4), which is highly expressed in PDA
cells under hypoxic conditions (or HIF-1α expressed
strongly) [59]. The HMGB1-CXCL12 complex can induce
a range of downstream aggressive behaviors, including: (1)
gemcitabine treatment resistance [60]; (2) promoting pro-
liferation, EMT, angiogenesis and metastasis of PDA cells
[61]; (3) elevating MMP2,9 expression, cancer cells inva-
sion and migration [60–62]; (4) activating other pathways,
such as PI3K/Akt signaling, Ras/ERK pathway [63]; and
(5) blunting immunotherapeutic efficacy, inducing im-
munosuppressive status [64].
(5) Other representative paracrine signaling path-

ways: Apart from mentioned above, various paracrine
components or intercellular signaling are involved in
PSCs activation and PSCs (or CAFs)-cancer cells
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Table 2 PSCs mainly involved paracrine pathways and their functions

Paracrine signaling Mediator(s) Description Functional roles

Toll-like receptor (TLR)
signaling

DAMPs in TME TLR9 is activated both in PDA cells and
PSCs

·Pro-inflammatory effects [82]
·Up-regulated expression of PSCs-derived cytokines
(e.g. CCL3, CCL11) [83]
·Recruitment of Treg cells in PDAC [83]

IL-6/JAK/STAT
signaling

IL-6 A versatile pathway in PSCs-PDA cells
interactions

·Inducing chemoresistance, fibrotic reaction [44, 46]
·Invasive TME remodeling [47]
·Affecting other cytokines production
·Recruitment of immunosuppressive cells [49]
·Enhancing tumor aggressiveness via PSCs-PDA cells
crosstalk [44, 47]

Shh signaling SHH protein An altered signaling between PSCs
and tumor cells

·Sustaining PSCs activation and proliferation [51–55]
·Promoting vasculature and desmoplasia [52]
·Driving perineural invasion (PNI) and drug resistance
[53–55]
·Tumor proliferation and progression [51, 53]

CXCL12 (SDF-1)/
CXCR4 signaling

PSCs-derived SDF-1
(CXCL12)

It’s highly activated in PDAC, the
elevated level is correlated with poor
clinical outcomes

·Causing low response to gemcitabine treatment [60]
·Promoting PDAC progression via enhanced
proliferation, EMT, angiogenesis and metastasis [61]
·Inducing over-expressed MMPs, up-regulated
invasiveness and migration of tumor cells [60, 62]
·Supporting immunosuppressive environment [64]
·A potential target for PDAC immunotherapy combined
with CTLA-4 or PD-L1 checkpoint block [64]

MCP-1/CCR2 pathway MCP-1 expressed in PSCs An important cytokine signaling
mediating PSCs activation and
fibrogenic ECM

·Serving as a novel component in PSC inflammatory
and fibrogenic signaling [81]
·Mediating monocytes migration into pancreases and
then differentiation into PSCs [81]
·Maintaining activated status of PSCs through
autocrine manner [15]

Ets-2-dependent
regulation

E26 oncogene homolog 2
(Ets-2) originated in PSCs

New functions unlocked about Est-2
signaling in TME of PDAC

·Stromal Ets-2 regulates chemokines production and
immune cells recruitment during PDAC
·Fibroblast Ets-2 deletion leads to an increased CD8
+T-cell population, and decreased presence of
regulatory T cells (Tregs), MDSCs [74]

Peroxisome
proliferator activated
receptor-γ signaling
(PPAR-γ)

PPAR-γ ligands A nuclear hormone receptor that is
characterized as the master regulator
for adiopogenic properties in PSCs

·Maintenance of quiescent status of PSCs [15, 65]
·PPAR-γ ligand may enhance the phagocytic activity
of PSCs, which is partially responsible for the
inhibition of fibrogenesis [66]

Periostin pathway periostin A secretory protein mainly from PSCs,
whose expression regulates behaviors
of both PSCs and TME

·Periostin secreted by PSCs creates a tumor-supportive
microenvironment [67]
·PSCs remains via periostin autocrine loop [68]
·Biphasic effects on PDAC development: low
concentration of periostin (to 150 ng/ml) drives
mesenchymal-to-epithelial phenotypical transition
while high concentration (1μg/ml) promoting cancer
cell migration via Akt/PKB signaling pathway [69]

microRNAs (miRNAs)
and exosomes

Various miRNAs and
exosomes derived from PDA
cells or PSCs

A recent hot spot, covering many
aspects of TME remodeling, PSCs-
tumor cells interactions

·Controlling myofibroblast phenotype of PSCs [84]
·Promoting migration and proliferation of tumor cells
[85, 87]
·Mediating metabolic reprogramming, TME
remodeling and intracellular interplay [86]
·Delivering nutrients for cancer cells [84]

integrin kindlin-2 Newly identified signaling ·Binding of kindlin-2 and integrin, promotes cytokines
production in PSCs and further accelerating progression
of pancreatic cancer [39]

galectin-1 β-galactoside-binding
protein expressed in
activated PSCs

A heterotrimer protein strongly
expressed in the stroma of PDAC

·Promoting proliferation and chemokine synthesis of
activated PSCs [70]
·Contributing to the immune escape by enhanced
apoptosis and anergy of T cells [71, 72]
·Inducing SDF-1 secreted from PSCs; promoting PDAC
metastasis [71, 72]
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interactions (Table 2), including Ca2+ signaling, VEGF,
PDGF, Toll-like receptors (TLRs) signaling, HIF-1α sig-
naling, TGF-β/Smad pathways, tumor necrosis factor-α
(TNF-α), monocyte chemoattractant protein-1 (MCP-1),
and periostin, which exert various influences on PDAC
pathology [15, 34, 65–83] (Table 2). Additionally, the in-
volvements of miRNAs and exosomes have recently be-
ing reported [84]. For example, PSCs-induced miR-210,
miR-199 upregulation plays an important role in PDA
cells EMT and migration [85–87], and PSCs-derived
exosomal miR-21 and CCN2 partially drive PSCs fibrotic
signaling [73]. However, further relevant mechanisms
still need to be uncovered.

New perspectives on PSCs-mediated molecular mechanisms
that contribute to metastasis and chemoresistance of PDAC
During dissemination from a primary tumor, TME plays
a critical role in determining PDAC invasion and metas-
tasis, regardless of “collective migration” or protease-
dependent/independent single tumor cell invasion [88].
In particular, the plasticity of PDA cells invasion is fur-
ther affected by interactions within the tumor stroma,
where neighboring non-tumor cells contribute to regulating
invasion or distant metastasis by a variety of mechanisms.
Another troublesome problem is therapeutic resistance,
which is a major contributor to the poor clinical outcomes
of PDAC [89]. PSCs can exert multiple functions that are
responsible for PDAC invasion, metastasis and drug resist-
ance, such as ECM remodeling, paracrine signaling circuits,
immune regulation, metabolic alterations, local proteolytic
degradation, and angiogenesis [8, 40]. The updated studies
focused on the PSCs’ new contributions to the biological
behaviors of PDAC are as following (Fig. 2):
(1) ‘Solid stress’ and therapeutic resistance: Elevated

tissue stiffening has become a widely accepted and pas-
sionately studied biomechanical property of fibrogenic
tumors [90]. The item ‘solid stress’ refers to the physical
forces caused by solid and elastic elements of the extra-
cellular matrix and cells [90, 91]. Recently, increasing
evidence suggested that the existence of solid stress is

strongly linked to several hallmarks of tumor, such as
proliferation, metabolism and metastasis [91–93]. In
PDAC, tumor interstitial matrix (e.g. collagen, HA) and
related stromal cells, such as CAFs and PSCs, mainly
contribute to the solid stress. The increased solid stress
is largely responsible for intratumoral vessels compres-
sion, lower perfusion and local hypoxia [24, 94]. More
importantly, growth-induced solid stress tightly corre-
lates with PDAC therapeutic resistance, and strategies
designed to alleviate solid stress have the potential to
improve PDAC treatment [94, 95]. It’s implied that fi-
brotic and hypovascular stroma reduce drugs delivery
via collapsed intratumoral blood vessels, and high intersti-
tial fluid pressure (IFP) [96, 97](Fig. 2). Continuous activa-
tion of PSCs (or CAFs) produce various ECM proteins
such as HIF-1α, collagen1 (COL1), SHH and PSCs-
derived periostin, which promote tumor progression,
drug irresponsiveness, and contributes to tumor-sup-
portive microenvironment and radio-/chemoresistance
[24, 67, 98, 99]. Moreover, a recent study indicated that
the amplified crosstalk among cancer-associated adipo-
cytes (CAAs), tumor-associated neutrophils (TANs), and
PSCs that occurs in PDAC related obesity leads to an ag-
gravation of solid stress, increased tumor progression and
reduced chemotherapy response [95]. CAAs generates an
inflammatory and fibrotic TME of PDAC. Abundant
adipocyte-secreted interlukin-1β (IL-1β) mediates obesity-
induced TANs infiltration and PSCs activation in PDAC.
Interactions between PSCs and TANs exacerbates desmo-
plasia in PDAC via angiotensin-II type-1 receptor (AT1)
signaling, which largely hinders the delivery and efficacy
of chemotherapy [95].
Apart from the theory of solid stress, another novel

mechanism of PSCs-mediated therapeutic resistance has
been recognizing. Transforming growth factor-β (TGF-β)
mediates PSCs-expressed cysteine-rich angiogenic in-
ducer61 (CYR61), a matricellular protein that negatively
regulates nucleoside transporters hENT1 and hCNT3,
which are responsible for cellular uptake of gemcitabine,
largely reducing chemotherapy responses [100] (Fig. 2).

Table 2 PSCs mainly involved paracrine pathways and their functions (Continued)

Paracrine signaling Mediator(s) Description Functional roles

Vitamin D Receptor
(VDR) pathway

Circulating Vitamin D A promising target for PDAC
treatment

·Mediating PSCs phenotypical switch and stromal
remodeling [58]
·Enhancing PDAC treatment [58, 108]

Growth factors hepatocyte growth factor
(HGF), Connective tissue
growth factor (CCN2), others

“Multifunctional messengers” among
all components in TME

·Promoting growth, invasion, migration, and
chemotherapy resistance of PDA cells [34]
·Modulator of metabolic crosstalk between tumor
cells and stromal components [73]
·PSCs fibrogenic signaling [73]

Other signaling
pathways

HIF-1α, ROS, NF-κB, TGF-β/
Smad, VEGF, PDGF, GM-CSF
and so on

Commonly present in numerous
malignancies

·TME remodeling; promoting proliferation,
invasion, migration, chemotherapy resistance,
angiogenesis, immune evasion and other
behaviors of PDA cells [75–80]

Notes: PSCs-related paracrine signaling pathways have been depicted above, including their biological roles, functional molecules and influences on PDAC behaviors
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(2) Newly identified PSCs-expressed miRNAs and
PDAC progression: miRNAs have become a hot spot
for cancer research [101]. In PDAC, some new investiga-
tions highlighted the roles of PSC-expressing miRNAs in
controlling the myofibroblast phenotype of PSCs and
their influences on migration and proliferation of tumor
cells. For example, miR-210 was reported to regulate the
interactions between PSCs and PDA cells via ERK and
Akt pathways [85]. Moreover, recent studies validated that
miR-199a and miR-214 are upregulated in patient-derived
pancreatic PSCs, and targeting them caused the dediffer-
entiation of aPSCs and inhibited tumor-promoting para-
crine effects [86].
(3) Autophagy in aPSCs: A potential target for

PDAC: Besides revealed involvement of PSCs in tumor
invasion and metastasis (e.g. MMPs activities, EMT,
angiogenesis, signaling pathways and so on), new in vivo
findings suggested that autophagy in PSCs, which is in-
duced by environmental stress and PDA cells-stroma in-
teractions, is strongly associated with tumor T category
histologic grade, peritoneal dissemination, perivascular
invasion and lymph node metastasis [102]. This novel
discovery might be a goal of therapeutic interest, and
predict the hypothesis that targeting autophagy could be
a promising candidate for treatment strategies in PDAC.
Coenzyme Q10 (CoQ10), commonly known as ubiquin-
one, has been suggested to inhibit the activation of
aPSCs by suppressing the autophagy through activating

PI3K/AKT/mTOR signaling pathway [103], which may
be explored to treat PSC-related pathologies and to de-
velop anti-fibrotic approaches. Another therapeutic agent,
Tocotrienols, selectively trigger aPSCs apoptosis and au-
tophagic death by targeting the mitochondrial permeabil-
ity transition pore [104]. It also unveils another potential
approach to ameliorate the fibrogenesis in PDAC.

aPSCs in PDAC metabolic reprogramming
The TME of PDAC is the major source of both interstitial
pressure and oxidative stress [105]. High concentration of
the PSCs-derived matrix including hyaluronic acid (HA),
collagen and glycosaminoglycan, contributes to the dense
fibrotic stroma and subsequently leads to intense pressure
in TME [106]. As a result, elevated stromal pressure
causes vascular collapse, tumor tissue hypo-perfusion, and
a lack of oxygen and nutrient delivery [105, 107, 108]. The
environmental stress imposes “energy crisis” to cancer
cells. Despite diverse mechanisms promoting extracellular
glucose acquisition via the Warburg or the reverse
Warburg effect in cancer cells (e.g. HIF-1α signaling,
over-expression of aerobic glycolytic enzymes like NF-kB,
MCTs, PKM1/2) [108–111], obviously, enhanced glucose
metabolism cannot compensate for energetic and biosyn-
thetic shortfall completely. To sustain macromolecular
biosynthesis and better tumor survival, metabolic rewiring
among cancer cells and stromal components enables

Fig. 2 PSCs mediate invasion, metastasis, therapeutic resistance of PDAC. Multiple factors are involved in, such as immune evasion, metabolic
reprogramming, ECM remodeling, various paracrine signaling and so forth
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access to recycling nutritional substrates and alternative
fuel sources for growth [112, 113]. More importantly,
accumulating studies suggest that PSCs can strikingly re-
program metabolic machinery for PDAC, especially the
metabolic crosstalk between PSCs and PDA cells, therefore
facilitating PDAC progression and invasiveness under
nutrient-limiting conditions [114, 115]. In general, under-
standing more details about metabolic reciprocation be-
tween epithelial cancer cells and aPSCs seems to be crucial.
It’s recognized that besides environmental stresses, meta-
bolic interplay between PDA cells and PSCs is the conse-
quence of genetic mutations combined with comprehensive
paracrine signaling regulations [108, 115, 116] (Fig. 3).
Multiple genes (e.g. TP53, Myc, Smad4, CDKN2A) can

drive PDAC metabolic reprogramming to meet the de-
mands of tumor-relevant anabolic processes under ster-
ile conditions [108, 117]. Among these, oncogenic KRAS
mutation signaling has been recently shown to play a
predominant role in multiple aspects of PDAC metabol-
ism, including adaptive metabolic responses and cancer
cells-PSCs mutualism [115, 118]. More evidence has
emerged that the KRAS mutation not only enhances glu-
cose uptake, but also activates expression of several key
enzymes in aerobic glycolysis (the Warburg effect). Fur-
thermore, KRAS-driven glutamine (Gln) metabolism be-
comes a major source of carbon and nitrogen for cancer

cells proliferation [119]. It’s demonstrated that onco-
genic KRAS signaling mainly drives Gln conversion into
aspartate for further energy generation and anabolism by
activating the GOT2/GOT1/ME1 pathway, while at the
same time, initiating glutathione (GSH) and NADPH
biosynthesis, and inhibiting Nrf2/ME1/ROS activities to
sustain cellular redox balance and enhance cytoprotec-
tion of cancer cells [113, 115, 120].
Recently, it’s become increasingly apparent that the

tumor cell KRAS mutation manipulates signaling within
both PDA cells and adjacent PSCs, and influences PSCs-
tumoral metabolic interactions. KRAS rapidly promotes
sonic hedgehog (SHH) secretion from PDA cells, which
activates PSCs to induce widespread events such as over-
expression of IGF1, GAS6, GM-CSF and other cytokines.
This results in PSCs reciprocally sending a feedback sig-
naling to PDA cells via IGF1R/AXL axis, activating
downstream PI3K-Akt phosphorylation and increasing
spare mitochondrial respiratory capacity in PDA cells
[121], which elevates oxygen availability for PDA cells
under hypoxia. Additionally, KRAS-mutant PDA cells
upregulate macropinocytosis, an endocytosis-mediated
bulk uptake, to import extracellular proteins, which is
ultimately delivered to lysosomes for catabolism, fueling
TCA cycle, essential amino acids recycling and support-
ing cell growth [122–124].

Fig. 3 PSCs in metabolic reprogramming. In KRAS-dependent pathways, diverse cytokines and signaling pathways mediate metabolic interactions
between PSCs and PDA cells. KRAS-driven glutamine (Gln) metabolism becomes a major carbon source for tumor cells survival; PSCs-derived IGF
elevates mitochondrial respiration in PDA cells via IGF1R/AXL axis; KRAS-mutant PDA cells can obtain extracellular proteins for supporting growth
through upregulated macropinocytosis. PSCs-secreted non-essential amino acids (NEAAs), such as autophagy-induced Ala, can serve as an alternative
energy source to fuel PDA cells. In KRAS-independent pathways, PSCs-derived growth factors (GFs) and exosomes play a pivotal role in mediating
survival, proliferation, metastasis, biosynthesis of tumor cells
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More interestingly, PSCs-derived non-essential amino
acids (NEAAs) also provide nutrients to feed PDA cells.
Recent studies revealed that PDA cells increase autophagy
in PSCs via unclear mechanisms [125], and then mediate
PSCs secreting alanine (Ala) [125, 126]. As a linkage of
this cooperative metabolic relationship, PSCs-derived
Ala is taken up by PDA cells and acts as an alterna-
tive carbon source to glucose/glutamine, shunts glu-
cose to Ser/Gly biosynthesis, and supports lipid and
NEAAs biosynthesis [115, 125].
In contrast to KRAS signaling related rewiring men-

tioned above, metabolic reprograming via KRAS-inde-
pendent pathways has been identified [126]. GFs (e.g.
connective tissue growth factor; CTGF and fibroblast
growth factor-2; FGF2) and cytokines exchange between
cancer cells and surrounding PSCs have been proved to
be pivotal in metabolic crosstalk [126–128]. Furthermore,
PSCs-derived exosomes contain various biomolecules, in-
cluding mRNA, miRNA, intracellular metabolites (e.g.
amino acids, acetate, stearate, palmitate, and lactate),
which enter PDA cells, both fuel the tricarboxylic acid
cycle (TCA cycle) and enhance tumor growth in a manner
similar to macropinocytosis [84, 126, 128, 129].
Collectively, the description of these new metabolic

crosstalk pathways further highlights that (1) PSCs play
a key role in intra-tumoral metabolic networks, and (2)
the PDA cells-PSCs metabolic “coupling” contributes
significantly to PDAC development under nutrient-poor
environment [115].

PSCs-mediated immunosuppressive microenvironment in
anticancer immunity
Despite continuous progress in understanding the
immune-dependent regulations of PDAC and the devel-
opment of immunotherapies [130], therapeutic advances
have been insufficient [131, 132]. Elucidating a method
to enhance antitumor immunity and immunotherapy
seems to be a challenge in PDAC treatment. Immune
evasion and T cell dysfunction can be mediated by a var-
iety of mechanisms, such as the immunosuppressive
microenvironment in PDAC patients, which involves in-
teractions among tumor cells, infiltrated immune cells
and stromal components [108, 117], and makes a major
hurdle for immune responses [133]. As a currently com-
pelling role, PSCs display multiple effects on immuno-
suppressive regulation that makes PDAC therapeutics
more difficult [134, 135] (Fig. 4).
First, α-SMA+ or FAP+ PSCs play a pivotal role in

TME remodeling. PSCs-mediated desmoplasia results in
excess matrix deposition in TME, which has been postu-
lated to limit T cell infiltration and function once recruited
into tumor site [136, 137]. A striking cell-intrinsic path-
way impacting cancer immunity is focal adhesion kinase
(FAK), a tyrosine kinase that regulates T cell survival,

antigen sensitivity, cytokine production and migration
[138]. FAK1 level is elevated in PDA cells and correlates
with robust fibrosis and poor CD8+ T cell accumulation.
The rigid ECM components secreted by PSCs, such as
collagen or fibronectin, induce Rho-associated coiled-coil
kinase-dependent activation of FAK1, greatly contributing
to suppressed anticancer immunity [138].
Second, desmoplastic response creates hypoxic and

avascular conditions, which imposes considerable ener-
getic constraints on tumor cells, PSCs and immune cells
[115]. As we mentioned above, PSCs constitute the major
source of cancer-associated fibroblasts (CAFs) in PDAC.
Paracrine signaling from neighbor PSCs (or CAFs) and
CAFs-tumor cells interactions lead to metabolic repro-
gramming, by which cancer cells express more nutrients
import molecules (e.g. GLUT1, MCTs, ASCT2, LATs)
to obtain fuel sources for survival [139]. Elevated
indoleamine-2,3 dioxygenase 1 (IDO1) and arginase
(ARG1, ARG2) in metabolically altered CAFs may deplete
tryptophan and arginine, which are crucial for T effector
(Teff ) cells’ proliferation and activation [139, 140]. Mean-
while, confronted with “metabolic competition”, lack of
glucose impairs T cell’s anti-tumor immunity and secre-
tion of Interferon-γ (IFN-γ) [141, 142], while low lipid
support results in TNF receptor associated factor 6
(TRAF6) deficiency, which inhibits long-lasting memory
CD8+ T cells formation [143].

Fig. 4 Immunosuppressive modulator role of PSCs. PSCs induce
TME remodeling, dense matrix caused hypoxia and hypo-vascularity
impair T cells infiltration and their nutrition obtaining; multifactorial
T cell exhaustion attenuates Teff functions; PSCs-derived suppressive
factors (such as IL-6, CXCL12), suppressive signaling and recruitment
of suppressive cells (such as MDSCs, Treg cells, TAMs) create an
immunosuppressive TME in PDAC
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Significantly, it has been commonly assumed that T
cells in the context of established progressing cancer pa-
tients exhibit an exhausted status (termed as “T cell ex-
haustion”) due to various factors, such as persistent
tumor antigen load, inhibitory checkpoint signaling
pathways (e.g. PD-1, LAG-3, CTLA-4), cell-intrinsic tol-
erance programs, and, more importantly, the complex
immunosuppressive environment [144]. In PDAC, PSCs
to a large extent mediate physiological changes in TME
(e.g. hypoxia and low pH). HIF-1α activation can sup-
press immunity or promote tumor evasion, however the
underlying molecular mechanisms remain to be further
identified [145, 146].
PSCs also secrete numerous soluble cytokines that

contribute to “T cell exhaustion” and dysfunction. It’s
well evidenced that PSCs-derived CXCL12 (also named
stromal-derived factor-1, SDF-1) can limit cytotoxic T
cells trafficking, mediate macrophages’ differentiation
into a pro-tumor M2 phenotype (tumor-promiting), and
recruit myeloid-derived suppressor cells (MDSCs),
tumor-associated neutrophils to the tumor site [147]. At
the same time, CXCL12/ SDF-1 bound to PDA cells can
inhibit T cell access to immune responses [148]. Recent
clinical trials demonstrated that inhibiting CXCR4, a
CXCL12 receptor, can dramatically promote T-cell accu-
mulation and synergize with the checkpoint antagonist,
α-PD-L1, to cause cancer regression [64, 148].
Similarly, another versatile PSCs/MDSCs derived pro-

inflammatory cytokine, interleukine-6 (IL-6), can sup-
press cytotoxic T lymphocyte (CTL)-driven antitumor
immunity by multiple mechanisms, including impairing
Teff cells trans-endothelial migration, activation of Treg

cells Foxp3+ or tumor-associated macrophages (TAMs),
and inducing imbalance of Treg/ Teff activities [149, 150].
Moreover, large amounts of PSCs-derived suppressive
cytokines such as IL10, TGF-β, VEGF, MCP-1, GM-CSF,
PGE2, also contribute largely to immune evasion and
anti-tumor hyporesponsiveness of PDAC [144, 151].
In short, with regard to the immunity regulation in

PDAC, PSCs seem to be a powerful immunosuppressive
modulator via numerous pathways. Targeting PSCs may
pave a novel avenue for enhancing immunotherapies for
PDAC.

Conclusions
PSCs surrounding tumor cells is an emerging stromal
component that has been receiving huge attention re-
cently. As a powerful tumor contributor, there is accu-
mulating evidence supporting the multiple roles of PSCs
in the establishment of TME, such as regulating envir-
onmental homeostasis and metabolic reprogramming,
supporting tumor survival, immune evasion, invasion,
distant metastasis and therapeutic resistance. The inter-
play between cancer cells and PSCs is increasingly

recognized as a main driver for PDAC progression. Al-
though development on basic studies and therapeutic
strategies targeting PSCs have been revealing, more
details on PSCs and PDAC treatment remains to be
illustrated. It’s promising that further understanding
about PSCs will open new avenues for translational
medicine and more meaningful clinical therapies for
PDAC.
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