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Abstract

tumorigenesis model.

in the Kras®"*?"*-driven lung tumorigenesis model.

and clinical settings.

Background: Both the type | insulin-like growth factor receptor (IGF1R) and Src pathways are associated with the
development and progression of numerous types of human cancer, and Src activation confers resistance to anti-IGF1R
therapies. Hence, targeting both IGF1R and Src concurrently is one of the main challenges in combating resistance to
the currently available anti-IGF1R-based anticancer therapies. However, the enhanced toxicity from this combinatorial
treatment could be one of the main hurdles for this strategy, suggesting the necessity of developing a novel strategy for
co-targeting IGF1R and Src to meet an urgent clinical need.

Methods: We synthesized a series of 4-aminopyrazolo[3,4-dlpyrimidine-based dual IGF1R/Src inhibitors, selected LL28
as an active compound and evaluated its potential antitumor effects in vitro and in vivo using the MTT assay, colony
formation assays, flow cytometric analysis, a tumor xenograft model, and the Kras®"*”*-driven spontaneous lung

Results: 128 markedly suppressed the activation of IGF1R and Src and significantly inhibited the viability of several NSCLC
cell lines in vitro by inducing apoptosis. Administration of mice with LL28 significantly suppressed the growth of H1299
NSCLC xenograft tumors without overt toxicity and substantially reduced the multiplicity, volume, and load of lung tumors

Conclusions: The present results suggest the potential of LL28 as a novel anticancer drug candidate targeting both IGF1R
and Src, providing a new avenue to efficient anticancer therapies. Further investigation is warranted in advanced preclinical

Background

Cancer is one of the main cause of human deaths globally.
Among the various kinds of cancer, lung cancer is one of
the worst cancer types in terms of incidence and mortality
[1]. Despite extensive efforts to cure lung cancer, the 5-year
survival rate of lung cancer is still less than 20%, mostly
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due to diagnosis occurring at a late stage and resistance to
anticancer therapies. Currently used anticancer treatments
for lung cancer, including conventional chemotherapy and
molecular targeted therapy, inevitably elicits the develop-
ment of drug resistance through multiple mechanisms,
which is a major obstacle to effe
ctive anticancer treatment. Therefore, establishing a thera-
peutic strategy to hamper the development of drug resist-
ance would be essential for effective anticancer therapy.
The type I insulin-like growth factor receptor
(IGF1R) signaling plays an important role in cell trans-
formation, proliferation, survival, metastasis [2, 3],
and resistance to various anticancer therapies [4].
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Insulin-like growth factor 1 (IGF1)-IGF1R signaling
induces the expression of vascular endothelial growth
factor (VEGF) in hypoxia-inducible factor-1a (HIFla)-
dependent and HIFla-independent manners [4, 5] and
interacts with other receptor tyrosine kinases, further
enhancing signaling pathways promoting cell prolifer-
ation and survival [4]. Activation of IGFIR has been
found in several types of human cancer, including lung
cancer [4]. Hyperactivation of IGF1IR signaling has
been associated with resistance to radiotherapy and
chemotherapies, including paclitaxel and cisplatin [6—
9]. Heterodimerization between IGFIR and epidermal
growth factor receptor (EGFR) mediates the activation
of bypass signaling, leading to resistance to gefitinib
and erlotinib in lung cancer [10, 11]. Reprogramming
IGFIR has also been implicated in adaptive resistance
to various molecularly targeted therapies, such as tras-
tuzumab (an anti-HER2/neu receptor monoclonal
antibody), lapatinib [an anti-HER2 tyrosine kinase in-
hibitor (TKI)], SB-590885 (a BRAF inhibitor), and cri-
zotinib [an anaplastic lymphoma kinase (ALK) TKI]
[12-15]. These findings have indicated IGF1R signal-
ing as an attractive target for anticancer therapy. How-
ever, the efficacy of IGF1R-targeted therapies, which
mainly include monoclonal antibodies (mAbs) and
TKIs, have been marginal in a variety of clinical trials,
and many of these clinical trials have been halted due
to poor clinical outcomes [16]. Previous studies have
demonstrated the involvement of Src in resistance to
IGFIR inhibitors [17-19]. Indeed, combined treat-
ment with IGFIR and Src inhibitors has shown sig-
nificantly improved anticancer activities compared
with single drug treatments [17-20]. However, con-
sidering the potentially increased toxicities resulting
from the combined use of the two inhibitors, devel-
oping dual kinase inhibitors concurrently targeting
IGFIR and Src would be more beneficial. In this re-
gard, we and others recently reported oxadiazinones
and oxoacetohydrazides as dual IGF1R/Src inhibitor
scaffolds [21, 22]. In fact, several reports have pro-
posed the potential of multifunctional compounds
to hit more than one target due to the limitation of
the traditional “one molecule, one target” paradigm
in drug development as well as in clinical trials.
The success of the pharmacophore combination ap-
proach is highly dependent on the attachment pos-
ition, physical properties, and length of the spacer.
Here, we report the discovery of LL28, a 4-
aminopyrazolo[3,4-d]pyrimidines-based dual IGFIR/
Src inhibitor that exhibits effective anticancer activity
in vitro and in vivo. LL28 effectively inhibits both
IGF1R- and Src-dependent signaling pathways and
has promising therapeutic potential in vitro against a
panel of non-small cell lung cancer (NSCLC) cell
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lines and in vivo in tumor xenograft and mutant
Kras-driven lung tumorigenesis models with marginal
toxicity.

Results

Synthesis of LL28

The 4-aminopyrazolo[3,4-d]pyrimidines, a well-characterized
class of compounds for tyrosine kinase inhibition, were
used as a Src inhibitor module that blocks the adeno-
sine binding site [23-26]. A 2,4-bis-arylamino-1,3-py-
rimidines module was used for anti-IGF1R activity [27].
Recently, an alkyne motif has been applied successfully
in several TKIs, including ponatinib [28, 29]. Ponatinib
possesses an alkyne linker between the imidazo[l,2-
b]pyridazine and diarylamide (a 2,3-diarylethyne motif)
and a slim alkyne moiety was found to be crucial to ac-
tivity by avoiding steric hindrance [30]. Using the
pharmacophore combination strategy, we synthesized a
series of new compounds 3a-f and 4a-d bearing an al-
kyne linker using the palladium-catalyzed Sonogashira
coupling reaction as a key step (Fig. 1la and Table 1).
Details of the synthesis and characterization of com-
pounds 3a-f, 4a-d, and their intermediate compounds
are depicted in the supplementary information
(Additional file 1).

We next tested the effects of compounds 3a-f and
4a-d on the viability of A549 and MCF7 cells and com-
pared their inhibitory activity with that of fragmented
Src and IGFIR modules (1b and 23a) as controls. Inter-
estingly, the addition of a methoxy group to the para
position of the aminophenol ring significantly increased
the overall potency against both cancer cell lines com-
pared with those of unsubstituted compounds (Fig. 1b).
Compounds 4b and 4d with a p-methoxy group at the
R; position exhibited significant cell growth inhibition at
a concentration of 10 pM. Compounds featuring differ-
ent attachments of the alkyne linker at the para-position
of aminophenyl ring (3b and 3c) also demonstrated high
potency but to a lesser extent than those with the meta-
linkage. In the case of para-linked compounds, the re-
placement of the isopropyl group in compounds 3a-c
with an ethyl group in compounds 3d-f led to a decrease
in inhibitory effects indicating that a bulky group at R,
may be required for cytotoxicity. Our results showed
that the p-methoxy (alkoxy) groups are critical for inhib-
ition and that proper linkage between two modules can
be tuned for better efficacy. Note that the Src and IGFIR
modules (1b and 23a) alone did not exhibit potent anti-
cancer activity, demonstrating that dual-targeting com-
pounds are more efficient. Several compounds with
antiproliferative activity were selected to determine their
half maximal inhibitory concentration (ICs,) value against
two cancer cell lines, A549 and MCF7 (Additional file 2:
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Table 1 Structures of compound 3a-f and 4a-d and
antiproliferative activity against cancer cell lines

Compd linkage R, R3 % cells growth at 10 uM
A549 MCF-7
3a para i-Pr H 34 27
3b i-Pr @ 16 53
3c i-Pr F 28 58
3d Et H 87 84
3e Et @ 95 94
3f Et F 99 90
4a meta i-Pr H 68 71
4b i-Pr OMe 9.7 15
4c Et H 87 82
4d Et OMe 6.2 64
Bosutinib 46 75
1b 98 92
23a 69 60

Table S1), and compound 4b (LL28), which had the low-
est IC5, value, was selected for further studies.

LL28 inhibits activation of both IGF1R and Src in human
NSCLC cells

We then investigated the effect of LL28 on the IGFIR
and Src activation. We have previously shown effect-
ive suppression of IGFIR or Src phosphorylation in
NSCLC cell lines by treatment with the small mol-
ecule tyrosine kinase inhibitors linsitinib (1 pM) or
dasatinib (100 nM), respectively [19]. Hence, A549
cells were treated with linsitinib (1 pM), dasatinib
(100 nM), or LL28 (1 uM) diluted in complete
medium for 4 h and stimulated with FBS for 20 min
before harvesting. Indeed, treatment with linsitinib
(1 uM) or dasatinib (100 nM) effectively suppressed
IGF1R or Src phosphorylation, respectively, and LL28
(1 uM) induced concurrent suppression of the IGF1R
and Src phosphorylation (Fig. 2a). Treatment with
LL28 also showed dose-dependent suppression of
IGF1R, Src, and their downstream mediators, includ-
ing FAK, MEK, and Akt, in A549, H1299, and H460
NSCLC cells (Fig. 2b and c¢). Many IGFIR targeting
agents also target the insulin receptor (IR). Therefore,
we assessed whether LL28 could also inhibit IR sig-
naling and function. To this end, lysates from A549
cells treated with vehicle or LL28 for 8 h were immu-
noprecipitated with anti-IGFIR or anti-IR antibodies,
and then immunoblot analysis was performed using
antibodies against phosphorylated tyrosine (pTyr).
The phosphorylation of both IGFIR and IR was
markedly inhibited by treatment with LL28 (Fig. 2d).
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We further confirmed LL28-induced suppression of
IR phosphorylation in mouse embryonic fibroblasts
(MEF) obtained from Igfir knockout mice (R- cells,
expressing only IR) [31] (Fig. 2e). These data suggest
that, like other IGFIR TKIs, LL28 also blocks both
IGF1R and IR.

We next assessed the communication between the
IGFIR and Src signaling pathways in NSCLC cell
lines after treatment with linsitinib (1 pM), dasati-
nib (100 nM), or LL28 (1 uM) for 1 day. As demon-
strated in the previous report [19], inhibition of
IGFIR by treatment with linsitinib resulted in the
activation of Src, and treatment with a Src-family
kinase (SFK) inhibitor dasatinib also caused upregu-
lation of IGFIR activation (Fig. 2f). Therefore, it
was likely that IGFIR and Src are mutually associ-
ated and that inhibition of one kinase leads to the
activation of the other kinase as a bypass signaling.
In contrast, the inhibitory effects of LL28 (1 puM)
on IGFIR and Src phosphorylation were maintained
up to 5 days in A549, H1299, and H460 NSCLC
cells (Fig. 2g).

LL28 inhibits the viability and colony forming ability of a
number of human NSCLC cells by inducing apoptosis

We then investigated the efficacy of LL28 in NSCLC cells.
We first evaluated the effect of LL28 on the viability and
colony forming ability of several NSCLC cell lines in both
anchorage-dependent and anchorage-independent culture
conditions. LL28 significantly inhibited the viability of
NSCLC cells in a dose-dependent manner (Fig. 3a). The
ICs value of this compound in each cell line tested was ap-
proximately 1 M on average (Additional file 3: Table S2).
Because the genetic backgrounds of these cell lines are var-
ied, this result suggests that LL28 displays a general anti-
cancer effect that is not dependent on a specific genetic
alteration. Consistent with these results, LL28 displayed
significant and dose-dependent inhibitory effects on colony
formation of cells grown in anchorage-dependent and
anchorage-independent conditions (Fig. 3b and c). Notably,
treatment with LL28 significantly blocked anchorage-
dependent colony forming capacity of most of NSCLC cells
under adherent conditions, even at a concentration of
0.5 uM (Fig. 3b), and the ICsq value of this compound was
less than 1 pM in all NSCLC cell lines tested (Add-
itional file 4: Table S3). Thus, considering that clonogeni-
city under anchorage-dependent conditions is an indicator
of cell survival [32], these results indicate that LL28 effect-
ively suppressed NSCLC cell survival.

We next assessed whether LL28 could induce apop-
tosis in NSCLC cells. We found that treatment with
LL28 displayed dose-dependent increases in the chroma-
tin condensation (Fig. 4a), poly (ADP-ribose) polymerase
(PARP) cleavage (Fig. 4b), and the accumulation of cells
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Fig. 2 Inhibitory effect of LL28 on the activation of both IGF1R and Src. a A549 cells were treated with linsitinib (1 uM), dasatinib (100 nM), or LL28

(1 uM) for 4 h. Before harvesting, cells were stimulated with FBS for 20 min. The expression of total and phosphorylated IGF1R and Src was evaluated by
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at the sub-G1 phase (Fig. 4c), indicators of apoptosis, in
NSCLC cells. We then assessed treatment with agents
that individually target IGFIR or Src will have similar or
improved efficacy compared to the LL28 treatment. To
this end, we compared A549 and H460 cells treated with
both linsitinib (1 uM) and dasatinib (100 nM) in com-
bination and those treated with LL28 alone. A549 and
H460 cells treated with LL28 (1 pM) showed signifi-
cantly decreased viability (Fig. 4d) and colony-forming
ability (Fig. 4e) along with increased apoptotic cell death
(Fig. 4f-h) compared to those co-treated with linstinib
and dasatinib. These findings suggested that co-targeting

of IGFIR and Src by the LL28 treatment may have im-
proved efficacy compared with that by the combinatorial
treatment with linsitinib and dasatinib.

LL28 displays minimal toxicity in vivo

We next evaluated the toxicity of LL28. To this end, sev-
eral doses of LL28 (20, 40, and 80 mg/kg) were adminis-
tered to mice for two weeks, and the serum levels of
glutamate pyruvate transaminase (GPT), blood urea ni-
trogen (BUN), and creatinine were evaluated (Fig. 5a).
The levels of these indicators in the serum collected
from LL28-treated mice were within the reference
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ranges (Additional file 5: Table S4). In addition, changes
in the body weight of LL28-treated mice were minimal
compared with those of control mice (Fig. 5b). These re-
sults indicate that LL28 has minimal toxicity to mice.
We then compared the safety profiles of co-targeting
IGFIR and Src by the LL28 treatment and those by com-
bined treatment with dasatinib and linsitinib (Fig. 5¢). To
this end, we analyzed alanine aminotransferase (ALT) and
aspartate aminotransferase (AST) levels (as markers of
liver function) and white blood cell (WBC) and red blood
cell (RBC) counts (as markers of hematological toxicities)
in mice treated with linsitinib and dasatinib in combin-
ation and those treated with LL28. We found that the
mice administered with linsitinib and dasatinib showed

significant increases in ALT, AST, and WBC compared
with vehicle-treated control mice, while these markers in
the LL28-administered mice remained the same (Fig. 5d
and e). We next performed glucose tolerance test as a
marker of glucose homeostasis. We found obviously de-
layed glucose clearance in the mice treated with linsitinib
and dasatinib while LL28-treated mice showed minor
changes in the glucose clearance (Fig. 5f). We also histo-
logically analyzed H&E-stained tissues from various major
organs, including lung, liver, kidney, and brain, and found
no detectable changes in these organs from the LL28-
treated mice (Fig. 5g). Together, these data indicate that
LL28 has improved safety profiles compared with the
combined treatment with linsitinib and dasatinib.
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LL28 displays significant inhibitory effects on tumor growth
and mutant Kras-driven lung tumorigenesis in vivo

We evaluated the antitumor effect of LL28 in a tumor
xenograft model. Consistent with the in vitro results,
treatment with LL28 significantly suppressed the
growth of xenograft tumors (Fig. 6a, middle) with

negligible changes in body weight (Fig. 6a, right). The
expression of phosphorylated IGF1IR and Src in tu-
mors was also significantly decreased by treatment
with LL28 (Fig. 6b), suggesting that LL28 exerts an
antitumor effect by inhibiting tumoral IGFIR and Src
activation.
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Fig. 5 Minimal toxicity of LL28 in vivo. a and ¢ Schematic diagram of the experiment. b Changes in body weight induced by treatment with
LL28 in mice. d and e The level of ALT and AST in the serum and the number of WBC and RBC in whole blood obtained from mice treated with
either linsitinib and dasatinib in combination or LL28 were determined as described in the Methods section. f The blood glucose level was
determined by using tail snip blood with blood glucose test strips. g The histopathological changes in liver, lung, brain, and kidney from mice
treated with either linsitinib and dasatinib in combination or LL28 were evaluated by using H&E-stained section of the tissues. The representative
images of H&E-stained section of the tissues were shown. Scale bar: 20 um. The bars represent the means + SD; *P < 0.05 and **P <0.01, as de-
termined by a two-sided Student’s t-test. Con: control; L + D: linsitinib and dasatinib in combination

It is known that Kirsten rat sarcoma viral oncogene
homolog (KRAS) mutation is one of the most common
genetic alterations involved in lung cancer [33] and is
associated with reduced response to IGF1R-targeted
therapy in lung cancer cells [34]. Moreover, in pancre-
atic cancer, KRAS activates Src in a pseudopodium-
enriched atypical kinase 1 (PEAK1)-dependent manner
or directly cooperates with Src, leading to metastatic
tumor growth, therapy resistance, and accelerated
tumorigenesis [35, 36]. Thus, Src appears to exert mu-
tant KRAS-driven events as its downstream effector,
and considering our previous finding demonstrating the
involvement of IGFIR activation in the development of
lung cancer [37], co-targeting IGFIR and Src may halt
the progression of mutant KRAS-driven lung tumor de-
velopment. Therefore, we ultimately investigated the

effect of LL28 on mutant Kras-driven lung tumor for-
mation. Mice were administered with vehicle or LL28
for two months (Fig. 6¢). Gross and microscopic
evaluation of the tumor formation in the lungs re-
vealed that LL28 displayed a remarkable inhibitory ef-
fect on tumor formation in mice (Fig. 6¢ and d). In
line with previous findings, the body weight of LL28-
treated mice did not change compared with that of
vehicle-treated mice during treatment (Fig. 6e). In
addition, an immunohistochemistry (IHC) analysis
further revealed that phosphorylated IGFIR and Src
expression in lung tumors was significantly reduced
by treatment with LL28, whereas cleaved caspase 3
expression was elevated in lung tumors from LL28-
treated mice (Fig. 6f), indicating that LL28 suppresses
mutant Kras-driven lung tumor development by
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Fig. 7 Schematic diagram to describe the action of LL28. In NSCLC cells, IGF1R and Src mutually activate in a normal state. Blockade of IGF1R by
treatment with linsitinib induces the Src-mediated compensation of the IGF1R blockade. Similarly, treatment with dasatinib leads to the IGF1R-
mediated compensation of the Src blockade. These overall processes cause drug resistance and maintain cell survival. LL28-induced simultaneous
suppression of both IGF1R and Src blocks these feedback activations, thereby inducing apoptotic cell death in NSCLC cells

Dual IGF1R and Src
blockade by LL28

Cell death

inhibiting activation of both IGF1R and Src and indu-
cing apoptosis.

Discussion

Previous studies have shown the plasticity of cancer cells,
in which the blockade of particular pathways results in the
activation of bypass signaling pathways, leading to cancer
cells” adaptive survival and anticancer drug resistance. We
have previously demonstrated the role of Src, which func-
tions as a shared downstream signaling unit of multiple
membrane-associated growth factor receptors, in resistance
to IGFIR inhibitors [17, 19]. We have devoted extensive

efforts to develop potent molecularly targeted anticancer
drugs blocking both IGFIR and Src. The studies reported
herein demonstrate that a 4-aminopyrazolo[3,4-d]pyrimi-
dine-based dual IGF1R/Src inhibitor, LL28, has promising
anticancer activity in vitro and in vivo with minimal tox-
icity. LL28 effectively suppressed IGFIR and Src signaling
and NSCLC cell viability and colony forming ability in vitro.
Furthermore, LL28 significantly suppressed the growth of
xenograft tumors and mutant Kras-driven lung tumorigen-
esis with minimal toxicity in vivo. Our results provide pre-
clinical evidence for the use of LL28 as a dual IGF1R/Src-
targeting drug in cancer therapy (Fig. 7).
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IGFIR signaling has been shown to play a crucial role
in the development and progression of several types of
cancer, including lung cancer [37, 38]. Indeed, several
preclinical and early phase clinical trials demonstrated
the effectiveness of IGF1R-targeted therapies as a mono-
therapy or a combinatorial therapy with other anticancer
drugs [39]. However, the currently available IGF1R-
targeted therapies have shown marginal efficacy and tox-
icity in advanced clinical trials, presumably due to the
activation of bypass signaling as a resistance mechan-
ism. Emergence of drug resistance through activation
of compensatory signaling pathways seemed to cause
these failures [39]. Multifactorial diseases, such as
Alzheimer’s disease, cancer, diabetes, and immunoin-
flammatory disorders, are highly heterogeneous [40].
Various clinical trials employing single-target therapies
in such diseases have resulted in drug resistance
through redundancy and crosstalk between different
signaling pathways, suggesting the necessity of com-
binatorial therapy by combining drugs in different
therapeutic classes [40]. Single-targeted drugs have
shown particularly poor efficacy in a highly heteroge-
neous malignancy such as NSCLC [41]. Therefore, it
is of considerable importance to obtain alternative
strategies to target the IGFIR signaling while prevent-
ing the emergence of drug resistance.

Both IGFIR and Src are frequently overexpressed in
various types of human cancer, inversely correlated with
patient survival, and known to crosstalk with each other
[19, 38, 42]. We have previously demonstrated the cru-
cial role of Src in resistance to IGF1R-targeted antican-
cer drugs [17, 19, 21]. In these studies, combined
treatment with an IGFIR inhibitor and a Src inhibitor
showed significantly enhanced anticancer effects com-
pared with treatment with each drug alone. These find-
ings led us to hypothesize that combinatorial strategies
of IGFIR and Src inhibitors would be an effective anti-
cancer strategy in overcoming drug resistance. However,
several side effects and toxicities, such as hematological
toxicities and diabetes-like symptoms (e.g., hypergly-
cemia and hyperinsulinemia) in the case of IGFIR-
targeted therapies and hematological toxicities (e.g.,
leukopenia, neutropenia, and thrombocytopenia) in the
case of Src inhibitors, have been reported in recent clin-
ical trials utilizing these drugs [43—45]. Hence, the main
drawbacks of the combinatorial strategies could be the en-
hanced toxicities from the concurrent use of two inhibi-
tors. In fact, co-formulation of two and more drugs in a
single dosage is frequently accompanied by severe side ef-
fects due to the highly complex pharmacokinetics (PK)
and pharmacodynamics (PD), and drug cocktails usually
result in poor patient compliance [46]. Accordingly, single
compounds with multiple biological activities have been
highlighted as an innovative drug development strategy to
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minimize potential toxicity [47]. Hence, we hypothesized
that developing dual kinase inhibitors concurrently target-
ing IGFIR and Src would be beneficial. Recent studies
proposed oxadiazinones and oxoacetohydrazides as scaf-
folds for dual IGF1R/Src inhibitors [21, 22], but develop-
ing additional chemical entities and evaluating them using
multiple in vitro and in vivo experimental models should
be required because of the importance of co-targeting
IGFIR and Src for anticancer therapy. Our results from
several in vitro and in vivo biological analyses shown in
the current study demonstrate that LL28, a novel 4-
aminopyrazolo[3,4-d]pyrimidine-based drug, offers rea-
sonable efficacy and a good safety profile as a dual IGF1R/
Src inhibitor. LL28 exhibited similar inhibitory effects on
cell viability across a panel of NSCLC cells with various
histological and genetic backgrounds. We recently ob-
served that IGFIR and Src were co-activated in several
lung cancer cell lines and a tissue microarray consisting of
lung adenocarcinoma and squamous cell carcinoma [19].
Hence, the similar potency of LL28 in NSCLC cells re-
gardless of genetic alterations and histology could be
due to the coactivation of IGF1R and Src. Notably, LL28
effectively suppressed the colony forming abilities of
NSCLC under anchorage-dependent conditions. Clono-
genicity under adherent conditions is correlated with
the ability of cells to survive without cell-to-cell interac-
tions [32]; thus, these results raise the possibility that
LL28 may be effective cancer therapeutic agent in pa-
tients with metastatic dissemination. Additional evalu-
ation of LL28 using relevant experimental models
should be the focus of further studies.

Conclusions

Our findings provide evidence that LL28 effectively dis-
rupts IGFIR and Src signaling simultaneously and signifi-
cantly inhibits the viability and colony forming ability of
NSCLC cells in vitro. Moreover, when tested in vivo in ani-
mal models, LL28 significantly suppresses the growth of
xenograft tumors and mutant Kras-driven lung tumorigen-
esis. The excellent safety profiles of LL28 shown in mice
further highlights its potential as a clinically relevant anti-
cancer drug. These findings suggest that LL28 is a potential
lead candidate to develop anticancer drugs targeting both
IGFIR and Src. The knowledge obtained from these stud-
ies may be incorporated to design better anticancer agents.
Further studies are necessary to evaluate the efficacy of
LL28 in additional preclinical and clinical settings.

Methods

Cell culture

Human lung cancer cell lines (A549, H1299, H460, H2170,
H2122, H1944, HCC15, H596, H522, H1993, H226B, and
H226Br) and a breast cancer cell line (MCF7) were pur-
chased from the American Type Culture Collection
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(ATCC, Manassas, VA, USA) or kindly provided by Dr.
John V. Heymach (MD Anderson Cancer Center, Houston,
TX, USA). R- cells were kindly provided by Dr. Renato
Baserga (Columbia University, NY, USA). Lung cancer cells
were cultured in RPMI 1640 medium supplemented with
10% fetal bovine serum (FBS) and antibiotics (all from
Welgene, Daegu, Republic of Korea). MCF7 and R- cells
were maintained in DMEM (Welgene) supplemented with
10% FBS and antibiotics. Cells were maintained at 37 °C in
a humidified atmosphere with 5% CO, and subcultured
once or twice a week. Lung cancer cell lines and MCF7
cells were authenticated and validated wusing the
AmplFLSTR identifier PCR Amplification Kit (Applied
Biosystems, Foster City, CA, USA; cat. No. 4322288) in
2013 and 2016. Cells that had been passaged for fewer than
6 months after receipt or resuscitation of validated cells
were used in this study.

Reagents

Antibodies against pIGFIR (Y1135/6), IGFIR, pSrc
(Y416), Src, phosphor-tyrosine (pTyr), pMEK1/2,
MEK1/2, pAkt (S473), Akt, and cleaved caspase 3 were
purchased from Cell Signaling Technology (Danvers,
MA, USA). Antibodies against cleaved PARP and FAK
were purchased from BD Biosciences (San Jose, CA,
USA). A primary antibody against pFAK (Y576/577) was
purchased from Thermo Fisher Scientific (Waltham,
MA, USA). Primary antibodies against IGFIR, IR, and
actin and the horseradish peroxidase (HRP)-conjugated
anti-mouse secondary antibody were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA, USA). HRP-
conjugated anti-rabbit and anti-goat secondary anti-
bodies were purchased from GeneTex (Irvine, CA,
USA). Linsitinib and dasatinib were purchased from
Selleckchem (Houston, TX, USA) or LC Laboratories
(Woburn, MA, USA). 3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide (MTT) and other chemi-
cals were purchased from Sigma-Aldrich (St. Louis, MO,
USA) unless otherwise specified.

MTT assay

Cells were seeded into 96-well multiwall plates at a density
of 1-2 x 10? cells/well and allowed to attach for 24 h. Cells
were treated with vehicle or the indicated concentrations
of LL28 diluted in complete media for 3 days. Cells were
further incubated with the MTT solution (final concentra-
tion of 500 pg/ml) for 4 h at 37 °C. The formazan prod-
ucts were dissolved in dimethylsulfoxide (DMSO), and the
absorbance was measured at 570 nm. The data are pre-
sented as a percentage of the control group.

Anchorage-dependent colony formation assay
Cells were seeded into 6-well plates at a density of 300
cells/well and treated with various concentrations of LL28
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for two weeks. The drug-containing medium was changed
once or twice a week. Colonies were fixed with 100%
methanol, stained with 0.002% crystal violet solution, and
washed with deionized water several times. The colonies
were imaged and counted using Image] software (National
Institutes of Health, Bethesda, MA, USA).

Anchorage-independent colony formation assay

Cells were mixed with sterile 1% agar solution (final
concentration of 0.4%) and poured onto 1% base agar in
24-well plates. LL28 diluted in complete medium was
added to the agar after solidification of the top agar.
Cells embedded in the top agar were incubated for
2 weeks at 37 °C with 5% CO,. The medium was chan-
ged twice a week. After incubation, the colonies were
stained with MTT solution, imaged and counted.

Western blot analysis

Cells were treated with LL28, linsitinib, or dasatinib for the
indicated time intervals. Before harvesting, the cells were
stimulated with 10% FBS for 20 min. Total cell lysates were
prepared with modified radioimmunoprecipitation (RIPA)
lysis buffer [50 mM Tris-HCl (pH 7.4), 150 mM NaCl,
1 mM EDTA, 0.25% sodium deoxycholate, 1% Triton X-
100, protease inhibitor cocktail (Roche Applied Science, In-
dianapolis, IN, USA), and phosphatase inhibitor cocktail
(Roche)]. Equal amounts of protein (20 ug) were subjected
to 8% SDS-PAGE and electrically transferred onto polyvi-
nylidene difluoride (PVDF) membranes (Atto Corp.,
Tokyo, Japan). Membranes were blocked with blocking
buffer [5% non-fat dry milk in Tris-buffered saline (TBS)
containing 0.01% Tween-20 (TBST)] for 1 h at room
temperature. The membranes were incubated with primary
antibodies diluted in 3% BSA in TBST (1: 1000) overnight
at 4 °C, were washed multiple times with TBST, and were
incubated with secondary antibodies diluted in 5% non-fat
dry milk in TBST (1:5000) for 1 h at room temperature.
The membranes were washed multiple times with TBST
and visualized using an enhanced chemiluminescence
(ECL) detection kit (Thermo Fisher Scientific). Densito-
metric analysis was performed using ImageJ software.

Hoechst 33,342 staining

Cells were treated with LL28 (0.1 and 1 pM) or linsitinib
(1 pM) and dasatinib (100 nM) in combination for
3 days. These cells were stained with the Hoechst 33,342
solution (final 10 pg/ml) at 37 °C for 20 min. Stained
cells were observed under an inverted fluorescence
microscope (EVOS FL Cell Imaging System; Thermo
Fisher Scientific) and photographed.

Cell cycle analysis
A549, H1299, and H460 cells were treated with increas-
ing concentrations of test drugs (LL28 or linsitinib and
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dasatinib in combination) for 3 days. Adherent and float-
ing cells were collected and washed with PBS. Cells were
fixed with 100% methanol and stained with a 50 pg/ml
propidium iodide (PI) solution containing 50 pg/ml
RNase A for 30 min at room temperature. Fluorescence
intensity was analyzed by flow cytometry using a FACS-
Calibur® flow cytometer (BD Biosciences). Cell cycle ana-
lysis was performed using CellQuest software (BD
Biosciences).

Animal experiments

All animal experiments were performed according to
protocols approved by the Seoul National University In-
stitutional Animal Care and Use Committee. Mice were
fed standard mouse chow and water ad [libitum and
housed in temperature- and humidity-controlled facil-
ities with a 12-h light/12-h dark cycle. For xenograft ex-
periments, H1299 cells (diluted in equal amount of PBS
and Matrigel) were subcutaneously injected into the
right flank of 6-week-old female Non-Obese Diabetic-
Severe Combined Immunodeficiency (NOD/SCID) mice.
After the tumor volume reached 50-150 mm?, the mice
were randomly grouped and administered with vehicle
(10% DMSO in corn oil) or LL28 (80 mg/kg) 6 days per
week for 2 weeks. Tumor growth was determined by
measuring the short and long diameter of the tumor
with a caliper, and body weight was measured twice per
week to monitor toxicity. In addition, to evaluate the ef-
fect of LL28 on mutant KRAS-driven lung tumorigen-
esis, two-month-old Kras®2P™* transgenic mice [48]
were randomized and treated with vehicle or LL28
(80 mg/kg) for 8 weeks. The mice were euthanized, and
tumor formation was evaluated and compared with that
of the vehicle-treated control group. Microscopic evalua-
tions of lung tissue were also performed to measure
mean tumor number (N) and volume (V) in a blinded
fashion after hematoxylin and eosin (H&E) staining. The
number and size of tumors were calculated in five sec-
tions uniformly distributed throughout each lung. In
both animal experiments, the tumor volume was calcu-
lated using the following formula: tumor volume (mm?)
= (short diameter)? x (long diameter) x 0.5.

Toxicity test

FVB mice were treated with vehicle, LL28 (20, 40, and
80 mg/kg), or linsitinib (25 mg/kg, dissolved in 25 mM
tartaric acid solution) and dasatinib (20 mg/kg, dissolved
in 80 mM citric acid solution) in combination every day
for 2 weeks. Blood was collected from euthanized mice
under isoflurane-induced deep anesthesia by cardiac
puncture. After allowing blood coagulation at 4 °C,
serum was collected by centrifugation at 3000 rpm for
10 min at 4 °C. Analysis of the level of BUN, creatinine,
GPT, ALT, and AST in the serum was performed using a
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veterinary hematology analyzer (Fuji DRI-Chem 3500 s,
Fujifilm, Tokyo, Japan) according to the manufacturer’s
provided protocols. The number of WBC and RBC in
whole blood was measured with an automatic
hematology analyzer (Advia 2120i, Siemens, Germany)
according to the manufacturer’s provided protocols. The
histopathological changes in liver, lung, brain, and kid-
ney were evaluated by using H&E-stained section of the
tissues.

Glucose tolerance test

Glucose tolerance test was performed as described in
the previously published literature [49]. Briefly, after
fasting for a day, mice were intraperitoneally adminis-
tered with 10% glucose solution (100 ul/20 g mouse).
The blood glucose levels in mice at various time inter-
vals were determined by using tail snip blood with blood
glucose test strips.

Immunohistochemistry

Sections derived from formalin-fixed and paraffin-
embedded murine lung tissues were deparaffinized by in-
cubation overnight at 65 °C followed by rehydration in se-
quential xylene and ethanol rinses. After incubation with
hydrogen peroxide, the slides were washed with PBS
and then incubated with 0.4% Triton X-100. The sections
were incubated with blocking solution (Dako Protein
Block, Dako, Glostrup, Denmark) for 30 min at room
temperature after washing with PBS. The sections were
further incubated with primary antibodies (phosphorylated
IGFIR, phosphorylated Src, and cleaved caspase 3 [all
from Cell Signaling], diluted at 1:200) overnight at 4 °C,
washed with PBS several times, incubated with the corre-
sponding biotinylated secondary antibodies (diluted at
1:500), and then washed with PBS multiple times. After
adding avidin-biotin complexes (Vector Laboratories), the
sections were visualized using diaminobenzidine (DAB)
detection reagent (Enzo Life Sciences, Farmingdale, NY,
USA) and mounted with a mounting solution (Vector La-
boratories, Burlingame, CA, USA).

Synthesis of 3a-f and 4a-d

General information

Unless otherwise specified, all reagents and solvents were
purchased from commercial suppliers and used without fur-
ther purification. All reactions were monitored by thin-layer
chromatography (TLC) on precoated silica plates 60 Fjsy
(Merck, Darmstadt, Germany). Column chromatography
was carried out on Zeochem silica gel (Zeo prep 60, 40-63
um; Zeochem, Lake Zurich, Switzerland). "H nuclear mag-
netic resonance (NMR) (300, 400, 500, and 600 MHz) and
13C NMR (100, 125, and 150 MHz) spectra were recorded
on GEMINI 2000 (VARIAN, Palo Alto, CA, USA), INM-
LA300 (JEOL, Tokyo, Japan) or AVANCE 400 (Bruker,
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Billerica, MA, USA). Chemical shifts (§) were reported in
parts per million (ppm) and were referenced to the residual
solvent peak. Coupling constants (/) were reported in hertz
(Hz). All electrospray ionization mass spectrometry (ESI-
MS) was measured on a 6130 Single Quadrupole liquid
chromatography/mass  spectrometry (LC/MS) (Agilent
Technologies, CA, USA). High-resolution mass spectra
(HRMS) were acquired under fast atom bombardments
(FAB) conditions on a JMS-700 MStation (JEOL, Germany).

Synthesis

The details of the synthesis and characterizations of all
compounds are described in the supplementary informa-
tion. Representative procedures for the synthesis of 3a-f
and 4a-d are as follows.

N2-(3-((3-(4-(4-amino-1 -isopropyl-1H-pyrazolo[3,4-
dlpyrimidin-3-yl)phenyl)prop-2-yn-1-yl)oxy)-4-
methoxyphenyl)-N4-(quinolin-3-yl)pyrimidine-2,4-
diamine (4b)

Substrate 2a (100 mg, 0.26 mmol), Pd(PPh;),Cl, (7.4 mg,
0.01 mmol), and Cul (1.5 mg, 0.008 mmol) were first
added to a two-necked flask under a N, atmosphere, which
was followed by the addition of anhydrous dimethylforma-
mide (DMF) (5 mL), alkyne 24e (115 mg, 0.29 mmol), and
triethylamine (TEA) (0.37 mL, 2.64 mmol). The reaction
flask was covered with aluminum foil, and the mixture was
stirred for 3 h at room temperature. Distilled water was
added, and the resultant mixture was extracted with ethyl
acetate (3 X 200 mL). The organic phase was dried with
anhydrous sodium sulfate, the solvent was evaporated, and
the crude product was purified using silica gel chromatog-
raphy with ethyl acetate/methanol gradient to afford a
light-yellow solid (121 mg, 0.19 mmol, 72.0% yield). "H
NMR (600 MHz, DMSO-d6) § 9.79 (s, 1H), 9.14 (s, 1H),
8.94 (brs, 1H), 8.89 (s, 1H), 8.24 (s, 1H), 8.08 (d, ] =5.9 Hz,
1H), 7.92 (d, ] =8.3 Hz, 1H), 7.76 (brs, 1H), 7.63 (d, ] =
8.2 Hz, 2H), 7.59-7.53 (m, 3H), 7.51 (d, ] =7.8 Hz, 2H),
7.31 (d, ] =7.3 Hz, 1H), 6.96 (d, /] =8.8 Hz, 1H), 6.30 (d,
J =5.5 Hz, 1H), 5.06 (sep, 1H), 4.94 (s, 2H), 3.81 (s, 3H),
148 (d, J] =64 Hz, 6H) ppm. *C NMR (150 MHz,
DMSO-d6) & 160.38, 159.88, 158.06, 156.41, 155.42,
15345, 146.51, 144.99, 144.73, 143.21, 142.38, 134.03,
133.39, 132.08 (3C), 128.46, 128.32 (2C), 128.17, 127.29,
126.89, 126.73, 12147, 121.06, 11391, 112.58, 108.70,
98.86, 97.39, 86.15, 86.11, 57.00, 55.92, 48.16, 21.71 (2C)
ppm. LC-MS (ESI) m/z 649.00 [M + H]". HRMS (FAB) cal-
culated for Cs;;H3N;0O, [M+H]™: 649.2788, found:
649.2795.

Statistical analysis

The data are presented as the means+ SD. All in vitro
experiments were independently performed at least
twice, and a representative result is presented. The data

Page 14 of 16

were calculated or analyzed with Microsoft Excel soft-
ware (Microsoft Corp., Redmond, MA, USA). The ICs,
values were determined by non-linear regression analysis
using Graphpad Prism 5 (GraphPad Software, Inc., La
Jolla, CA, USA). Statistical significance was determined
using a two-sided Student’s t-test. A P value of less than
0.05 was considered significant.
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