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invasion and metastasis of head and neck
cancer: possible function and mechanisms
Xiaobo Luo1,2†, Yan Qiu3,4†, Yuchen Jiang1, Fangman Chen1, Lu Jiang1, Yu Zhou1, Hongxia Dan1, Xin Zeng1,
Yu L. Lei2,5,6* and Qianming Chen1*

Abstract

Head and neck cancer (HNC) ranks as the 6th most common malignancy across the world. Metastasis is a hallmark of
cancer, primarily contributing to the relapse and poor prognosis of HNC. Recently, long noncoding RNAs (lncRNAs),
previously considered as non-functional, are increasingly appreciated by scholars to play crucial roles in mediating
HNC metastasis. LncRNAs, which are located in the nucleus and cytoplasm, mainly exert their function via epigenetic
modification, transcriptional control and translational regulation. As several lncRNAs are presently demonstrated to
participate in HNC metastasis, we make a summary of the functions and mechanisms regarding these lncRNAs. As
shown in the literature, most lncRNAs appear to promote the metastasis of HNC. Hence, we primarily discuss the
lncRNAs involved in enhancing metastasis. Additionally, more studies are needed to understand those lncRNAs without
clear mechanisms. Furthermore, we introduced the upstream regulator for the aberrant expression of lncRNAs in HNC.
Finally, we concisely addressed future research prospects of lncRNAs, particularly the interplay between lncRNAs and
tumor immunity as well as lncRNA-targeted therapeutic techniques, and we introduced clustered regularly interspaced
short palindromic repeats (CRISPR)-Display as a possibly transformative tool to study lncRNAs. Although lncRNA
research is still in the initial stage, it holds great promise to be applied as a prognosticator of HNC and a therapeutic
target to inhibit HNC metastasis, which could significantly enhance the outcome of HNC patients.
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Background
Head and neck cancer (HNC), which ranks sixth among
the frequent malignant neoplasms worldwide, has an esti-
mate of over 500,000 new cases detected annually [1, 2].
The broad definition of HNC includes not only the muco-
sal epithelial carcinomas of the head and neck area,
presenting as and head and neck squamous cell carcinoma
(HNSCC) along with nasopharyngeal carcinoma (NPC),
but also thyroid carcinoma [3]. HNSCC, serving as the

main subset of HNC, predominantly includes squamous
cell carcinoma involving the oral cavity, pharynx and
larynx [3]. Despite advances in surgery and chemoradio-
therapy, the outcome improvement remains modest, with
a 5-year survival rate lower than 50% [4]. Tumor invasive-
ness and metastasis, typical hallmarks of HNC, are largely
responsible for the poor response to treatments [4, 5].
Metastasis is a common characteristic of cancer

progression with multiple sequential steps, presenting as
enhancement of the invasive ability of tumor cells and
its spread to secondary sites of the body [6]. Epithelial-
mesenchymal transition (EMT) represents a transcrip-
tional program underpinning invasive and metastatic
phenotype of cancers, which could be interpreted as a
state of de-differentiation. Thus, EMT endows cancer
cells with a high-grade phenotype to drive their migra-
tion, invasion and metastasis [7, 8]. Next, a subsequent
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step, the mesenchymal-epithelial transition, enables
these spreading cells to colonize at a second location [9].
Long noncoding RNAs (lncRNAs) are one subtype of

RNA transcripts which contain more than 200 nucleo-
tides, lacking in capability of encoding protein or exhibit-
ing limited potential [10]. LncRNA was previously
considered as a genetic byproduct because of the absence
of biological function [11]. Based on the upgraded DNA
sequencing technologies, although the whole human
genome is generally transcribed, more than 98% are non-
encoding genes. Thus, it causes our conceptual shift
regarding the possible role of the non-coding genes [12].
Besides, the importance of lncRNA in cancer biology is
becoming appreciated by scholars. In recent years, based
on high-throughput sequencing and biological techniques,
increasing numbers of lncRNAs are being uncovered and
their critical roles in regulating cancer development and
progression are being extensively investigated. To date,
the dysregulated expression and involvement of lncRNAs
have been reported in diverse cancers, including HNC
[13], lung cancer [14], breast cancer [15], colorectal cancer
(CRC) [16], and esophageal squamous cell carcinoma
(ESCC) [17]. Among these studies, lncRNAs seem to be
implicated in each process of cancer progression, such as
tumor development and metastasis. During metastasis,
various lncRNAs are reported to function similarly or
differently via diverse molecular mechanisms. Metastasis
Associated Lung Adenocarcinoma Transcript 1
(MALAT1), as one lncRNA, was first detected and highly
expressed within non-small cell lung cancer (NSCLC).
Guo et al. demonstrated that MALAT1 exacerbates cell
migration and invasion of NSCLC via binding to its down-
stream C-X-C motif chemokine ligand 5 (CXCL5).
Additionally, the low methylated forms of the MALAT1
promoter in NSCLC accounts for its high expression [14].
Furthermore, homeobox transcript antisense RNA
(HOTAIR) was indicated to potentiate the metastatic
ability of colon cancer by inducing EMT [18]. In addition,
increasing evidence has demonstrated that many lncRNAs
could exert their biological function by working as pairs
together with their adjacent mRNAs. Pan et al. indicated
that the lncRNA Fork head box C1 upstream transcript
(FOXCUT) could function together with Fork head box
C1 (FOXC1) to potentiate the invasive and migrating cap-
ability of ESCC [17]. More importantly, the function
and molecular mechanisms of these lncRNAs—i.e.
MALAT1 [2], HOTAIR [19] and FOXCUT [20]—have
been widely studied regarding their correlation with
HNC metastasis. Given the important regulatory role
of lncRNA in HNC metastasis, it is promising to be
exploited as a prognosticator and therapeutic target
for HNC.
In the present paper, we review these aberrantly ex-

pressing lncRNAs in the mediation of EMT, migration,

invasion and metastasis of HNC (Table 1), and provide
insight into their regulatory mechanism.

Functional mechanisms of lncRNAs in head and
neck cancer
In general, lncRNAs perform their function based on their
functional domains in the secondary or tertiary structure,
and these mature structures originate from alternative
splicing. Specifically, the domains facilitate the inter-
action of lncRNAs with chromatin, RNA and proteins;
thus lncRNAs could function in HNC metastasis via
chromatin remodeling, transcriptional control and post-
transcriptional regulation [21, 22]. In general, lncRNAs
could exist in the nucleus or cytoplasm, and different sub-
cellular locations might determine the various biological
functions of lncRNAs (Fig. 1) [23]. Therefore, lncRNAs
are categorized into nuclear or cytoplasmic lncRNAs.
Several studies have suggested that most lncRNAs in

the nucleus could function as a guide to lead chromatin
modulating complexes into certain genomic loci and
then initiate chromatin modification to activate or si-
lence gene expression [24]. Additionally, nuclear
lncRNAs could regulate gene transcription by their as-
sembly with transcription factors into complexes. Also,
they could be involved in the mRNA/miRNA processing;
despite the absence of examples in HNC, some lncRNAs
have been suggested to be implicated in mRNA/miRNA
processing among other cancers [25, 26]. For instance,
lncRNA colon cancer-associated transcript-2 (CCAT2),
elevated in CRC, might repress the processing and mat-
uration process of miR-145 in the nucleus, thereby
restraining the proliferation and differentiation of CRC
stem cells [25]; Additionally, as another lncRNA implied
to interact directly with the serine/arginine splicing fac-
tor 1 in HeLa cells and influence the distribution and
phosphorylation of the splicing factor, MALAT1 could
potentially modulate the alternative splicing of pre-
mRNAs, thus being involved in mRNA processing [26].
Regarding the great number of cytoplasmic lncRNAs,

they typically modulate gene expression by base pairing
with specific genes, improving or attenuating the mRNA
stability and acting as miRNA sponges; in addition, they
could influence mRNA translation by binding to differ-
ent elements. Moreover, cytoplasmic lncRNAs are also
responsible for protein stability control [24, 27].

Overview of lncRNAs implicated in HNC
metastasis
LncRNAs that function positively in the metastasis of
head and neck cancer
Presently, various lncRNAs have been demonstrated to
function positively in metastasis, as well as in the EMT,
migration and invasion of HNC. Here, we discuss their
possible roles and attempt to elucidate the mechanisms.
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MALAT1
MALAT1 was first uncovered as a poor prognosticator
in NSCLC patients, whose overexpression could predict
a higher risk of distant metastasis [28]. MALAT1 is an
evolutionarily conserved and abundant lncRNA located
in nuclear speckles, which are frequently implicated in
epigenetic modulation and alternative splicing and drives
the expression of metastasis-associated genes [29]. In
the recent decade, numerous studies have revealed the
potential of MALAT1 in modulating the invasion, mi-
gration and metastasis of various cancers, including
ESCC, breast cancer, CRC and osteosarcoma [30–33].
Specifically, MALAT1 was indicated to be associated
with the lymph node metastasis (LNM) of ESCC,
contributing to its migratory and invasive abilities [30];
likewise, it promotes the metastasis of osteosarcoma in
vitro and vivo through the phosphatidylinositol 3-kinase-
protein kinase B (PI3K-AKT) pathway [31]. Additionally,
Xu et al. indicated that one region of MALAT1 (from
6918 nt to 8441 nt) exhibits pivotal biological function in
the migration and invasion of CRC [32]. However,
MALAT1 was demonstrated to suppress the EMT of
breast cancer through inhibiting the PI3K-AKT pathway
[33]. In addition to the aforementioned phenotypes,
MALAT1 has now been reported as a player in regulating
the metastatic ability of HNC [2, 34–39].
Zhou and the colleagues, by employing siRNA to in-

hibit MALAT1 in HNC, indicated that the EMT,

invasion and migration of HNC cells were attenuated pos-
sibly by inactivation of the β-catenin and nuclear factor-
κB (NF-κB) pathways, which are potent regulators of
EMT; furthermore, the in vivo study demonstrated the
suppression of EMT markers, N-cadherin and Vimentin,
in MALAT1 knockdown HNC tumors [2]. Moreover, an-
other investigation achieved a similar conclusion. Upon
tissue analysis, the positive correlation of MALAT1 with
regional LNM of tongue squamous cell carcinoma (TSCC)
patients was firstly validated. Subsequently, MALAT1, via
modulation of the Wnt/β-catenin pathway, could induce
the EMT, invasion and migration of TSCC; in turn, the
MALAT1 impact was reversed by inhibiting the pathway,
suggesting which as a key point to mediate the MALAT1
effect in TSCC [34]. Additionally, another study revealed
the oncogenic role of MALAT1 in promoting TSCC me-
tastasis in vivo [35]. Fang et al., with the same in vivo re-
sult, showed that MALAT1 knockdown might impair the
migration of TSCC. DNA microarray results illustrated
the upregulation of numerous small proline-rich protein
(SPRR) family members after decreasing MALAT1, par-
ticularly the mRNA and protein levels of SPRR2A and
SPRR2B. Additionally, an animal study showed that
overexpressing SPRR2A could impair distant metastasis,
implying the pivotal role of SPRR2A in MALAT-1-
mediated metastasis of TSCC [36]. However, the under-
lying mechanism regarding how MALAT-1 targets
SPRR2A awaits to be extensively studied.

Fig. 1 General mechanisms of HNC metastasis regulated by lncRNA based on their subcellular localization. Nulclear lncRNAs modulate metastasis-associated
gene expression through chromatin modification, transcriptional control and mRNA/miRNA processing. For instance, mRNA processing includes
alternative splicing of mRNA; besides, some lncRNAs could be spliced into pri-miRNAs, thus producing miRNAs. In the cytoplasm, lncRNAs serve as
players in mRNA stability modulation, protein stability control, translational control and miRNA sponging. These lncRNAs with various functions in the
HNC cell are highlighted in red as examples, while it is temporarily lacking in representatives for lncRNAs participating in HNC metastasis via mRNA/
miRNA processing. LncRNA: long noncoding RNA; HNC: head and neck cancer; miRNA: microRNA
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Apart from HNSCC, MALAT1 also presents as a
modulator of metastatic capability for other types of
HNC in some in vitro studies. NPC is a disease more
prevalent in southeastern Asia; despite the improvement
in treatment modalities, distant metastasis remains a
main culprit for its poor prognosis [37]. Xie and
colleagues found that MALAT1 could potentiate the mi-
gration and invasion of NPC with upregulated EMT
markers, namely, E-cadherin and vimentin [37]. One
study proposed that MALAT-1 overexpression could
upregulate the expression of the IQ-domain GTPase-
activating protein 1 (IQGAP1), thereby increasing the
invasion of thyroid carcinoma cells. Further investigation
that IQGAP1 knockdown could reverse its invasion
phenotype pinpoints IQGAP1 as a downstream target of
MALAT1 [38]. However, another study suggested that,
while MALAT1 promotes the EMT as well as metastasis
of papillary thyroid carcinoma (PTC), it is markedly re-
duced in poorly differentiated thyroid carcinoma as well
as anaplastic thyroid carcinoma, shedding light on the
suppressor role of MALAT1 within other histological
types of thyroid carcinoma [39].

HOTAIR
HOTAIR is located antisense to HOXC mRNA [40].
Mechanistically, HOTAIR was mainly demonstrated to
function as a scaffold to induce epigenetic alteration.
Specifically, the 5′ region of HOTAIR combines with the
polycomb repressive complex 2 (PRC2), then redirects it
into certain genomic sites; meanwhile, the 3′ region of
HOTAIR might interact with lysine-specific demethylase
1 (LSD1). Next, HOTAIR coordinates these two major
histone modification complexes to interplay with chro-
matin and consequently impairs anti-metastatic gene
transcription [40, 41]. Mediated by PRC2, some findings
have shown that HOTAIR enhances the metastasis of
gastric, colorectal and breast cancer by targeting diverse
downstream genes; in addition, HOTAIR impairs the mi-
grating and invasive abilities of hepatocellular carcinoma
cells by targeting RNA binding protein 38 [42–45].
Recently, HOTAIR was implicated to undertake a cru-

cial role in HNC metastasis. Wu et al., after initially val-
idating the positive association between HOTAIR
expression and the LNM of oral squamous cell carcin-
oma (OSCC) within clinical samples, conducted an in
vitro study and determined the oncogenic function of
HOTAIR in driving the invasion and migration of
OSCC. Their further data suggested that HOTAIR
contributed to EMT by decreasing E-cadherin, the
speculated mechanism of which is that HOTAIR could
regulate the binding of the enhancer of zeste homolog 2
(EZH2), as well as trimethylation of lysine 27 in histone
3 (H3K27me3) to the promoter region of E-cadherin,
thus enhancing the metastatic ability [19]. Moreover, a

study regarding laryngeal squamous cell carcinoma
(LSCC) demonstrated that HOTAIR knockdown signifi-
cantly decreases the invasive ability of cancer cells. Fur-
ther data implied that HOTAIR knockdown could
attenuate the methylation level of phosphatase and
tensin homolog deleted on chromosome ten (PTEN) via
epigenetic modification, revealing a novel mechanism by
which HOTAIR regulates LSCC invasion [46]. In
addition, to identify the key factors in the HOTAIR
regulatory circuit, Xu et al. suggested that HuR, an RNA
binding protein, and HOTAIR might constitute a regula-
tory loop in driving the metastasis of HNC. In detail,
they illustrated that HuR could interact with and
stabilize HOTAIR, thereby promoting HOTAIR expres-
sion; in turn, HOTAIR positively improved the HuR
level by acting as a miR-7 sponge, and HuR could also
reinforce the sponge activity of HOTAIR [47]. Addition-
ally, HOTAIR was clarified to positively correlate with
the LNM of NPC, and the in vitro study proves that
HOTAIR facilitates the migration and invasion in the
NPC model [48].

UCA1
Urothelial carcinoma-associated 1 (UCA1) comprises of
three exons and encodes two transcripts [49]. lncRNA
UCA1 was initially detected to be significantly upregu-
lated in bladder transitional cell carcinoma [50]. It has
two isoforms, which are 1.4 kb and 2.2 kb in length,
respectively. Additionally, the alignment of DNA se-
quences showed that these two isoforms share 1265 bp
of the common region [51, 52]. Until now, several
groups have highlighted the metastasis-modulating effect
of UCA1 in various cancers [53–56]. Zuo uncovered that
the elevation of UCA1 is correlated with the LNM of
gastric cancer (GC); besides, UCA1 regulates the EMT
of GC cells possibly through transforming growth
factor-β1 (TGFβ1) induction in vitro [53]. After observ-
ing the positive correlation of UCA1 with the LNM of
endometrial cancer, scholars have confirmed that the
deficiency in UCA1 could reduce migration and invasion
[54]. Aside from that, UCA1 was indicated as a sponge
for miR-485-5p in ovarian cancer, thus increasing matrix
metallopeptidase 14 (MMP14) expression and enhancing
the metastasis [55]. Beyond that, UCA1 silencing attenu-
ates the migrating ability of melanoma cells [56].
Recently, a few studies have unveiled the function of

UCA1 in HNC metastasis. As a lncRNA dysregulated in
TSCC, UCA1 is closely related to its LNM, and its silen-
cing markedly dampens cancer invasiveness. Further
study demonstrated that UCA1 triggers Wnt/ β-catenin
pathway activation and contributes to cancer metastasis
[49]. Similarly, Fang et al. reported that UCA1 is not
only correlated with the LNM of TSCC, but could also
enhance the migration of TSCC cells [57]. Apart from
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OSCC, UCA1 also plays a pivotal role in hypopharyngeal
squamous cell carcinoma; with the initial trial confirming
its positive correlation with the LNM of hypopharyngeal
squamous cell carcinoma, the UCA1 loss-of-function test
in Fadu cells validated its role in driving invasion [58],
whereas further mechanistic study is required to elucidate
the phenotype.

TUG1
Taurine upregulated gene 1 (TUG1) is another fre-
quently reported lncRNA [59]. Previously, it was found
to be dysregulated within several cancers. In CRC, both
the gain- and loss-of-function tests proved the positive
impact of TUG1 on improving the invasion and migra-
tion of tumor cells via regulating EMT-related proteins.
In addition, the overexpression of TUG1 promotes the
liver metastasis of CRC [60]. Likewise, it was similarly
observed to boost the metastatic capacity of renal cell
carcinoma, gallbladder carcinoma, ESCC and ovarian
cancer [61–64]. Recently, a meta-analysis indicated that
TUG1 was positively associated with the LNM of several
cancers [65].
To date, only one study has discussed TUG1 in HNC

metastasis. Liang and colleagues, after confirming the
positive correlation between TUG1 and LNM, showed
that TUG1 might inhibit the invasion of OSCC along with
the downregulation of β-catenin, while a stimulator of the
Wnt/β-catenin pathway could reverse the repression effect
of TUG1 [66]. Thus, the pathway was postulated as how
TUG1 regulates OSCC metastasis. Extensive studies are
desired to uncover its underlying functions and mecha-
nisms for mediating HNC metastasis.

AFAP1-AS1
Actin filament associated protein 1 antisense RNA 1
(AFAP1-AS1), which is derived from the complementary
chain of the Actin Filament Associated Protein 1
(AFAP1) gene, is presently implicated in modulating the
metastasis of lung cancer, hepatocellular carcinoma, and
notably, NPC [67–69]. Initially, AFAP1-AS1 was posi-
tively associated with the LNM and distant metastasis of
NPC in tissue verification. Further in vitro and in vivo
studies consolidated its function in facilitating NPC
metastasis. Mechanistically, AFAP1-AS1 might exert its
effect on NPC metastasis via maintaining the actin fila-
ment integrity [69], with the same mechanism validated
in lung cancer [67].

HIT000218960
After investigating the lncRNAs profiles between PTC
tissue and normal thyroid tissue, Li et al. identified an obvi-
ously elevated lncRNA in PTC, termed as HIT000218960,
which is related to LNM of PTC. In addition, inhibition of
HIT000218960 repressed migration and invasion of PTC

possibly by downregulating high mobility group AT-hook 2
(HMGA2) mRNA level [70]. However, the mechanism is
still elusive. Based on previous studies, two other lncRNAs
have functioned as endogenous competitors with miRNAs
targeting HMGA2 [71, 72], which is speculated to play an
identical role as HIT000218960. Considering the other
lncRNAs as a reference, the detailed mechanism through
which HMGA2 is regulated by HIT000218960 is antici-
pated to be illuminated in the future.

Other potential pro-metastasis lncRNAs in HNC
ENST00000470135 is a lncRNA identified to be mark-
edly elevated in highly metastatic NPC cells, and its
positive role in the LNM of NPC was further confirmed.
Additionally, knocking down ENST00000470135 could
remarkably repress the migration and invasion of NPC
cells [73]. As another representative, long intergenic
non-coding RNA 312 (LINC00312), known as NPC-
associated gene 7 (NAG7), was also positively correlated
with the LNM of NPC based on a tissue study [74].
Furthermore, the overexpression of LINC00312 potenti-
ates NPC invasion by repressing estrogen receptor α and
stimulating the c-Jun N-terminal kinase-2/activator
protein-1/matrix metalloproteinase-1 (JNK2/AP-1/
MMP1) pathway [75].
HOXA transcript at the distal tip (HOTTIP), as a

lncRNA highly expressed in HNC, is associated with its
distant metastasis and is responsible for its dismal prog-
nosis [76]. Relying on previously published data
concerning TSCC gene expression profiling, Yu et al.
discovered a novel lncRNA named long intergenic non-
coding RNA 152 (LINC00152), which is enhanced in
TSCC, and further tissue investigations consolidated its
role in promoting the LNM of TSCC [77]. Additionally,
a lncRNA microarray based on LSCC samples suggested
the upregulation of RP11-169D4.1–001, which was
subsequently observed to be positively associated with
the LNM of LSCC [78]. Overall, these findings have
uncovered several lncRNAs in HNC metastasis; however,
their actual function and mechanisms need to be thor-
oughly elucidated, enabling which to become therapeutic
targets of HNC.

LncRNAs act as negative regulator in head and neck
cancer metastasis
To date, only a few lncRNAs have been highlighted to
suppress HNC metastasis. Herein, we generally intro-
duced them and investigated NKILA as a representative.

NKILA
Nuclear factor-κB interacting lncRNA (NKILA) is major
inhibiting checkpoint for NF-κB activation in breast can-
cer [79]. Encoded by a gene at chromosome 20q13,
NKILA was first shown to exhibit an inhibitory effect on
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the metastatic abilities of breast cancer cells [79]. In
light of the remarkable relationship between NF-κB and
the invasiveness of tumor cells [80], Liu and colleagues
attempted and successfully confirmed the putatively
negative regulation of breast cancer metastasis by
NKILA. Mechanistically, NKILA is mainly upregulated
by NF-κB activation; in turn, NKILA forms a negative
feedback loop to suppress NF-κB by binding the
cytoplasmic NF-κB/IκB compound and forming another
stable NF-κB:IκB:NKILA complex, and suppressing the
phosphorylated level of IκB, thereby preventing the
nuclear translocation of NF-κB and exerting its anti-
metastasis impact on breast cancer. Moreover, in vivo
and tumor sample studies confirmed its role as a
negative regulator of metastasis and predictor of poor
prognosis. Moreover, miR-103 and miR-107 were dem-
onstrated to reverse the effect by degrading NKILA,
thereby enabling NF-κB activation and promoting
metastasis [79].
According to the previous finding about NKILA, the

same group also reported its similar influence on TSCC
metastasis. To begin with, NKILA was pervasively re-
duced in TSCC samples by contrast with that in normal
tongue tissue; notably, it was negatively correlated with
the LNM of TSCC. Cell invasion and migration studies
further verified its negative role in TSCC. In theory, the
mechanism of NKILA in downregulating the TSCC
metastatic capacity is identical as to that in breast
cancer. NKILA could initially bind to IκB, suppressing
NF-κB activation and thereby blocking its downstream
EMT phenotype. In agreement, animal investigations
also showed that NKILA knockdown contributed to
more lung metastasis of TSCC [81]. Overall, it implies
that lncRNA might bind to the functional domain of
vital signaling molecules and regulate the protein stabil-
ity, thus affecting tumor metastasis.

Other tumor metastasis-suppressing lncRNAs
Based on microarray analysis, NONHSAT037832 was
detected as a novel lncRNA remarkably downregulated
in PTC, next implied to function as an inhibitor in the
LNM of PTC [82]. Besides, another study indicated that
the expression level of lncRNA Growth Arrest-specific
Transcript 5 (GAS5) was negatively related to the LNM
of thyroid carcinoma [83]. Moreover, further studies are
desired to determine their detailed mechanisms in at-
tenuating tumor metastasis.

LncRNAs serve as promoter in the EMT, migration and
invasion of head and neck cancer
Presently, diverse lncRNAs are solely involved in driving
the EMT, migration and invasion of HNC, whereas the
in vivo functional roles await deep discovery.

FOXCUT
FOXCUT is a lncRNA encoded from the upstream
area of the FOXC1 promoter. As indicated, FOXCUT
functions together with FOXC1 as a lncRNA-mRNA
pair in enhancing the migration of OSCC and NPC
cells [20, 84]. Presently, various studies have indicated
that lncRNAs could collaborate with mRNAs tran-
scribed from their neighboring area as pairs and
regulate their own function, opening a new perspec-
tive to study lncRNA function [85]. By bioinformatics
analysis, FOXCUT was detected as an overexpressed
lncRNA in OSCC, similar to that for FOXC1 mRNA.
In addition, FOXC1 mRNA was remarkably reduced
after the knockdown of FOXCUT, implying that
FOXC1 expression is modulated by FOXCUT. Of
note, the knockdown of FOXCUT or FOXC1 could
suppress the migration of OSCC cells, possibly medi-
ated by the reduction of the MMP2, MMP7, and
MMP9 levels [84]. Analogously, FOXCUT and FOXC1
are both overexpressed in NPC cells and tissues, and
tissue validation confirmed their synergistic effect on
promoting the distant metastasis of NPC. An in vitro
study suggested that the FOXCUT-FOXC1 pair inter-
acted with each other, and the silencing of FOXCUT
inhibited the migration of NPC cells, along with the
decrease in the MMP7, MMP9 and β-catenin levels
[20]. Notably, the same effect of this pair was
confirmed in the basal-like breast cancer study [86].
Nevertheless, whether this pair could regulate the
invasion and metastasis of cancer, as well as its
underlying mechanisms, are required to be thoroughly
investigated in the future.

CCAT1
Colon cancer-associated transcript1 (CCAT1) serves as a
lncRNA involved in regulating the metastatic ability of
various cancers via distinct or similar mechanisms,
including colon cancer [87], cervical cancer [88], hepato-
cellular carcinoma [89] and melanoma [90] etc. Zhuang
et al. first uncovered the metastasis-related functions of
CCAT1 in HNC. The study suggests that CCAT1 could
improve the migrating and invasive abilities of LSCC
cells by leading to EMT, presenting as E-cadherin reduc-
tion along with the enhancement of Vimentin and N-
cadherin [91]. On the other hand, a CCAT1/ miR-218/
zinc finger protein, x-linked (ZFX) axis was identified to
significantly modulate the invasion of LSCC. Through
tissue investigation, CCAT1 and ZFX were confirmed to
be significantly enhanced, while miR-218 was decreased.
The gain or loss of function study ultimately revealed
that CCAT1 drives the invasion of LSCC cells through
increasing the ZFX level by sponging miR-218 [92]. All
the above imply that the same lncRNA might regulate
metastasis via diverse mechanisms.
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H19
lncRNA H19 is the transcript product of the H19 gene
[93]. Emerging findings have supported its pivotal role
as a metastatic potentiator in various malignancies, in-
cluding GC [94], breast cancer [95] and colon cancer
[96]. In GC cells, lncRNA H19 could be processed into
miR-675, which subsequently activates protein kinase B/
mammalian target of rapamycin (Akt/mTOR) pathway
as well as enhances the invasion of GC cells; therefore,
the function of H19 is partially dependent on its down-
stream product miR-675 [94]. More importantly, the in-
vestigation has demonstrated the influence of H19
silencing on impairing the migration and invasion of
LSCC; specifically, H19 might sponge miR-148a-3p,
thereby releasing the DNA methyltransferase enzyme
(DNMT1) which could be targeted by miR-148a-3p, and
carrying out its function [97]. Thus, the lncRNA H19/
miR-148a-3p/DNMT1 axis presents as a vital signaling
cascade that mediates LSCC metastasis. Since H19 has
various effects on other maliganancies, its function in
HNC requires extensive investigation.

NEAT1
Nuclear enriched abundant transcript 1 (NEAT1), as its
name implies, is a lncRNA localized exclusively to para-
speckles, a sub-nuclear structure [98]. Previous studies
have identified the potential of lncRNA NEAT1 in en-
hancing the invasion and migration of GC via driving
EMT [99]. Additionally, upon analyzing the relationship
between expression of NEAT1 and the LNM of NSCLC
[100] and CRC [101], NEAT1 was reported to signifi-
cantly promote their metastasis, proving its oncogenic
role. Notably, NEAT1 acts a promoting role in mediating
the migration and invasion of thyroid carcinoma. Specif-
ically, NEAT1, by exhibiting a reciprocal repression
correlation with miR-214 and reducing its expression,
increases the β-catenin level and presents the pheno-
type [102].

lncRNA-ROR
LncRNA-Regulator of Reprogramming (LncRNA-ROR)
is overexpressed in solid tumors including NPC.
LncRNA-ROR deficiency contributes to the suppressed
tumor invasion with reduced expression levels of the
EMT marker [103]. Similarly, LncRNA-ROR also po-
tently drives the invasion and lung metastasis of breast
cancer through EMT [104].
Emerging lncRNAs are also implicated in facilitating

HNC metastasis. For example, long intergenic non-
coding RNA 673 (LINC00673) was identified to be the
most highly expressed lncRNA in TSCC based on the
microarray analysis of two TSCC cohorts in the Gene
Expression Omnibus dataset. Thereafter, it was validated
in TSCC samples [105]. Additionally, silencing of

LINC00673 could remarkably repress the invasive and
migratory abilities of TSCC, similar to another finding
in a GC study [106]. Hepatocyte nuclear factor 1A
antisense RNA (HNF1A-AS) is another lncRNA de-
tected to be elevated in NPC, the knockdown of which
could impair the migration of NPC cells [107].

LncRNAs that are inversely correlated with the EMT,
migration and invasion of HNC
Apart from these lncRNAs that are positively related to
the metastatic ability of HNC in vitro, a few lncRNAs
are inversely correlated with its metastasis in vitro. Zou
et al. carried out transcriptome sequencing to investigate
dysregulated lncRNAs in HNC; as a result, they discov-
ered two dramatically reduced lncRNAs, namely,
KCTD6–3 and LCE5A-1. Moreover, transfection of both
lncRNAs into HNC cells reduced its migration signifi-
cantly because these two lncRNAs might lead to EMT
alterations. Specifically, KCTD6–3 could decrease
vimentin and twist, and LCE5A-1 might increase E-
cadherin, while reducing vimentin [108]. In another
study concerning OSCC, investigators used next-
generation sequencing approach to analyze transcrip-
tome profiling and identified that lncRNA SOX21
antisense RNA 1 (SOX21-AS1) was significantly de-
creased, mainly owing to aberrant promoter hyperme-
thylation of SOX21-AS1. Furthermore, SOX21-AS1
overexpression could remarkably inhibit the invasion of
OSCC cells. Additionally, subcellular fractionation
localization implies that it might serve as a suppressor
for tumor metastasis in the nucleus, while the precise
mechanisms need to be illuminated [109]. In addition,
terminal differentiation-induced ncRNA (TINCR), as a
lncRNA upregulated by zinc-finger 750 (ZNF750) in
HNC cells, could promote its migration [110]. Of note,
the detailed ration regarding how these lncRNAs inhibit
EMT, migration or invasion in vitro is worthy of identifi-
cation, thus facilitating their application as prognostic
predictors.

LncRNAs regulate tumor metastasis by interacting
with tumor immunity
The tumor microenvironment (TME) of HNC is charac-
terized by immunosuppression [111]. CD8+ T cells
among the tumor-infiltrating lymphocytes (TILs) express
significantly higher levels of immune checkpoint recep-
tors such as programmed cell death 1 (PD-1) than those
in the peripheral blood [112, 113]. Interestingly,
lncRNAs can directly regulate the expression levels of
the checkpoint receptors and their ligands (Fig. 2a)
[114]. For example, the lncRNA AFAP1-AS1 upregulates
PD-1 expression levels in the TME of NPC, possibly
leading to T-cell exhaustion. [114]. TME exhibits strong
M2-like skewing, which dampens antigen-presenting cell
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function and subsequent tumor-specific effector activa-
tion. Some TIL subsets such as mast cells appear to
contribute to immunosuppression and enhance cancer
invasion. Notably, mast cells could directly increase the
expression of HOTAIR and lead the HOTAIR-PRC2
complexes to suppress the expression of androgen re-
ceptor, thereby contributing to tumor invasion (Fig. 2b)
[115]. As another lncRNA exacerbating the M2-like
phenotype in the TME, tumor-associated macrophages
could potentiate the invasion of breast cancer in vitro by
upregulating UCA1 (Fig. 2c) [116]. By contrast, lncRNA
advanced glycosylation end-product specific receptor
(lncAGER) could strengthen the effect of human mono-
cytes against lung cancer, thereby inhibiting tumor
migration and growth (Fig. 2d). Although downregulated
in lung cancer due to the hypermethylation of its
promoter, lncAGER exhibits the anti-tumor function by
first targeting miR-185, thereby increasing the advanced
glycosylation end-product specific receptor (AGER) level

in lung cancer cells, which is an important innate im-
mune pattern-recognition receptor, and ultimately pro-
moting the anti-tumor effect of human monocytes [117].
Overall, how lncRNAs in cancer cells regulate the im-
mune microenvironment of HNC remains insufficiently
characterized. However, emerging evidence suggests that
targeting a subset of lncRNAs not only alleviates the
cancer invasion phenotype but also potentially contrib-
utes to improved immune detection of cancer.

Upstream regulator for the aberrant expression of
LncRNAs in HNC
Based on previous findings, there are three main mecha-
nisms that are responsible for the aberrant expression of
lncRNA in HNC, which are miRNAs, functional proteins
such as RNA binding proteins (RBPs), NF-κB and TP53,
and genetic changes such as genomic mutation and
epigenetic alteration [47, 81, 118–125]. Primarily, there
are two miRNAs that modulate lncRNA expression in

Fig. 2 LncRNAs potentially modulate tumor metastasis through interacting with tumor immunity. a AFAP1-AS1 might contribute to the apoptosis or
deactivation of TILs by increasing PD-1 expression in TILs, which is an immune escape marker, thus leading to immunosuppressant TME and metastasis
of NPC. b HOTAIR could integrate with PRC2 as a complex under stimulation of mast cells to suppress AR, and thus increase MMP9 levels and the
stem/progenitor cell population, contributing to the metastasis of prostate cancer cells. c Infiltrating macrophages in TME could potentiate invasion of
breast cancer in vitro by increasing AKT phosphorylation, thus boosting level of lncRNA UCA1. d LncAGER could attenuate the tumor migration and
growth of lung cancer via targeting miR-185, thus reversing the impact of miR-185 on inhibiting AGER expression in lung cancer cells and inducing
the anti-tumor effect of human monocytes. lncRNAs: Long noncoding RNAs; AFAP1-AS1: Actin filament associated protein 1 antisense RNA 1; TILs:
Tumor infiltrating lymphocytes; PD-1: Programmed death 1; TME: Tumor microenvironment; NPC: Nasopharyngeal carcinoma; HOTAIR: Homeobox
transcript antisense RNA; PRC2: Polycomb repressive complex 2; AR: androgen receptor; PCa: prostate cancer; UCA1: Urothelial carcinoma-associated 1;
AKT: Protein Kinase B; AGER: advanced glycosylation end-product specific receptor; lncAGER: lncRNA AGER; miR-185: microRNA-185
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HNC. Specifically, lncRNA papillary thyroid carcinoma
susceptibility candidate 3 (PTCSC3) could be remarkably
decreased by the overexpression of miR-574-5p in thy-
roid carcinoma [118]; additionally, in TSCC, miR-26a
could upregulate the lncRNA maternally expressed gene
3 (MEG3) by binding to the DNA methyltransferase 3B
transcript [119]. Second, two RBPs are involved in regu-
lating lncRNA expression in HNC. HuR, as an RBP,
could form a regulatory circuit with HOTAIR and
contribute actively to the stability and expression of
HOTAIR in HNC [47]; similarly, HuR could regulate the
stability of lnc-Sox5 and lead to TSCC progression
[120]; in addition, another RBP, RNA-binding protein 24
could degrade MALAT1 by directly upregulating miR-25
expression, revealing the synergistic effect of RBP and
miRNA on regulating lncRNA in NPC [121]. NF-κB is
another functional protein—i.e. in TSCC, NF-κB could
significantly improve the expression level of lncRNA
NKILA [81]; BamHI-A rightward transcripts (BARTs),
including lncRNAs, are produced by Epstein-Barr virus
(EBV) in NPC, and NF-κB functions positively to
activate BART promoters and modulate the expression
of these lncRNAs [122]. As another representative of
functional protein, TP53 could directly upregulate
lncRNA LOC401317 in NPC cells, thereby suppressing
tumor growth [123].Third, genetic changes such as
single-nucleotide polymorphisms (SNPs) or epigenetic
alterations within the non-coding genome could mark-
edly affect the transcription of lncRNA; for instance, in
PTC, the polymorphism of rs944289 in 14q13.3 could
reduce the level of lncRNA PTCSC3 by abolishing the
binding domain of CCAAT/enhancer binding proteins α
and β and subsequently inhibiting the activation of the
PTCSC3 promoter [124]. Additionally, the silencing of
lncRNA H19 in well-differentiated NPC cells is
attributed to the epigenetic alteration, namely, hyperme-
thylation of the H19 promoter region [125]. Overall, the
aberrant expression of lncRNAs in HNC is mainly
controlled by the above three upstream regulators,
and more upstream modulators are required to be
uncovered.

Conclusions
In the past decade, lncRNAs, previously regarded as
non-functional [11], have attracted considerable and
increasing attention from investigators, primarily
attributed to their frequently aberrant expression in
cancers and their potential implication in tumor
development and progression, particularly tumor
metastasis [16], which constitutes the main threat
for cancer-related death. LncRNAs, located in the
nucleus or cytoplasm, might interact with mRNA,
miRNA, DNA or protein to exert their diverse

functions [21, 22], acting as a versatile player in
regulating neoplasm metastasis.
In this review, we introduced the lncRNAs implicated

in modulating the metastatic potential of HNC and
attempted to illuminate the mechanisms; meanwhile, the
involvement of these lncRNAs in the metastasis of other
common malignancies are also briefly summarized to
facilitate their study in HNC. Additionally, the upstream
regulation of lncRNA that underlies its abnormal expres-
sion in HNC was discussed. Based on the screening
result of lncRNAs, most of these are suggested to
promote the EMT, migration, invasion or metastasis of
HNC, while a small proportion of these have opposite
effects of inhibiting HNC metastasis in vitro and/or in
vivo. In theory, these lncRNAs highly expressed in HNC
tissue or cells, driving its metastasis, have the potential
to be utilized as therapeutic targets and predictors of
poor outcome. However, the prerequisite of its applica-
tion is the illumination of mechanisms validated in vitro
and in vivo. Moreover, those lncRNAs downregulated in
HNC and exhibiting the capability of suppressing its me-
tastasis also hold the promise to serve as prognostic
predictors.
In terms of clinical translation of lncRNAs, it still has

a long way to go since there exist multiple unmet
challenges for us to overcome. In order to realize the
goal, we need to seek solutions for the listed issues: 1.
exploring more lncRNAs affecting HNC metastasis; 2.
investigating the detailed mechanisms of these lncRNAs;
3. figuring out the key lncRNAs pathways; 4. construct-
ing a lncRNA interacting and regulating network since
TME is complex and not dependent on a single lncRNA;
5. since HNC includes a range of cancers with various
genetic background, individualized key lncRNAs and its
involved pathways in a specific cancer might be studied;
6. intervening tumor metastasis-promoting lncRNAs to
inhibit metastasis by targeting lncRNAs.
To target lncRNAs in HNC, diverse techniques have

been developed, namely, RNA interference (RNAi) [126],
antisense oligonucleotides(ASO) [127], clustered regu-
larly interspaced short palindromic repeats (CRISPR)/
Cas9 [128], RNA blocking oligonucleotides [129] and
small-molecule modulators [130]. The RNAi technique
represents selective silencing of lncRNAs, which is sup-
posed to be more efficient in depleting cytoplasmic
lncRNAs, while the successful rate of the deletion of
nuclear lncRNAs remains unsatisfied [126, 131]. ASO is
another effective approach to target lncRNAs regardless
of the cellular location, which applies single-stranded
DNA or RNA molecules to direct the RNase H to target
lncRNAs, leading to its degradation [127]. One good
example of its preclinical study proposed that ASO of
MALAT1 could inhibit lung cancer metastasis in vivo
significantly [132]. CRISPR/Cas9, as a relatively novel

Luo et al. Molecular Cancer  (2018) 17:14 Page 11 of 16



and efficient genome editing tool, has shed light on a
novel way to edit lncRNA expression, while its specificity
and efficacy remain to be further evaluated [27, 128]. As
RNAi and ASO-mediated lncRNA degradation are
dependent on enzymatic degradation, limiting the
capability of improving their pharmacological qualities,
RNA-blocking oligonucleotides is another method that
modulates lncRNA by blocking the access of the cellular
machinery to the RNA rather than contributing to the
degradation of the lncRNA, which do not employ
enzymes for the activity, exhibiting the advantage to re-
ceive more chemical modifications that enhance their
drug-like characteristics [129]. In addition, small-molecule
modulators involved in interrupting the lncRNA–protein
interaction display high potential to target the lncRNA
specifically, reducing its off-target effects [130]. Further
validation of these above techniques and more technical
innovations are required to select the optimal drug
for lncRNA-targeted therapeutics, considering their
advantages and disadvantages.
Recently, a novel approach, namely, clustered regularly

interspaced short palindromic repeats (CRISPR)-Display,
has emerged as a potentially transformative tool to
probe into the function and mechanisms of lncRNAs
[133]. Specifically, Shechner et al. established the tech-
nology by employing a nuclease-deficient Sp. dCas9
mutant, namely, “dCas9”, which displays certain RNA
domains on the dCas9 cargo and is delivered to the
predetermined DNA loci. Attempting to validate the ap-
plicability of the approach for lncRNAs, Shechner et al.
fused the RepA domain of lncRNA Xist into the com-
plexes; expectedly, they showed that the domain mod-
estly repressed the expression of reporter gene, which
initially revealed the plausibility of CRISPR-Display
(CRISP-Disp) for studying lncRNAs [133]. In light of its
characteristics, CRISP-Disp presents its potential
advantages in lncRNA research. First, it could be utilized
to address the question regarding whether lncRNA-
regulated gene expression is due to the transcriptional
effect or lncRNA domain itself [133]. Second, CRISP-
Disp and immunoprecipitation of dCas9 followed by
mass spectrometry could assist in identifying interacting
proteins with the lncRNA domain [134]. Third, the
approach might efficiently serve as a platform for
selecting the novel functional domain of lncRNA.
Fourth, the method could be applied to study lncRNA
up to 4.8 kb and simultaneously explore multiple
RNA domains by sharing the same dCas9 [133]. How-
ever, more validations are warranted to ensure its
application in the future.
In summary, lncRNAs contribute to HNC invasion

and metastasis by distinct mechanisms based on their
subcellular localization, as well as modulating or
regulated by the cancer immune microenvironment.

Emerging evidence has identified lncRNAs as a novel set
of potential prognosticators and therapeutic targets. The
characterization of an expanded repertoire of lncRNAs
and their interaction with the cancer immune micro-
environment are promising to further improve combina-
torial treatment protocols for HNC.
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