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Abstract

Background: Colorectal cancer (CRC) cell lines are widely used pre-clinical model systems. Comprehensive insights
into their molecular characteristics may improve model selection for biomedical studies.

Methods: We have performed DNA, RNA and protein profiling of 34 cell lines, including (i) targeted deep sequencing
(n = 612 genes) to detect single nucleotide variants and insertions/deletions; (ii) high resolution DNA copy number
profiling; (iii) gene expression profiling at exon resolution; (iv) small RNA expression profiling by deep sequencing; and
(v) protein expression analysis (n = 297 proteins) by reverse phase protein microarrays.

Results: The cell lines were stratified according to the key molecular subtypes of CRC and data were integrated
at two or more levels by computational analyses. We confirm that the frequencies and patterns of DNA aberrations
are associated with genomic instability phenotypes and that the cell lines recapitulate the genomic profiles of
primary carcinomas. Intrinsic expression subgroups are distinct from genomic subtypes, but consistent at the
gene-, microRNA- and protein-level and dominated by two distinct clusters; colon-like cell lines characterized
by expression of gastro-intestinal differentiation markers and undifferentiated cell lines showing upregulation
of epithelial-mesenchymal transition and TGFβ signatures. This sample split was concordant with the gene
expression-based consensus molecular subtypes of primary tumors. Approximately ¼ of the genes had
consistent regulation at the DNA copy number and gene expression level, while expression of gene-protein
pairs in general was strongly correlated. Consistent high-level DNA copy number amplification and outlier
gene- and protein- expression was found for several oncogenes in individual cell lines, including MYC and
ERBB2.

Conclusions: This study expands the view of CRC cell lines as accurate molecular models of primary
carcinomas, and we present integrated multi-level molecular data of 34 widely used cell lines in easily
accessible formats, providing a resource for preclinical studies in CRC.
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Background
Colorectal cancers (CRC) are molecularly heterogeneous
and can be divided into clinically relevant subtypes as-
sociated with patient prognosis and treatment response.
At the DNA level, this includes the genomic instability
phenotypes microsatellite instability (MSI) and chromo-
somal instability (CIN), as well as the epigenomic CpG
island methylator phenotype (CIMP). About 15% of pri-
mary CRCs have MSI, while the rest are microsatellite
stable (MSS), most of which have the CIN phenotype.
MSI tumors have errors in the mismatch repair machinery
and display numerous single nucleotide variants (SNVs)
and insertions/deletions (indels) [1]. CIN tumors typically
display aneuploidy with structural and/or numerical aber-
rations, but the underlying cause(s) remains undetermined
[2]. CIMP tumors overlap to a large extent with MSI and
are characterized by widespread hypermethylation of CpG
islands [3, 4].
At the transcriptional level, several classification schemes

have identified biologically distinct subtypes of CRCs [5–7].
The recent identification of four consensus molecular
subtypes (CMS) has provided evidence that the expres-
sion subtypes have clinical relevance independent of
cancer stage [8]. Although several genomic aberrations
associate with individual CMS groups, including MSI
and hypermutation in CMS1 and oncogene amplification
in CMS2, a potential genomic basis for the expression
subtypes remains elusive. Integrative DNA, RNA and pro-
tein level analyses promise to improve our understanding
of the biological and clinical importance of the evolving
molecular classification of CRC.
CMS classification is heavily influenced by the tumor

microenvironment, as demonstrated by strong expression
of mesenchymal marker genes in the stroma of tumors of
the stem-like/mesenchymal subtype CMS4 [9, 10]. How-
ever, all four CMS subtypes were recently demonstrated to
be represented in in vitro model systems (Sveen et al., sub-
mitted), and cancer cell lines may therefore be used to
identify the cancer cell intrinsic aberrations characteristic
of the four CMS groups. Furthermore, genomic studies
and drug sensitivity screening have demonstrated that
CRC cell lines in general recapitulate the molecular alter-
ations and pharmacogenomics of primary tumors [11–15].
Accordingly, improved molecular characterization of these
in vitro model systems may further increase their value as
preclinical models of CRC.
Here we present a resource of information for 34 CRC

cell lines by multi-level data integration, including tar-
geted deep sequencing, DNA copy numbers, gene ex-
pression, microRNA (miRNA) expression and protein
expression. We describe consistent gene/pathway regu-
lation across data types and associate this with known
CRC subtypes. Each data set and data combination are
presented in accessible tables and figures, emphasizing

specific alterations of biological or clinical interest for
further experimental studies.

Methods
Cell lines – Culturing, processing and analyses overview
Thirty-four CRC cell lines purchased from cell line reposi-
tories or kindly provided by collaborators (Additional file 1:
Table S1), were subjected to DNA, RNA and protein ana-
lyses (Fig. 1 a and b). Cell lines were cultured as previously
described [12] and harvested at approximately 80–90%
confluency. Genomic DNA was extracted either by a stand-
ard phenol/chloroform procedure or a magnetic beads
protocol (Maxwell 16 DNA purification kit, Promega,
Madison, WI, U.S.A.). Cell line authenticity was verified by
DNA profiling based on 15 short tandem repeat (STR) loci,
using the AmpFLSTR Identifiler PCR Amplification Kit
(Thermo Fisher, Waltham, MA) and matched to the pro-
files from supplier (Additional file 1: Table S1) where avail-
able. MSI and CIMP status was determined according to
previously described procedures [12]. For CL-40 MSI status
was additionally assessed using the MSI Analysis System,
version 1.2 (Promega, Fitchburg, WI, USA). Total RNA
was extracted using the Qiagen AllPrep DNA/RNA/
miRNA Universal kit (Qiagen, Hilden, Germany) and qual-
ity controlled by the Agilent RNA 6000 nano kit for Agilent
2100 Bioanalyzer (Agilent, Santa Clara, CA, U.S.A.). All
RIN values were above 9. Protein lysates were produced
from cell pellets at the MD Anderson Cancer Centre RPPA
Core Facility.
For all cell lines, DNA copy number, mRNA, miRNA

and protein expression profiles were generated. Targeted
DNA sequencing was performed for 27 cancer cell lines
in addition to Sanger sequencing of selected genes in 31
cell lines. For frequency counts and statistical tests we
excluded the neuroendocrine Colo320 and kept only one
cell line derived from the same patient, thus excluding
IS3, SW620, DLD-1 and WiDr.

Targeted deep sequencing
Sequencing libraries for the “kinome” and selected
cancer-relevant genes (totally n = 612 genes; Additional
file 1: Table S2) was generated using the Agilent SureSe-
lect Human Kinome V1 kit (Agilent), and 2 × 101 basepair
paired-end sequencing was performed on the Illumina
HiSeq 2500 system (Illumina, San Diego, CA, U.S.A.) at
the Oslo University Hospital Genomics Core Facility to an
average sequencing depth of 161X (range 105-289X).
Sequencing reads were aligned to the reference genome
GRCh37 (hg19) with the Burrows-Wheeler Aligner
(v0.6.21) [16], converted from sequence alignment map
(SAM) files to the binary alignment map (BAM) format
by Picard, version 1.61 [17], and sorted and indexed
using SAMtools (v0.1.18) [18]. Duplicate reads were re-
moved by Picard, and the Genome Analysis Toolkit
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(GATK, v2.7–4) [19, 20] was used for local realignment
around indels. Variant calling of both SNVs and indels
was done using the HaplotypeCaller tool from GATK,
and candidate variants were annotated using ANNOVAR

(build 2013–02-21) [21]. Only variants with minimum 10
alternative reads were included in further analysis. As se-
quencing analyses on cell lines do not enable filtering of
germ line variants, candidate variants present in dbSNP
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Fig. 1 Overview of the 34 CRC cell lines analyzed and key findings. a The cell lines are grouped according to the gene expression-based CMSs
(except Colo320, which has a neuroendocrine origin), and MSI, POLE and CIMP status are indicated. In general, the morphologic appearance of
cell lines in CMS1 and CMS4 (for example LoVo and RKO) was mesenchymal, whereas cell lines in CMS2 and CMS3 (for example IS3 and WiDr)
appeared more epithelial-like. b The cell lines were analyzed on the DNA, RNA and protein levels as indicated (blue background). Bioinformatic
analyses (grey) were performed both on individual data levels and by integration of two or more data levels. Key findings (white) and references
to figures and tables with detailed results are given (green). CIMP: CpG island methylator phenotype, CMS: consensus molecular subtypes, CNA:
copy number aberrations, MSI/MSS: microsatellite instable/stable, OG: oncogene, TF: transcription factor, TS: tumor suppressor, SNV: single
nucleotide variant
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version 138 [22] and not marked as clinically associated in
this version of dbSNP, were discarded, and the final cell
line “mutations” are referred to as variants throughout
the paper. The following variants were defined as non-
synonymous: non-synonymous SNVs, stopgain SNVs,
stoploss SNVs and frameshift indels.
Sanger sequencing was performed for the whole

coding sequences of PTEN and TP53 and for mutation
hotspots in KRAS codons G12, G13, Q61, K117 and
A146, BRAF V600 and PIK3CA E542, E545, E546, H1025
and H1047 for seven of the cell lines. The mutation sta-
tuses for most of the codons above for the remaining 24
cell lines are described previously [12], except for KRAS
codons K117, A146 and PIK3CA codon and H1025, which
are included in the current work. Colo205, HCC2998 and
KM12 were not assessed by Sanger sequencing.

High resolution DNA copy number profiles
DNA copy number data was generated using Affymetrix
Genome-Wide Human SNP 6.0 microarrays (Affymetrix
Inc., Santa Clara, CA). One μg of DNA in low-EDTA
TE-buffer was prepared according to the Affymetrix
SNP 6.0 Cytogenetics Copy Number Assay User Guide
and hybridized to Affymetrix Genome-Wide SNP 6.0
microarrays according to the Affymetrix Genome-Wide
Human SNP Nsp/Sty User Guide. Resulting raw data
were within recommended QC thresholds (CQC > 0.4;
MAPD < 0.35). Signal extraction and pre-processing of
raw data was performed as previously described [23],
using the PennCNV protocol modified for Affymetrix
genotyping arrays with Affymetrix Power Tools version
1.15.0 [24, 25] with HapMap samples as reference [26].
Single-sample segmentation of normalized and GC cor-
rected data was done with the R package copynumber
(version 1.14.0) [27]. The user defined penalty parameter
was set to 100. PCF value thresholds were set to ≥0.15
(gain) and ≤ −0.15 (loss). To enable comparison of sam-
ples with different breakpoints, the smallest regions of
overlap (SROs) were determined. Each SRO originated
from a true larger segment and the copy number value
of the originating segment was kept. Copy number esti-
mates per gene were retrieved by mapping chromosomal
segments from each sample to the R implemented tran-
script database TxDb.Hsapiens.UCSC.hg19.knownGene
(v3.2.2), utilizing the findOverlaps function from the
GenomicRanges R package (v1.22.4).
The percentage of the genome affected by copy number

aberrations (CNAs) was defined as the percentage of bases
with aberrant copy number out of the total number of
bases with a copy number value available.
To detect potential CNA targets, The GISTIC algo-

rithm v2.0.22 [28] was run with default parameters with
the following exceptions: the threshold for broad events
was set to 70% of the chromosome arm length; the

maximum number of segments in a sample was set to
2000; the confidence level was set to 99%; parameters
for gene-level and broad-level analysis was set ON.

Gene expression analysis
Microarray gene expression analyses were performed
using Affymetrix HTA 2.0 Transcriptome Arrays (Affy-
metrix Inc., Santa Clara, CA, U.S.A.), according to the
manufacturer’s instructions. The data was normalized
and summarized at the gene level using the Guanine
Cytosine Count Correction and Signal Space Trans-
formation algorithms with Robust Multi-array Average
(SST-RMA) implemented in the Affymetrix Expression
Console Software (v1.4.1, HTA-2_0.r3 library files). The
HTA-2_0.na35.2.hg19.transcript.csv annotation file identi-
fied 67,528 annotated genes (transcript clusters). The data
was filtered to exclude non-coding RNA probes, and genes
annotated by multiple probesets were filtered to retain
one probeset per gene by prioritizing annotation data-
bases: RefSeq, ENSEMBL, other databases. The filtered
dataset contained data for 18,740 probesets.
Principal component analysis (PCA) was performed

including only the 1000 genes with the largest cross-
sample variation. PC1 had a bimodal density distribution
and samples with PC1 score larger than the between-
peaks minima were defined as “high”. Gene set tests
were performed using camera [29, 30]. Single sample
Gene Set Enrichment Analysis (ssGSEA) was performed
using GSVA [31]. Seventy gene sets were assembled to
enrich for pathways likely to be informative on CRC
biology based on Guinney et al. [8] (Additional file 1:
Table S3). Differential expression analysis was performed
using the R package limma [30].
The cell lines have been classified according to CMS

based on the nearest predicted subtype, using an adapted
classifier independent of gene expression signaling from
the tumor microenvironment (Sveen et al., submitted).
The gene expression data has been submitted to the

NCBI’s Gene Expression Omnibus with accession number
GSE97023.

Small RNA sequencing
Small RNA sequencing libraries were prepared using a
recently published low-bias protocol [32] and resulting
libraries subjected to sequencing on an Illumina HiSeq
2500 (rapid mode). The 50 bp single-end reads were de-
multiplexed and converted to FASTQ files by Casava
(v1.8.2). Reads were adapter trimmed, quality filtered
and collapsed by FASTX Toolkit (v0.0.14). We discarded
reads that met any of the following criteria; less than 7
bases matching adapter sequence, shorter than 18 bases
after adapter clipping, and/or phred score below 27 for
more than 8% of the bases. The eight randomized N-
bases were removed prior to alignment. Processed reads
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were aligned against a custom reference of miRBase
hairpins (v21) using bowtie (v1.1.1), allowing no mis-
matches. The reads were summarized over each mature
miRNA, requiring at least 18 nt overlap using R pack-
ages GenomicRanges, rtracklayer and ShortRead. Differ-
ential expression analysis of miRNA data was performed
with R package limma using voom with cyclic loess
normalization [30, 33].

High-throughput protein expression analysis
Reverse Phase Protein lysate Array (RPPA) analysis with
297 antibodies targeting 235/62 proteins/phospho-pro-
teins (Additional file 1: Table S4) was performed at MD
Anderson Cancer Centre RPPA Core Facility, including
pre-processing of the protein data. Median centered
normalized log2 values describing the relative protein
abundance in each sample were used for downstream
analyses. Differential expression analysis of RPPA data
was performed with R package limma [30].

Integration of DNA copy number and gene expression
data
We explored the influence of in-cis copy number aberra-
tions on gene expression by testing for differences in
gene expression among CNA groups. For this analysis, a
stricter PCF value threshold of ≥0.3 or ≤ − 0.3 was used
to define gain and loss. Genes spanning several segments
(differing in PCF value along the gene) were handled as
follows: Genes consistently gained or lost (different PCF
value but belonging to the same category) were assigned
to the correct category accordingly. Genes that differed
in copy number category (e.g. loss in one part, gain or
neutral in remaining part) was assigned the median PCF
value. Only genes represented in all samples were included.
The mRNA expression was defined to be associated with
copy number in cis if Wilcoxon testing determined (i) the
mRNA expression to be significantly different in samples
with gain versus samples with neutral copy number or loss,
or (ii) the mRNA expression was significantly different in
samples with loss versus samples with neutral copy
number or gain. We corrected for multiple testing by
false discovery rate (FDR) using the p.adjust function in
the R stat package.
To limit false positives, genes within the lower quartile

of mean gene expression were excluded and only genes
with IQR > 0.7 were retained, n = 5120 genes for in cis
analyses. Only unique MSS cell lines (n = 18) and genes
with aberrant copy number > 2 cell lines were investi-
gated (gain: 1148 genes; loss: 1047 genes). GO enrich-
ment analysis of significant in cis genes was done with
the PANTHER overrepresentation test with the GO con-
sortium online tool [34]. Significant genes from in cis
analyses were investigated for overlaps with the MSigDB
version 5.2 [35, 36].

Associations between CNA and gene expression were
additionally assessed by gene-wise Spearman correlations
of copy number- and expression values across samples,
and genes with correlations above 0.7 were considered to
show an association.
To identify potential CNA drivers, we looked for outliers

in CNA estimates corresponding to high or low in-cis ex-
pression in unique CIN cell lines. We applied a cutoff of 4
times gain/loss threshold (0.15/−0.15) to nominate poten-
tially high amplitude CNAs, and gene expression values
outside 3 times the standard deviation from sample mean
expression across all genes were considered outliers and
hence interesting. We looked for concurrent CNAs and
gene expression events by retrieving genes for which the
minimum/maximum CNA value and gene expression
value belonged to the same cell line.

Results
A panel of 34 CRC cell lines was analyzed at the DNA,
RNA, and protein level (Fig. 1a; Additional file 1: Table
S1). Results are presented in figures and tables for each
individual data level and integration analysis, as summa-
rized in Fig. 1b. The panel comprised 11 MSI and 22
MSS cell lines, in addition to the MSS POLE mutated
HCC2998 [37]. The cell lines have previously been shown
to recapitulate the biological properties of the four CMSs
(Sveen et al., submitted). Out of the 34 cell lines, 8 were
classified as CMS1-“immune”, 9 as CMS2-“canonical”, 6
as CMS3-“metabolic”, and 10 as CMS4-“mesenchymal”.
Colo320 is derived from a neuroendocrine tumor and has
a distinct gene expression profile [38].

DNA sequence aberrations reflect hypermutator
phenotypes
Cell lines with a hypermutator phenotype associated
with MSI or POLE mutation had a median of 126 (range
98–327) non-synonymous variants (SNVs or indels) in
the 612 sequenced genes, significantly more than the 18
(range 4–26) found in MSS cell lines (p = 9∙10−5, Wil-
coxon rank-sum test). This corresponds to 82 (range
63–212) and 12 (range 3–17) non-synonymous variants
per million coding basepairs sequenced, respectively. For
reference, The Cancer Genome Atlas reported approxi-
mately 1–300 somatic mutations per million basepairs
for primary CRCs [39]. MSI cell lines had a high propor-
tion of C > T variants, especially in an NpCpG sequence
context, consistent with a mismatch repair deficiency
mutation signature commonly found in MSI cancers
(Signature 6; Fig. 2a) [40]. The MSI cell lines DLD-1 and
HCT15 (derived from the same patient) had the highest
variant loads, with 592 and 442 SNVs respectively
(Additional file 2: Fig. S1a). In addition to the large
proportion of MSI-associated C > T variants, these cell
lines had a larger contribution of C > A variants in a
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CpCpT sequence context compared to other MSIs, re-
cently reported to be caused by a POLD1 R689W muta-
tion (Fig. 2a) [41]. Consistently, DLD-1 and HCT15
also had a substantially lower number of indels relative

to SNVs than other MSI cell lines (Additional file 2:
Fig. S1a). The MSS cell line HCC2998, which has a POLE
P286R substitution [37], had the third highest variant load
with 281 non-synonymous variants. This cell line had few

Fig. 2 DNA aberrations reflect the type of genomic instability. a We investigated the frequencies (vertical axes) of SNVs in each of six categories
(indicated in the top panels) grouped according to sequence motif (flanking nucleotides are indicated on the horizontal axes). MSI cell lines
(n = 8, excluding DLD1 and HCT15) and the POLE mutated cell line HCC2998 displayed different mutation signatures associated with the
respective types of hypermutation. The MSI cell lines DLD-1 and HCT15 had a distinct mutation signature with a combination of deficient
mismatch repair and POLD1 mutation. b Overview of detected SNVs/indels in 37 genes included in the Cosmic Cancer Gene Census and that
were mutated in at least four MSI cell lines or one MSS cell line among the 27 cell lines analyzed by targeted deep sequencing. Most genes
showed clear mutation frequency differences between MSS and MSI/POLE mutated cell lines. c There was an inverse relationship between the
CNA load (horizontal axis; percent of basepairs with aberrant copy number) and the SNV/indel load (vertical axis) in the cell lines, reflecting
their molecular subtype, as indicated. The neuroendocrine cell line Colo320 (green circle) grouped along with the MSS cell lines, and had few
SNVs/indels and a moderate number of CNAs, including gain of 8q and 13q. d MSI/POLE mutated cell lines had a lower frequency of CNAs
(vertical axis) along the genome than e MSS cell lines. In each plot, chromosomes are indicated on the horizontal axes and separated by
vertical lines (whole and dashed lines for chromosomes and chromosome arms, respectively). Frequent aberrations are highlighted, including gains on
7p, 7q, 8q, 12p, 13q, 20q and losses on 4p, 4q, 17p, 18q and 22q, which are chromosome arms known to be frequently affected by CNAs in primary
CRCs. CNA: copy number aberration, MSI/MSS: microsatellite instable/stable, POLE: POLE mutated, SNV: single nucleotide variant
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indels and a high proportion of C > A variants in a TpCpT
context, C > T variants in a TpCpG and T > G variants in
a TpTpT context, which are associated with the POLE
hypermutator phenotype and mutation Signature 10 [40].
The genes that were most frequently affected by

SNVs/indels and also listed in the COSMIC Cancer
Gene Census are summarized in Fig. 2b. Selected variants

in CRC critical genes, analyzed by Sanger and/or targeted
sequencing, are presented in Table 1. None of the detected
common variants were restricted to one CMS group, and
variant frequencies rather reflected the MSI status of the
cell lines. A complete list of the detected exonic non-
synonymous SNVs and indels is found in Additional file 1:
Table S5.

Table 1 Mutation status in CRC critical genes. Cell lines were examined by Sanger sequencing, targeted sequencing or by both methods

TP53 KRAS BRAF PIK3CA PTEN MSI CIMP

CaCo2 p.E204X wt wt wt wt MSS CIMP-

CL-11a p.S215N p.V14I; p.Q61H wt wt wt MSS CIMP+

CL-34a p.S127P; p.K382fs wt p.V600E wt wt MSI CIMP+

CL-40a p.R248Q p.G12D wt wt wt MSS CIMP+

Co115 wt wt p.V600E wt p.E157fs; p.R233X MSI CIMP+

Colo205b p.Y107fs; p.Y103fs wt p.V600E wt wt MSS CIMP+

Colo320 p.R248W wt wt wt wt MSS CIMP-

Colo678a wt p.G12D wt wt wt MSS CIMP+

DLD-1 p.S241F p.G13D wt p.E545K; p.D549N wt MSI CIMP+

EB wt p.G12D wt p.E545K wt MSS CIMP+

FRI p.C277F p.G13D wt p.E545K wt MSS CIMP-

HCC2998b p.R213X p.A146T wt wt p.Y46C; p.R130Q; p.F341V MSS CIMP-

HCT116 wt p.G13D wt p.H1047R wt MSI CIMP+

HCT15 p.S241F p.G13D wt p.E545K; p.D549N wt MSI CIMP+

HT29 p.R273H wt p.V600E; p.T119Sc wt wt MSS CIMP+

IS1 p.Y163H p.G12D wt wt wt MSS CIMP-

IS3 p.Y163H p.G12D wt wt wt MSS CIMP-

KM12b p.P72fs; p.H179R wt p.P403fs wt p.G129X; p.K267fs MSI CIMP+

LoVo wt p.G13D; p.V14A wt wt wt MSI CIMP-

LS1034 p.G245S p.A146T wt wt wt MSS CIMP-

LS174T wt p.G12D p.D211Gc p.H1047R wt MSI CIMP-

NCI-H508 p.R273H wt p.G596R p.E545K wt MSS CIMP-

RKO wt wt p.V600E p.H1047R wt MSI CIMP+

SW1116 p.A159D p.G12A wt wt wt MSS CIMP-

SW1463a p.R248Q p.G12C wt wt wt MSS CIMP-

SW403a p.E51X p.G12V wt wt wt MSS CIMP-

SW48 wt wt p.R347Xc p.G914Rc wt MSI CIMP+

SW480 p.R273H; p.P309S p.G12V wt wt wt MSS CIMP-

SW620 p.R273H; p.P309S p.G12V wt wt wt MSS CIMP-

SW837a p.R248W p.G12C wt wt wt MSS CIMP+

SW948 p.G117fs p.Q61L wt p.E542K wt MSS CIMP-

TC71 p.C176Y; p.R213X p.G12D wt p.R88Qc p.R233X MSI CIMP-

V9P p.G245D wt wt wt wt MSS CIMP-

WiDr p.R273H wt p.V600E; p.T119Sc wt wt MSS CIMP+

All variants found with targeted sequencing and not observed in Sanger sequencing data were found in regions outside codons targeted by Sanger. HT29/WiDr
had two variants each in BRAF, where one was verified by Sanger, and the other was outside of codons assessed. Only non-synonymous mutations were reported
from targeted sequencing data
aMutation data were available from Sanger sequencing only
bMutation data were available from targeted sequencing only
cMutations found with targeted sequencing only, but outside of regions assessed by Sanger sequencing
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DNA copy number aberrations reflect the CIN phenotype
We confirmed an inverse relationship between the num-
ber of SNVs/indels and DNA copy number aberrations
(CNAs, % genome affected), reflecting the type of genomic
instability (Spearman’s rho = −0.74, p = 1∙10−5; Fig. 2c).
MSI/POLE mutated cell lines had significantly less CNAs
(range 0–14%, median 9%) compared to MSS cell lines
(range 12–69%, median 40%; Wilcoxon rank-sum test,
p < 2.2∙10−16, Additional file 2: Figure S1b; Additional file
1: Table S1). CL-40, which is previously reported to have
MSI [14], was here found to be MSS, but the number
of CNAs was low and the cell line may thus represent a
non-CIN non-MSI phenotype (12% genome affected by
CNAs). CMS1 cell lines had fewer CNAs (range 0–45%,
median 10%) compared to CMS2/3/4 (range 7–69%,
median 32%; Wilcoxon rank-sum test, p = 0.01),
reflecting the high prevalence of MSI in the CMS1 sub-
type, and CMS2 cell lines had more CNAs compared to
CMS1/3/4, although not statistically significant (CMS2
range 27–59, median 33%; CMS1/3/4 range 0–69, median
13%; p = 0.06).
Although cell lines with MSI or POLE mutation

(n = 11) harbored few DNA copy-number aberrations,
two broad gains and four focal losses were observed with
frequencies higher than 40% (Fig. 2d). In contrast, MSS
cell lines (n = 18) had 24 separate regions affected in
more than 40% of the cell lines (Fig. 2e). CNAs detected
in MSI cell lines were not exclusive for this subtype,
although the focal losses were less frequent in MSS cell
lines.
Potential target genes of CNAs were identified in 7

and 23 focal areas of gain and loss respectively (GISTIC
analysis, q-value < 0.25; Additional file 1: Table S6), in-
cluding KLF5 (gain 13q), GPHN (loss 14q) and SMAD4
(loss 18q), as well as genes located in known fragile
genomic areas, like FHIT (3p), WWOX (16q) and
MACROD2 (20p).
No copy number changes were restricted to one CMS

group (MSS only; Additional file 2: Figure S1c). Some
CNAs were more recurrent in undifferentiated MSS cell
lines (n = 6, mainly CMS1 and CMS4 cell lines) com-
pared to the colon-like MSS cell lines (n = 12, mainly
CMS2 and CMS3) and vice versa. This included higher
frequency of chromosomes 8 and 13 gain and loss of
focal regions on 3p, 4q, 14q, 17p, 20p and 22q in colon-
like cell lines and gain of 5q and 22q in undifferentiated
cell lines (Additional file 2: Figure S1d). A genome wide
overview of gene copy number status for all cell lines is
presented (Additional file 1: Table S7).

mRNA, miRNA and protein expression profiles are distinct
between undifferentiated and “colon-like” cell lines
Unsupervised PCA of mRNA expression data showed that
the cell lines formed two distinct clusters, as highlighted

by the bimodal density distribution of samples along the
first principal component (PC1, Fig. 3a). A similar pattern
was apparent also in the miRNA and protein expression
datasets (Additional file 3: Figure S2a). To explore the bio-
logical basis for this separation, we correlated PC1 from
mRNA expression data to single-sample gene set enrich-
ment analysis (ssGSEA) scores for 70 pre-selected CMS
and CRC relevant gene sets (Additional file 1: Table S3).
The top hit was a gastro-intestinal tissue enhanced gene
set, derived from The Human Protein Atlas [42], with the
ssGSEA score explaining more than 90% of the variance
along PC1 (r2 = 0.92, p < 2∙10−16, Pearson’s correlation,
Fig. 3b). We used the PC1 density to classify the cell lines
with low PC1/high gastro-intestinal ssGSEA score as
colon-like and the remaining as undifferentiated (18 and
15 cell lines, respectively). This grouping was signifi-
cantly associated with the CMS groups (CMS2/3 versus
CMS1/4), but less so with MSI-status (p = 2∙10−6 and
p = 0.06, respectively, Fisher’s exact test). The finding was
corroborated by morphological appearances; for ex-
ample the undifferentiated cell lines LoVo and RKO ap-
peared more mesenchymal, while colon-like IS3 and
WiDr formed large epithelial-like sheets in culture (Fig.
1a). To further characterize the differences between
colon-like and undifferentiated cell lines, we performed
gene set analysis [29]. Out of 70 gene sets, 17 showed a
significant relative difference (FDR corrected p < 0.05,
Fig. 3c and Additional file 1: Table S3). In addition to
the gastro-intestinal markers, colon-like cell lines were
characterized by relative upregulation of genes posi-
tively regulated by the HNF4A and CDX2 transcription
factors and genes repressed by HNF1A and WNT sig-
naling (Fig. 3c). Conversely, undifferentiated cell lines
had higher epithelial-to-mesenchymal transition (EMT)
signature score and increased expression of TGFβ in-
duced genes (Fig. 3c).
To pinpoint important factors maintaining the distinc-

tion between colon-like and undifferentiated cell lines,
we performed differential mRNA, miRNA and protein
expression analysis (Additional file 3: Figure S2b, Additional
file 1: Tables S8, S9, S10). At the mRNA level, CEACAM5,
which encodes a carcinoembryonic antigen (CEA) protein
used as a blood-based biomarker for monitoring CRC pa-
tients, was more than 100-fold higher in colon-like cell
lines. In undifferentiated cell lines,TGFB1 and TGFB2 were
3- and 7-fold higher, respectively. The five transcription
factors with the most significant upregulation in colon-like
cell lines were MYB, MECOM, ETS2, HNF4A and CDX1
(Fig. 3d), consistent with high expression of these genes in
human gastro-intestinal tissues [42]. The most significantly
upregulated transcription factors in undifferentiated cell
lines were SIX4, ZNF286A, MSX1, ZNF286B and MLLT10.
Differential miRNA expression analysis showed upreg-

ulation of the miRNAs encoded in the mir-194 ~ 192
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and mir-200b ~ 429 clusters in colon-like compared to
undifferentiated cell lines. MiRNAs in the mir-194 ~ 192
cluster are highly specific to colonic tissue [43] while
miR-200 is critical in establishing and maintaining epi-
thelial cell identity [44], corroborating the mRNA-based
subgroup designations. Among proteins analyzed, AXL,
CAV1, ANXA1, phosphorylated RPS6 and L1CAM

(CD171) were highly upregulated in undifferentiated
cell lines (Fig. 3d, Additional file 3: Figure S2b). For
colon-like samples, MUC1, UGT1A, RAB25, SYK and
β-catenin (CTNNB1) had the largest fold-change
when compared to undifferentiated cell lines, but also
E-cadherin (CDH1) and EGFR were significantly
upregulated.

Fig. 3 Gene expression based classification of CRC cell lines revealed a separation between colon-like and undifferentiated cell lines associated
with the consensus molecular subtypes (CMS). a PCA of cell line mRNA expression data (plotted as sample-wise PC1 versus PC2) showed that the
cell lines had a bimodal density distribution along PC1 (bottom plot), indicating two distinct subgroups largely separating CMS2/3 from CMS1/4.
Each point represents one cell line, and is colored according to the CMS class and with point type indicating MSI-status. Dashed vertical line (red)
indicates the least frequent value between the two density modes of PC1, and was used as a threshold to separate the cell lines into the two
subgroups. b PC1 (horizontal axis) was strongly correlated with the sample-wise enrichment score for a set of gastro-intestinal tissue enhanced
genes (vertical axis), and cell lines with high enrichment scores, left of the red dashed line, were termed “colon-like” and the remaining “undifferentiated”.
c Gene set enrichment analyses comparing colon-like and undifferentiated cell lines showed that colon-like cell lines had higher expression of genes
upregulated by HNF4A and lower expression of genes related to colorectal cancer stemness. Undifferentiated cell lines had higher expression of genes
related to epithelial to mesenchymal transition and genes upregulated by TGFβ. The plot includes the top 15 gene sets tested (ranked by
p-value) and the -log10 p-value is plotted on the horizontal axis. d Top 5 differentially expressed transcription factors and kinases (mRNA level),
miRNAs and proteins between colon-like and undifferentiated cell lines. mRNAs and miRNAs are ranked by p-value while proteins are ranked
by absolute log2 fold-change. The log2 fold-changes (log2FC) between the sample groups are indicated. e Classification of the individual cell
lines according to the colon-like and undifferentiated subgroups. CRC: colorectal cancer, CMS: consensus molecular subtypes, log2FC: log2
fold-change, MSI/MSS: microsatellite instable/stable, PCA: principal component analysis
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Summarized, CRC cell lines form two major biologic-
ally distinct expression subgroups at the mRNA, miRNA
and protein level, which are distinguished by the expres-
sion of gastro-intestinal and epithelial differentiation
markers.

Integrated analysis identifies in vitro models for studies
of targetable genes
To detect genes and pathways repeatedly affected by dif-
ferent aberrations in individual cell lines, we integrated
data from different genomic levels, focusing on central
CRC pathways and transcription factors.

Concurrent CNAs and SNVs/indels in cancer critical genes
In some cell lines, a simultaneous SNV/indel and CNA
in the same gene was observed, including gains and SNVs
in the oncogenes KRAS (n = 6 cell lines) and EGFR
(n = 2). A complete overview of SNVs/indels, CNAs and
the combination of these events in individual cell lines is
shown in Fig. 4 (n = 83 genes in the Cancer Gene Census
represented in the targeted sequencing data).

mRNA expression of oncogenes and transcription factors is
associated with DNA copy number in cis
A total of 298 (26%) out of 1148 genes with copy number
gain had a significant in cis association between copy
number state and gene expression (analyzed by Wilcoxon
rank-sum test) (Additional file 1: Table S11). Out of the
298 genes, 215 (72%) had strong correlations between
copy number estimates and gene expression (Spearman
correlation >0.7), 10 of which were found in the COSMIC
Cancer Gene Census and 25 defined as transcription fac-
tors in the Molecular Signatures Database (MSigDB;
highlighted in Additional file 1: Table S11). Similarly, 229
out of 1047 (22%) genes with copy number loss had an in
cis association with gene expression (Additional file 1:
Table S11). Out of the 229, 174 (76%) showed strong
correlations between copy number estimates and gene
expression (Spearman correlation >0.7), and 8 were
found in the COSMIC Cancer Gene Census and 15 de-
fined as transcription factors in MSigDB (highlighted in
Additional file 1: Table S11). For gained in cis genes,
the largest fold enrichment from gene ontology analysis
was found for genes involved in nucleic acid metabolic
process and cellular protein metabolic process (>1.5-
fold enrichment). Biological processes enriched among
lost in cis genes were mitotic cell cycle process, protein
transport and intracellular transport (>2-fold enrich-
ment; Additional file 1: Table S12).
Among the genes with significant in cis copy number

and gene expression regulation, 56 were differentially
expressed between colon-like and undifferentiated cell
lines, including the transcription factors ELF1 and KLF5
and the lysosomal marker LAMP1 (higher expressed in

colon-like cell lines; FDR corrected p < 0.05; Additional
file 1: Table S11).

Gene amplification and outlier expression
Genes with high-level copy number amplification and
concurrent outlier gene expression may represent poten-
tial driver genes and drug targets. We identified 280
such genes across 18 unique MSS cell lines (Additional
file 1: Table S13). Of these, 22 genes were classified as
transcription factors in MSigDB and 15 genes were
found in the COSMIC Cancer Gene Census, including
ERBB2 (Colo678), MYC (SW480), PPFIBP1 (IS1), and
RAD21 (HT29) (Additional file 4: Figure S3a). The cell
line V9P had high-level amplification with concurrent
high expression of 68 genes, 29 of which were located
on 22q, including SMARCB1, BCR and MIF (Additional
file 1: Table S13). Protein expression data were available
for ten genes, confirming high expression also at the
protein level of the majority, including ERBB2, CCNE1
and MYC, suggesting that these copy number events are
functionally important (Additional file 4: Figure S3b).

Consistent expression regulation at the gene and protein
level
To assess the correspondence between mRNA and
protein-level expression (RPPA data) we calculated the
Pearson’s correlations for each gene-protein pair among
the cell lines (Fig. 5a). Excluding gene-protein pairs for
which there was little variation among cell lines (lowest
quartile in either dataset), the median correlation for all
investigated pairs was 0.59 (IQR 0.26–0.78). AXL,
CAV1, CDH1 (E-cadherin), EGFR and L1CAM had very
strong correspondence, with correlation coefficients
above 0.9. Similarly, mRNAs that were differentially
expressed between colon-like and undifferentiated cell
lines were generally also differentially expressed at the
protein level (Fig. 5b).

Multi-level data integration emphasizes molecular
differences among cell lines relevant for functional
studies
To facilitate selection of cell lines as appropriate research
models, we performed gene expression enrichment ana-
lysis of eight gene sets representing important pathways or
processes in CRC, including ERK/MAPK, PI3K/AKT,
EGFR, TGFß and WNT signaling, in addition to signa-
tures of epithelial to mesenchymal transition, citric acid
cycle activation and the gastro-intestinal signature (Fig. 6a;
Additional file 1: Table S14). The resulting heatmap indi-
cates favorable systems for studying particular aspects. For
example, SW1463 and CL40 are well-differentiated with
low EMT-signature compared to CaCo2 and LoVo. Simi-
larly, Colo205 and SW1116 have relatively low intrinsic
TGFß activation in contrast to SW48 and CL-11. Finally,
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we assembled a list of outlier characteristics from the
other data levels (Fig. 6b). Striking examples include high
expression of the immune-suppressive protein PD-L1 in
RKO, as well as mutation and downregulation of PTEN
in KM12 and Co115, with concomitant hyper-
phosphorylation of the AKT protein at residue T308.

Discussion
CRC cell lines have previously been shown to recapitulate
the mutational and transcriptional heterogeneity of pri-
mary tumors [7, 12, 14, 45]. Here we report an expanded
overview of DNA, RNA and protein level characteristics
of 34 CRC cell lines, analyzed in relation to genomic in-
stability phenotypes and gene expression subgroups.
Consistent with known characteristics of the MSI and

CIN phenotypes, we observed inverse levels of SNVs/
indels and CNAs. All MSI cell lines had a mismatch re-
pair deficiency-associated mutation signature, however,
DLD-1 and HCT15 additionally had a high contribution
from C > A variants in CpCpT trinucleotides and a low
indel burden, a phenotype recently found to be the
caused by the combination of MSI and a POLD1 R689W
mutation [41]. Although mutation analysis was restricted
to a panel of 612 genes, the high mutation load in MSI/
POLE mutated cell lines allowed for detection of ex-
pected mutation signatures. In the cell lines with a lower
mutation load, broader sequencing coverage (whole ex-
ome or genome sequencing) would be more appropriate
for accurate analyses of mutation processes. Unexpectedly,

we find no evidence of MSI in CL-40, which has previ-
ously been reported as an MSI cell line [14]. This cell line
also had a low number of CNAs, indicating that it may
represent a non-MSI, non-CIN genomic phenotype.
Two distinct subgroups of CRC cell lines were evident

at the mRNA, miRNA and protein expression levels.
Based on gene set associations we termed these groups
colon-like and undifferentiated. Colon-like cell lines
were either CMS2 or CMS3, expressed higher levels of
gastro-intestinal marker genes, including key transcrip-
tion factors such as HNF4A and MYB. HNF4A has been
nominated as a candidate driver for the 20q13.12 focal
amplification peak suggesting a possible causal relation-
ship between overexpression and expression subtype
[39, 46]. Colon-like samples had in addition higher ex-
pression of mir-194 and mir-192, both highly enriched
in colonic mucosa compared to other human tissues
[43], independently supporting differentiation as a key
distinction between the two cell line subgroups. Fur-
ther, the miR-200 family, which represses the epithelial
to mesenchymal transition program [44] was among
the most abundant and most significantly upregulated
miRNAs in the colon-like samples. Mir-200 promoter
hypermethylation with concomitant downregulation
was recently suggested to be a candidate marker for
CMS4 tumors [47].
All CMS4 and most CMS1 models were classified as

undifferentiated, consistent with primary tumors
where CMS1 and CMS4 display a more stromal and
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undifferentiated signature [8]. As a group, undifferen-
tiated cell lines showed relative upregulation of epithe-
lial to mesenchymal transition signature and increased
expression of TGFβ induced genes including TGFβ1/2
cytokines. Recently it was shown that TGFβ signaling
in cancer associated fibroblasts (CAFs) promotes tumor
initiating capacity of CRC cells, and that CRC organoids
with high TGFβ expression has a high metastatic potential
[10]. As such, CMS1/CMS4 cancer cells may induce pro-
metastatic behavior of CAFs through TGFβ1/2 paracrine
signaling, illustrating how cancer cell-intrinsic expression
may modulate the tumor microenvironment.
The notion that poorly differentiated tumors have in-

ferior prognosis is not new [48–50] and the undifferenti-
ated CMS4 is of particular clinical interest due to its
association with poor prognosis. As such, the traits de-
scribed here may be useful for further detailed studies of
the biological background of this subtype. Also clinically

relevant, undifferentiated cell lines expressed lower
levels of CEA than colon-like cell lines, an observation
which suggests that this biomarker may be less valuable
in monitoring patients with CMS1 and CMS4 cancers.
Recurrently amplified chromosomal regions may harbor

oncogenes that become overexpressed from the increase
in gene-dosage [51]. About ¼ of genes had a good correl-
ation between copy number state and gene expression
level, some of which were also differentially expressed
between colon-like and undifferentiated subtypes, such
as the transcription factor KLF5 (higher expressed in
colon-like cell lines). Additionally, we identified high
level amplifications with concurrent high gene expression
in individual cell lines, including ERBB2 in Colo678, also
corroborated by high protein expression. The use of
HER2-inhibitors together with the kinase inhibitor lapati-
nib was recently described as a treatment option in HER2
amplified, KRAS wild-type metastatic CRC in a phase 2
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trial [52]. We also observe that Colo678 have high
ADAM10 expression, suggested to be involved in acquired
resistance to HER2-inhibition in breast cancer models.
[53], and Colo678 may be used as a model system to eluci-
date resistance mechanisms for HER2 inhibition in CRC.
V9P has few SNVs/indels, and drivers in this cell line are
not well-explored. We found V9P to have concurrent
amplification and high gene expression for more than 60
genes, including CCNE1 (cyclin E1), which also had con-
current high protein expression levels. V9P represents a
model for overexpression of cyclin E1, commonly ob-
served in many cancers and which has been linked to
chromosome instability [54, 55].

Conclusion
By integration of DNA, RNA and protein data, we show
that CRC cell lines represent consistent molecular sub-
groups defined by genomic instability phenotypes at
the DNA level (sequence aberrations and CNAs) and
differentiation at the expression level (mRNA, miRNA
and protein). The data are made available per cell line
in summary illustrations and detailed tables, and is a
resource to select relevant models for further studies of
cancer-cell intrinsic differences among CMS groups,
functional biological mechanisms of CRC as well as
pharmacogenomics.

Additional files

Additional file 1: Tables S1-S14. Supplementary tables. (XLSX 4615 kb)

Additional file 2: Figure S1. DNA level aberrations. a SNVs and indel
counts in 34 cell lines. MSI cell lines generally displayed numerous SNVs/
indels, in contrast to MSS cell lines, although DLD-1/HCT15 were less
typical with a lower indel burden compared to remaining MSIs. b The
percentage of the genome with aberrant CNA reflects MSI status rather
than CMS subtype. The figure includes 29 unique MSI/MSS cell lines. c
CMS frequency of CNAs. Vertical axis indicates frequency, horizontal axes
shows chromosomes 1–22, separated by vertical lines (whole lines separates
chromosomes, dashed lines separates chromosome arms). The most
common gains in CMS2 (5 or more out of 9 CMS2 MSI/MSS cell lines)
were found on 3q, 8q, 13q, 17q, 20p and 20q, while regions of loss
were frequent on 1p, 3p, 4q, 6p, 6q, 8p, 16p, 16q, 17p, 18 p, 18q, 20p
and 22q. In CMS4 the most common gains (4 or more out of 7 CMS4
MSI/MSS cell lines) were found on 3q, 5p, 5q, 7p, 7q, 12p, 20p, 20q and
22q, while losses were frequent on 3p, 4p, 4q, 6q, 15q, 17p, 18q and
22q. The plots for CMS2 and CMS4 are placed together for easier visual
comparison. A frequency plot for CMS3 was included, but the low sample
number limits interpretations of frequent alterations in this group. d
Differential frequencies of CNAs in undifferentiated versus colon-like
cell lines. The vertical axis indicates the frequency difference between
undifferentiated – colon-like cell lines (i.e. the frequency in undifferentiated
cell lines minus the frequency of aberration in colon-like cell lines). The
horizontal axis indicates chromosomes 1–22 (chromosomes separated
by whole lines, chromosome arms separated by dashed lines). Yellow
areas represent regions with higher frequencies of CNAs in colon-like
cell lines, purple areas represent regions with higher frequencies of
CNAs in undifferentiated cell lines. CMS: consensus molecular subtype, CNA:
copy number aberration, MSI: microsatellite instable, MSS: microsatellite
stable, SNV: single nucleotide variant. (PDF 830 kb)

Additional file 3: Figure S2. Expression differences between colon-like
and undifferentiated cell lines. a PCA plots show the spontaneous split
between the two subgroups in all three datasets (mRNA, miRNA and
protein). b Volcano plots show differentially expressed genes in
undifferentiated (blue) versus colon-like (yellow) cell lines on the mRNA,
miRNA and protein levels. Horizontal dashed lines mark the highest
p-value that produces an adjusted p-value of <0.01. Vertical dashed
lines mark log2 fold-change (1 for mRNA/miRNA, 0.1 for protein). The
top five differentially expressed mRNA/miRNA/proteins in terms of log2
fold-change within these thresholds are indicated by names, and the
rest by filled circles. PCA: principal component analysis, PC1: principal
component 1, PC2: principal component 2. (PDF 1095 kb)

Additional file 4: Figure S3. Outlier analysis reveals high level
amplification events associated with marked mRNA expression changes,
pointing to potential driver genes in individual cell lines. a A total of 280
genes were nominated, figure shows 15 nominated genes overlapping
with the COSMIC Cancer Gene Census. Vertical axis shows gene expression
values (log2 scale) and horizontal axis shows copy number aberration values
(PCF values, log2 scale). The analysis pinpointed CNA values that were
substantially higher in one or a few cell lines compared to remaining cell
lines and hence 14 of the nominated genes were high amplification events,
while one gene (SS18) was nominated on basis of all samples having loss
except V9P. b Ten outlier genes had available associated protein data and
for most genes the increase in gene expression was consistent on the
protein level. Vertical axis shows relative protein expression (median
centered normalized log2 values), horizontal axis shows gene expression
values (log2 scale). (PDF 1233 kb)
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