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Abstract

negative (TN) breast cancer stem-like cells (CSCs).

with CDDP.

severe DNA damage and enhanced apoptosis.

Aims: Although a relatively small proportion of all breast cancer (BO), triple negative (TN) BC is responsible for a
relatively large proportion of BC deaths because of its worse clinical outcome. To investigate whether a carbon ion
beam alone or in combination with cisplatin (CDDP) has a beneficial effect compared to X-rays, we target triple

Methods: Human breast CSCs sorted from MDA-MB-231 and MDA-MB-453 cells were treated with a carbon ion
beam or X-ray irradiation alone or in combination with CDDP, and then colony, spheroid and tumor formation
assays, RT-PCR Array analysis, and immunofluorescence yH2AX foci assay were performed.

Results: The colony, spheroid formation, and tumorigenicity assays confirmed that CD44+/CD24- and ESA+/CD24- cells
have CSC properties in MDA-MB-231 and MDA-MB-453 cells, respectively. The proportion of CSCs was more
enriched after CODP combination with either X-ray or carbon ion beam, however carbon ion beam combined
with CDDP significantly suppressed colony and spheroid formation and more significantly inhibited cell cycle
progression (sub-G1 arrest) compared to X-ray combined with CDDP or carbon ion beam alone. RT-PCR Array
analysis showed that carbon ion beam combined with CDDP significantly induced apoptosis-related Cytochrome c,
almost completely eliminated expression of the CSC markers CD44 and ESA, and significantly inhibited angiogenesis,
and metastasis-related HIF1a and CD26 compared to carbon ion beam alone, X-ray alone, or X-ray combined with
CDDP. The immunofluorescence assay showed that not only the number but also the size of yH2AX foci in CSCs
were larger 24 h after carbon ion beam combined with CDDP compared to those of X-ray alone and X-ray combined

Conclusions: Carbon ion beam combined with CDDP has superior potential to kill TN breast CSCs with irreparable

Keywords: Heavy-ion radiation, Breast cancer stem cell, Cisplatin

Introduction

Human breast cancer (BC) has become one of the lead-
ing causes of cancer-related death for women worldwide,
and it is rapidly increasing in Asian countries including
Japan [1-3]. BC represents a group of highly heteroge-
neous lesions consisting of morphologically distinct
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subtypes [4], with different molecular and biochemical
signatures [5].

Triple-negative breast cancers (TNBC), defined as tu-
mors that are negative for estrogen receptor (ER), pro-
gesterone receptor (PR) and human epidermal growth
factor receptor 2 (HER2), nowadays represent the focus
of increasing interest at the clinical, biological and epi-
demiological level [6-8], due to the aggressive behavior
of the tumor, poor prognosis and present lack of tar-
geted therapies [9-11]. According to current estimates,
TNBC accounts for 10-17 % of all BC, depending on
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thresholds used to define ER and PR positivity and
HER2 overexpression [12, 13]. Despite its relatively small
proportion among all BCs, TNBC is responsible for a
relatively large proportion of BC deaths, due to its gen-
erally aggressive clinical course.

The very high rate of heterogeneity in BC cell pheno-
types [14], accompanied by the dynamic plasticity of the
BC microenvironment [15], make tumor categorization
a demanding task, especially in relation to therapeutic
responses and risk of disease progression [16]. Breast
cancer stem-like cell (BCSC) populations have recently
been identified based on the cell membrane markers
CD44+/CD24-/ ESA+ cells [17, 18]. CSCs represent the
tumor’s subpopulation with the highest capacity to drive
its growth, invasion and metastasis. BCSCs are endowed
with the capacity for self-renewal and multi-lineage dif-
ferentiation, tumorigenicity, and chemotherapy and
radiotherapy resistance, features that are responsible for
tumor progression, disease recurrence, and metastasis
[19-21]. It has been reported that CSC subpopulations
are relatively radioresistant compared with non-CSC
subpopulations, because of their high DNA repair cap-
ability and upregulated survival pathways that protect
them from various cellular stresses including radiation.
Thus, the development of new potent CSC targeting
therapeutics is highly desirable [22-24].

The heavy ion medical accelerator in Chiba (HIMAC)
at the National Institute of Radiologic Science (NIRS)
has treated more than 9000 patients with various radio-
resistant tumors, and achieved promising results to date
[25-27]. The heavy ion beams have a well-defined range
and insignificant scatter in tissues with well-localized en-
ergy deposition at the end of the beam path, called the
“spread out bragg peak (SOBP)”, a unique physical char-
acteristic of charged particle beams, and release enor-
mous energy at the end of their range. They therefore
induce more cell cycle- and oxygenation-independent,
irreparable DNA damage and kill more resistant cancer
cells than conventional radiation [28, 29]. Recently, a
phase I clinical trial of early stage BC treatment with
heavy ion radiotherapy was started. However, because of
limitations of dose elevation because of side effects on
skin, ribs, and lungs after carbon ion radiotherapy, espe-
cially for some aggressive subtypes of BC like TNBC, we
thought that carbon ion beam combined with chemo-
therapy may reduce the doses of irradiation but still have
some advantage to destroy BC. The combination of
chemotherapy with heavy ion radiotherapy may open
new perspectives in the fight against this challenging BC
subgroup with worse prognosis and still limited therapy
options.

Recently, we have reported that BCSCs can be gener-
ated by steroid hormones in irradiated breast cell lines
[30], and also shown that a carbon ion beam has a
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marked effect on colon and pancreatic CSCs, which are
resistant to photon beams [31, 32]. Considering the fact
that cisplatin (CDDP) has been reported to be effective
in treating TNBC [33], in the present study, we try to
examine the effects of a carbon ion beam alone or in
combination with CDDP on putative BCSCs survival,
DNA repair, and expression changes of various genes
compared to that of X-ray irradiation. To the best of our
knowledge, this is the first study to show heavy ion radi-
ation combined with CDDP has an advantage in target-
ing BCSCs at relatively low doses compared to carbon
ion beam alone or conventional X-ray irradiation.

Materials and methods

Cell lines and reagents

Human triple negative breast cancer cell lines, MDA-
MB-231 and MDA-MB-453 were purchased from
American Type Culture Collection (Manassas, VA).
Unsorted cells were cultured in Dulbecco's Modified
Eagle's medium (DMEM) supplemented with 10 %
heat-inactivated fetal bovine serum (Beit-HaEmek, Israel),
100 unit/mL penicillin and 100 pg/mL streptomycin
(Invitrogen) at 37 °C with 5 % CO2-in-air. The medium
was changed every other day. CSCs and non-CSCs
isolated from MDA-MB-231 and MDA-MB-453 cells
were cultured with serum-free Essential 8 medium
(Life technologies Japan Ltd, Tokyo). CDDP was pur-
chased from Sigma Japan. The CDDP solutions were
diluted in PBS immediately before use.

Animals

NOD/SCID mice (6-8 weeks old, Charles River
Laboratories, Yokohama, Japan) were maintained under
defined conditions at the NIRS animal facility. The ani-
mals were observed at least 24 weeks, and tumorigenicity
was determined when tumor nodules were identified on
their body surfaces. Tumor formation assay for MDA-
MB-231 delivered CD44+/CD24- and CD44-/CD24- cells
and MDA-MB-453 delivered ESA+/CD24- and ESA-/
CD24+ cells were also performed as described previously
[32]. All experiments involving the use of animals were
performed in accordance with NIRS institutional animal
welfare guidelines.

Colony and spheroid formation assays

Clonogenic survival assay was performed as described
previously [31, 32]. In brief, the appropriate plating
density was aimed at producing 20-40 surviving col-
onies in each T-25 flask. After incubation for 14 days,
the colonies were fixed and stained with 0.3 % methy-
lene blue in ethanol, and colonies containing more than
50 cells were counted as survivors. At least three parallel
samples were scored in three to five repetitions per-
formed for each type of irradiation. Clonogenicity
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and/or spheroid formation ability assay for CD44+/
CD24- and CD44-/CD24- cells sorted from MDA-MB-231
cells and ESA-/CD24+ and ESA+/CD24- cells sorted from
MDA-MB-453 cells were performed as described previ-
ously [31]. The data is presented as the percentage of the
wells that contained spheres, and the average size using
WinRoof 5.6 software (Mitani Corporation, Tokyo, Japan)
after 1-week incubation.

Irradiation

Cells were irradiated with carbon-ion beams (accelerated
by the HIMAC). Briefly, the initial energy of the carbon-
ion beams was 290 MeV/n, 50 KeV/um, center of 6 cm
Spread-Out Bragg Peak (SOBP). As a reference, cells
were also irradiated with conventional 200 kVp X-ray
(TITAN-320, GE Co., USA).

FACS analysis

FACS analysis for the cells irradiated with X-rays or
carbon ion beams was performed with BD FACS Aria
(Becton Dickinson, San Jose, CA, USA) as described pre-
viously [31]. In brief, the cells were prepared and labeled
with conjugated anti-human CD44-PE (Miltenyi Biotec),
ESA-APC (Miltenyi Biotec), and CD24-FITC. Isotype
matched immunoglobulin served as control. Cells were in-
cubated for 20 min at each step and were washed with 2 %
FBS/PBS between steps. The percentage of CD44+, ESA+,
and CD24+ present was assessed after correction for the
percentage of cells reactive with an isotype control.

Cell cycle analysis

After harvesting and washing cells with PBS, they were
fixed in ice-cold 70 % ethanol (ethanol in distilled water)
while vortexing, then stained with propidium iodide
(1 pg/mL, Sigma) in the presence of RNase A, and then
analyzed using a BD FACS Calibur flow cytometer (BD
Biosciences). A minimum of 10,000 cells were counted
for each sample, and data analysis was performed with
CellQuest software.

PCR Profiler array analysis of various gene expression
related to apoptosis, autophagy and DNA repair

The Human Custom RT? Profiler™ PCR Array
(CAPH11870A, Qiagen) profiles the expression of 42
genes involved in DNA damage, apoptosis, autophagy,
and angiogenesis. RNA was purified using the Qiagen
RNAeasy kit, including on-column DNAse treatment to
remove genomic DNA. cDNA was prepared with the RT>
First Strand Kit (SABiosciences, Frederick, Maryland,
USA). A PCR profiler array specific for 48 x 2 OSRGs
was performed (RT?> SYBR Green/ROX qPCR Master
Mix; SABiosciences) in 96-well microtiter plates on an
ABI 7300 instrument (Applied Biosystems, California,
USA). For data analysis, the AACt method was applied
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using the RT? Profiler PCR Array software package and
statistical analyses performed (n =3). This package uses
AA Cr—based fold change calculations and the Student’s
t-test to calculate two-tail, equal variance p-values. The
fold changes were calculated using the equation 2744,
If fold change was greater than 1, the result was consid-
ered as fold-upregulation. If fold change was less than 1,
the negative inverse of the result was considered as fold-
downregulation [34].

YH2AX Immunofluorescence assay

YH2AX Immunofluorescence assay was performed as
described previously [32]. In brief, cultured cells grown
on plastic chamber slides (Lab-Tek. Nunc, USA) were
fixed in 4 % formaldehyde for 15 min at room
temperature. Then the cells were permeabilized in 0.2 %
Triton X-100 and blocked with 10 % goat serum, then
incubated with mouse monoclonal anti-phospho-
Histone H2AX(Ser139) (yH2AX) at 37 °C in PBS with
10 % goat serum and washed with PBS. The cells were
incubated with the Alexa 488 anti rabbit secondary anti-
body at 37 °C in PBS with 10 % goat serum and washed
in PBS. Cover glasses were mounted in ProLong® Gold
antifade reagent with DAPI (Invitrogen). Fluorescence
images were captured using an Olympus DP70 fluores-
cence microscope for analysis. All treatment groups
were then assessed for YH2AX foci via sequential im-
aging through each nucleus. A minimum of 100 cells in
each treatment group were counted. Nuclear yH2AX
foci size was estimated by WinRoof 5.6 software (Mitani
Corporation, Tokyo, Japan) .

Statistical analysis

One-way analysis of variance (ANOVA) and Bonferroni
multiple comparison tests were used when mean differ-
ences between the groups were evaluated by StatView
software (SAS Institute, Inc., Cary, NC). For all compari-
sons, p values less than 0.05 were defined as significant.

Results

Determination of cancer stem-like cell properties of
CD44+/CD24- and ESA+/CD24- cells sorted from
MDA-MB-231 and MDA-MB-453 cells

As shown in Fig. 1, CD44+/CD24- cells had greater col-
ony and sphere formation abilities than CD44+/CD24-
cells. When an equal number of 5000 cells were plated
in a dish, CD44+/CD24- cells from MDA-MB-231
formed 135+ 6 clones, whereas CD44+/CD24- cells
formed only 78 + 2 clones (p <0.01). These data showed
that CD44+/CD24- BC cells had much greater clonal
formation capacities than those of CD44-/CD24- cells
(Fig. 1a). To investigate the ability to form spheroid bod-
ies, isolated CD44+/CD24- and CD44-/CD24- cells were
cultured in 96-well round-bottomed Sumilon celltight
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Fig. 1 a. Colony, spheroid formation and tumorigenicity of cancer stem-like cells (CSCs) (CD44+/CD24-) and non-CSCs (CD44-/CD24-) delivered
from MDA-MB-231 cells. The cells were cultured for 1-2 weeks or injected into NOD-SCID mouse right and left thighs for 12-16 weeks for colony,
spheroid and tumor formation ability analyses. b. Spheroid formation and tumorigenicity of cancer stem-like cells (CSCs) (ESA+/CD24-) and non-CSCs
(ESA-/CD24-) delivered from MDA-MB-453 cells. The cells were cultured for 1-2 weeks or injected to NOD-SCID mouse right and left thighs for 12-16
weeks for colony, spheroid and tumor formation ability analyses. CSCs formed tumor HE is displayed. Representative photos of CSCs are also displayed.
* p <001, compared to colony or sphere formed from non-CSCs. All experiments were performed in triplicate (n = 3)

Tumaor

spheroid plates (Sumilon, Sumitomo Bakelite Co.,
Tokyo, Japan). After being in culture for 1 week, the
ability of CD44+/CD24- cells to form spheroid bodies
was significantly higher both in number and in size than
that of CD44-/CD24- (p<0.01) (Fig. 1a). CD44 was al-
most undetectable but the ESA was detectable from
MDA-MB-453 cells. As shown in Fig. 1b, the spheroid
formation ability of ESA+/CD24- is significantly higher
than ESA-/CD24+ cells sorted from MDA-MB-453 cells.

To examine in vivo tumorgenicity, various numbers
of CD44+/CD24- or CD44-/CD24- cells isolated from
MDA-MB-231, and ESA+/CD24- or ESA-/CD24+
isolated from MDA-MB-453 cells were subcutaneously
transplanted into the right or left lower thigh of

immunodeficient NOD SCID mice. As shown in
Fig. 1 and Additional file 1: Table S1, only 5000 cells
of CD44+/CD24-/ cells could form a tumor whereas 1 x
10* CD44-/CD24- or ESA-/CD24+ cells could not, sug-
gesting that CD44+/CD24-and ESA+/CD24- cells have
characteristics of cancer stem-like cells.

Changes in proportion of CD44+/CD24- and ESA+/CD24-
cells after carbon-ion beam alone or in combination

with CDDP

The percentage changes of cancer stem like CD44+/CD24-
cells in MDA-MB-231 cells and ESA+/CD24- cells in
MDA-MB-453 cells 72 h or 96 h after carbon ion
beam, X-ray alone or in combination with 25 pM of
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CDDP were investigated by FACS analysis. As shown
in Fig. 2a, the proportion of CD44+/CD24- cells was
dose dependently increased after X-ray irradiation,
whereas no significant changes by carbon ion beam
at which the doses induced equivalent effects by X-ray.
The percentage of CD44+/CD24- cells was increased
more significantly when X-ray combined with CDDP
compared to that of carbon ion beam with CDDP
alone. However, the proportion of ESA+/CD24- cells
in MDA-MB-453 cells was decreased either by X-ray
or carbon ion beam alone, but significantly increased
by combination with CDDP or with CDDP alone
(Fig. 2b).

Surviving fraction of unsorted MDA-MB-231 cells and
sorted CSCs and non-CSCs after carbon ion beam or X-ray
irradiation

The MDA-MB-231 cells were irradiated with X-ray
or carbon ion beams and their surviving fraction was
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estimated by colony assay. The surviving fractions
for the MDA-MB-231 cells irradiated with X-ray or
carbon ion beam decreased exponentially with in-
creasing doses. Based on the survival curve, the D10
(dose required to reduce the surviving fraction to
10 %) was estimated as 3.9 Gy for X-ray and 2.0 Gy
for carbon ion beam. Therefore the relative biological
effectiveness (RBE) values for SOBP carbon ion
beams relative to X-rays at D10 level is about 1.80
(Fig. 3a).

The surviving fractions for the cancer stem-like
CD44+/CD24- and non-cancer stem like CD44-/
CD24- cells sorted from MDA-MB-231 irradiated with
X-rays and carbon ion beams decreased exponentially
with increasing doses, and CD44-/CD24- cells more sig-
nificantly decreased compared to that of CD44+/CD24-
cells after irradiation with either X-rays or carbon ion
beams (Fig. 3a). The RBE values calculated at the D10
level for CSCs were calculated to be about 2.14, whereas
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Fig. 2 a. Percentage changes of CD44+/CD24- cells by FACS analysis 72 h after carbon ion beam or X-ray irradiation alone or in combination
with 25 uM of cisplatin (CDDP) in MDA-MB-231 cells. CDDP was added prior to irradiation and treated for 72 h. b. Percentage changes
of ESA+/CD24- cells by FACS analysis 96 h after carbon ion beam or X-ray irradiation alone or in combination with 25 pM of CDDP in
MDA-MB-453 cells. CDDP was added prior to irradiation and treated for 96 h. #, p < 0.05; *, p < 0.01 compared to non-CSCs. All experiments were
performed in triplicate (n = 3)
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to non-CSCs. All experiments were performed in triplicate (n=3)

Fig. 3 a. Surviving fraction of unsorted MDA-MB-231 cells and CSCs (CD44+/CD24-) and non-CSCs (CD44-/CD24-) delivered from MDA-MB-231
cells plated immediately after carbon ion beam or X-ray irradiation. The graphs show the mean and standard error calculated from three
independent experiments. All experiments were performed in triplicate (n = 3). b. Quantification of colony formation of (CD44+/CD24-) and
non-CSCs (CD44-/CD24-) after X-ray, a carbon ion beam alone or in combination with 25 uM of CDDP. CDDP was added prior to irradiation
and treated for 5 days. *, p < 0.01, compared to non-CSCs. Representative photos and quantification of spheroid size formed from MDA-MB-231 delivered
CSCs (CD44+/CD24-) (c) and MDA-MB-453 delivered CSCs (ESA+/CD24-) (d) after X-ray, a carbon ion beam alone or in combination with 25 uM of CDDP.
The spheroid formation was observed 7 days after X-ray, a carbon ion beam alone or in combination with CDDP. CDDP was added prior to irradiation
and treated for 5 days. The graphs show the mean and standard error calculated from three independent experiments. *, p < 0.01, compared

those for non-CSCs were about 1.78. RBE values for un-
sorted and sorted CSCs and non-CSCs of carbon ion
beams relative to X-rays are summarized in Table 1.

Colony and/or spheroid formation ability of CD44+/CD24-
and ESA+/CD24- cells sorted from MDA-MB-231 and
MDA-MB-453 cells after carbon-ion beam or X-ray alone
or in combination with CDDP

To examine the effects of cisplatin on radiosensitization
to X-rays and carbon ion beams, colony as well as spher-
oid formation ability of cancer stem-like CD44+/CD24-
cells and non-cancer stem-like CD44-/CD24- cells after
irradiation with an X-ray or carbon ion beam alone or in
combination with CDDP were performed. We found
that the number of colonies from both CSCs and non-
CSCs was remarkably reduced when carbon ion beam
combined with 25 pM of CDDP compared to carbon ion
beam alone or X-ray combined with CDDP (Fig. 3b). As
shown in Fig. 3c, the number of tumor spheroid forma-
tions of cancer stem like CD44+/CD24- cells delivered
from MDA-MB-231 cells was significantly reduced after
carbon ion beam compared to X-ray irradiation, and it
was extremely decreased when the carbon ion beam
combined with CDDP. In contrast, there are no spheres
formed in non-cancer stem-like CD44-/CD24- cells after
X-ray or carbon ion beam, either alone or in com-
bination with CDDP. Spheroid formation ability of
ESA+/CD24- cells sorted from MDA-MB-453 after
irradiation with an X-ray or carbon ion beam alone
or in combination with CDDP was also performed,
and showed the carbon ion beam alone but not X-ray
significantly inhibited spheroid size and it was remark-
ably suppressed when carbon ion beam combined with
CDDP (Fig. 3d).

Table 1 RBE values at D10 level for unsorted MDA-MB-231 cells
and sorted cancer stem-like and non-cancer stem-like cells

Cells X-ray C-ion RBE
MDA-MB-231 39+0.11 Gy 20+0.05 Gy 1.80
unsorted

CD44+/CD24- 452+0.12 Gy 212+0.11 Gy 2.14
CD44-/CD24- 321+0.11 Gy 1.82 £ 0.06 Gy 1.78

Expression changes of various genes in CSCs after
carbon-ion beam alone or in combination with CDDP by
RT PCR Array analysis

To quantitatively examine multiple gene expression
changes in radioresistant CSCs (CD44+/CD24-) delivered
from MDA-MB-231 cells, RT? Profiler PCR Array analysis
was performed according to the manufacture’s protocol. A
representative clusterhistogram is shown in Fig. 4a. The
data shows that treatment with a carbon ion beam com-
bined with constant treatment with 25 uM of CDDP for
5 days significantly increased the expressions of apoptosis-
related Cytochrome ¢, and had a strong tendency to incre-
ment Bax (p=0.059) and autophagy-related genes LC3
(p =0.057) compared to carbon ion beam, X-ray, cisplatin
alone or X-ray combined with CDDP (Fig. 4b). In addition,
expressions of CSC markers, CD44 and ESA were almost
completely eliminated by carbon ion beam combined with
CDDP, whereas X-ray, carbon ion beam, CDDP alone or
X-ray combined with CDDP (Fig. 4c) significantly
increased expression of ESA. Besides, expressions of angio-
genesis- and metastasis-related genes such as HIFla and
CD26 were remarkably inhibited or lost by carbon ion
beam combined with CDDP, whereas cisplatin alone or
X-ray combined with CDDP significantly increased expres-
sions of HIFla and CD26 (Fig. 4d). Interestingly, some
DNA repair-related genes such as XPC, Artemis, Rad51,
and cell cycle-related gene PTEN were remarkably elevated
but some of them, like XRCC4, 53BP1, and BRCA1, p27,
and RB1 were significantly reduced by carbon ion beam
combined with CDDP compared to carbon ion beam,
X-ray, CDDP alone or X-ray combined with CDDP
(Fig. 4e, f).

Cell cycle analyses of MDA-MB-231 and MDA-MB-453 cells
after carbon-ion beam alone or in combination with CDDP

Cell cycle analyses of MDA-MB-231 and MDA-MB-453
cells 4 days after a carbon ion beam, X-ray alone or in
combination with 25 pM of CDDP were performed.
CDDP was added prior to irradiation and constantly
treated for 4 days, and the cell cycle distribution (sub
G1, G1, S and G2/M phase) was measured by FACS
Calibur. As shown in Fig. 5, carbon ion beam com-
bined with CDDP more significantly inhibited cell
cycle progression (sub-Glarrest) and induced cell death
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carbon ion beam, X-ray alone or in combination with CDDP in CSCs. c. Expression CSC markers after carbon ion beam, X-ray alone or in
combination with CDDP in CSCs. d. Expression of angiogenesis-, metastasis-related genes after carbon ion beam, X-ray alone or in combination
with CDDP in CSCs. e. Expression of DNA repair-related genes after carbon ion beam, X-ray alone or in combination with CDDP in CSCs.

f. Expression of cell cycle-related genes after carbon ion beam, X-ray alone or in combination with CDDP in CSCs. *, p < 0.01, compared to

control. All experiments were performed in triplicate (n=3)

(apoptosis/necrosis) compared to carbon ion beam, X-ray
alone or X-ray combined with CDDP both in MDA-MB-
231 and MDA-MB-453 cells.

YH2AX foci formation in CD44+/CD24- and ESA+/CD24-
cells after carbon-ion beam alone or in combination

with CDDP

A high number of YH2AX foci formed at 1 h after a
carbon ion beam, X-ray alone, and in combination with
25 uM of CDDP further increased the number of
YH2AX foci in CD44+/CD24- cells sorted from MDA-
MB-231 (Fig. 5a). However, at 24 h after carbon ion
beam irradiation, the induced yH2AX foci level
remained significantly higher than that of X-ray

irradiated cells with isoeffective dosages, and carbon
ion beam in combination with cisplatin remarkably en-
hanced the number of yH2AX foci compared to carbon
ion beam, X-ray, cisplatin alone or X-ray combined with
cisplatin (Fig. 5a). Furthermore, not only a great increase
in the number but also in the size of foci (clustered
DSB) was frequently found in carbon ion beam com-
bined with cisplatin-treated cells compared to carbon
ion beam, X-ray, cisplatin alone or X-ray combined
with cisplatin-treated cells (Fig. 5b). We also examined
the number and size of nuclear yH2AX foci formed in
CSCs (ESA+/CD24-) delivered from MDA-MB-453
cells at 24 h after a carbon ion beam, X-ray alone or
in combination with 25 puM of CDDP, and found that
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Fig. 5 Cell cycle analyses of MDA-MB-231 (a) and MDA-MB-453 cells (b) 4 days after a carbon ion beam, X-ray alone or in combination with

25 uM of cisplatin (CDDP). CDDP was added prior to irradiation and treated for 4 days, and the cell cycle distribution (sub G1, G1, S and G2/M phase)
was measured by flow cytometry. Carbon ion beam combined with CDDP significantly inhibited cell cycle progression (sub-G1 arrest) and induced cell
death (apoptosis/necrosis). Three separate experiments were conducted, and representative results are shown. Averages of the three separate

a much greater number of YH2AX foci were remained
after carbon ion beam combined with CDDP, but sur-
prisingly more larger sized yH2AX foci were induced
by carbon ion beam alone compared to X-ray alone or
in combination with CDDP (Fig. 6c).

Discussion
In this study, an in vitro colony and spheroid formation
analysis as well as an in vivo tumorigenicity study
showed that CD44+/CD24- cells have a significantly
higher possibility compared to CD44-/CD24- cells
which sorted from MDA-MB-231 cells, indicating that
CD44+/CD24- cells exactly have CSC properties. We
also examined and confirmed that ESA+/CD24- cells
have CSC properties compared to ESA-/CD24+ which
sorted from MDA-MB-453 cells based on its high
spheroid formation and in vivo tumor formation ability.
This is in line with previous reports that CD44+/CD24-
and/or ESA+ /CD24- cells are BCSC markers [19, 35, 36].
We also investigated the proportion of ALDH/i, a typical

BCSC marker, is very low in both MDA-MB-231 and
MDA-MB-453 cells (Additional file 2: Figure S1), so the
CD44+/CD24- and ESA+/CD24- cells were representa-
tively used as CSCs in this study.

We found that the percentages of cancer stem-like
CD44+/CD24- cells in MDA-MB-231 cells were dose-
dependently increased after 72 h X-ray irradiation,
whereas no such clear dose—response was observed after
carbon ion beam (Fig. 2). In contrast, the proportion of
ESA+/CD24- cells in MDA-MB-453 cells significantly
decreased at 96 h after carbon ion beam alone and sur-
prisingly also by X-ray irradiation alone, but significantly
increased by X-ray combined with CDDP or CDDP
alone. The finding of CD44+/CD24- cells in MDA-MB-
231 cells is consistent with our and other previous re-
ports [31, 32, 37], but it is unclear why the proportion of
ESA+/CD24- cells in MDA-MB-453 cells was sup-
pressed by X-ray irradiation in this study. In the present
study, the in vitro relative biological effectiveness (RBE)
value calculated by the D10 relative to the X-ray is about



Sai et al. Molecular Cancer (2015) 14:166

Page 10 of 13

MDA-MB-231

CD44+CD24- (1 h)

Cont X-2Gy Cion-1Gy  X-2Gy+CDDP Cion-1Gy+CDDP CDDP

CD44+/CD24- (24 h)

Cont X-2Gy Cion-1Gy +CDDP Cion-1Gy+CDDP - CDDP

CIM4+/CD24- (24 h)

Cion-1 Gy+CDDP DAPI

p=0.01

p<0.01| p<0.01

Number of ryH2AX foci size
more than 1.5 mm? /eells

S = M W &

Cont  Cion-1Gy X-2Gy Cion-1Gy X-2Gy CDDP
+CDDPF  +CDDP

yHZAX foci nun

P01

20 =000
= 18
2 16
£ 14
E s
g 12
z 10
B
& g
Z 6
= 4

o

Comt  Cion-1Gy X-2Gy Cion-1Gy X-2Gy  CDDP
+CDDP +CDDP
24h
el g
p<tl.ol

318 0101 *
g 16 ! -
214
E 12
£ 10
E o8
= 6
=
= 4

-Gy X-2Gy Cion-1Gy  X-2Gy CDDP
+CDDP +CDDP

MDA-MB-453
ESA+CD24- (24 h)

Cont X-2Gy Cion-1Gy  X-2Gy+CDDP Cion-1Gy+CDDP CDDP

p<0.01

TH2AX foci size (um?)cells

Cont Cion=1Gy X-2Gy Cion-1Gy X-2Gy CDDP Cont Cion-1Gy  X-2Gy Cion-1Gy X-2Gy CDDP
+CDDP + CDDP +CDDP  + CDDP

Fig. 6 a. Quantification and representative photos of nuclear yH2AX foci formation in CSCs (CD44+/CD24-) delivered from MDA-MB-231 cells at

1 hand 24 h after a carbon ion beam, X-ray alone or in combination with 25 uM of cisplatin (CDDP). CDDP was added prior to irradiation and
treated for 24 h. Data represent mean + SD. *p < 0.05 compared to non-CSCs. b. Quantification and representative photos of nuclear yH2AX foci
larger than 1.5 um? after 24 h carbon ion beam combined with 25 uM of CDDP in CSCs (CD44+/CD24-) delivered from MDA-MB-231 cells. Data
represent mean + SD. *p < 0.01 compared to CDDP alone treated cells. ¢. Quantification and representative photos of nuclear yH2AX foci formation
in CSCs (ESA+/CD24-) delivered from MDA-MB-453 cells at 24 h after a carbon ion beam, X-ray alone or in combination with 25 pM of CDDP. CDDP
was added prior to irradiation and treated for 24 h. Data represent mean + SD. *p < 0.05 compared to non-CSCs. Arrows indicate yH2AX foci larger

than 1.5 pm? *p < 0.01 compared to YH2AX foci sizes in X-ray irradiated cells. All experiments were performed in triplicate (n = 3)

-1.75 to 1.85 for the center of SOBP carbon ion beam on
MDA-MB-231 cells. RBE values are known to be
dependent on linear transfer energy (LET), and our re-
sults are consistent with previous reports using carbon
ion beams on several human cancer cells, which re-
ported 1.57-2.60 for 50—-80 keV/pm-beams [38]. Based
on dose-response curves for cell-killing effect on CSCs
and non-CSCs after irradiation with either X-rays or
carbon ion beams, the CSCs showed resistance to both
X-rays and carbon ions compared to non-CSCs. The RBE
values calculated at the D10 level for CSCs delivered
from MDA-MB-231 were about 2.14, suggesting that the
carbon ion beam has more power to destroy CSCs. In
contrast, RBE values at the D10 level for non-CSCs de-
livered from MDA-MB-231 were only 1.78, implying

that the difference in killing breast cancer cells between
carbon ion beam and X-ray irradiation might mainly re-
sult from the strong effects on CSCs (Fig. 3a). Further-
more, the data shows that carbon ion beam combined
with CDDP significantly decreased the number of col-
onies and the size of spheroids formed from MDA-MB-
231 and MDA-MB-453 delivered CSCs compared to X-
ray, carbon ion beam, CDDP alone or X-ray combined
with CDDP, indicating that BCSCs were significantly
radiosensitized when carbon ion beam was combined
with CDDP (Fig. 3b, ¢, d).

In general, it has been suggested that CSC subpopula-
tions are relatively radioresistant compared with non-
CSC subpopulations, because of enhanced DNA repair
capability with an increased ability to activate DNA
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damage checkpoint responses following radiation (e.g.,
activation of Chkl and Chk2 checkpoint kinases), which
serves to slow cell cycle progression and permit repair
prior to cell division; quiescent cell cycle status (GO),
hypoxic environment and upregulated survival pathways
that protect from cellular stress [39]. It has been reported
that CDDP radiosensitize breast cancer cells are accom-
panied with apoptosis and autophagy [40, 41]. In the
present study, we found that after treatment with carbon
ion beam in combination with CDDP for radioresistant
CSCs delivered from MDA-MB-231 cells, not only
apoptosis-related gene expressions like Cytochrome c
but also autophagy-related genes like LC3 showed sig-
nificant enhancement or a strong tendency to increase
compared to that of carbon ion beam, X-ray and CDDP
alone or X-ray combined with CDDP suggesting that
carbon ion beam combined with CDDP may have more
power to induce multiple cell death (Fig. 4a, b). It has
been shown that CSCs are closely associated with
radioresistance [42, 43]. In this study, carbon ion beam
combined with CDDP almost completely inhibited ex-
pression of CD44 and ESA. In contrast, carbon ion
beam, X-ray, CDDP alone or X-ray combined with
CDDP elevated ESA expression, suggesting that a rela-
tively long-term treatment (5 days) by carbon ion beam
combined with CDDP may have strong potential to
eradicate BCSCs (Fig. 4c). It has been reported that
CDDP can induce differentiation of CSC subpopula-
tions within BC cell lines [44]. Thus, we considered
that carbon ion beam combined with CDDP make the
CSCs more easily killed. In addition, we surprisingly
found that expressions of angiogenesis-related gene
HIFla and metastasis-related gene CD26 were signifi-
cantly suppressed or lost by carbon ion beam combined
with CDDP, whereas carbon ion beam alone or X-ray
combined with CDDP increased HIFla, implying that
carbon ion beam in combination with CDDP may ef-
fectively inhibit tumor angiogenesis and metastasis
(Fig. 4d). It has been known that intra-strand lesions,
the primary type of DNA damage caused by CDDP are
repaired by the nucleotide excision repair (NER) path-
way and exquisite sensitivity to CDDP is observed in
testicular cancer, which often presents with low expres-
sion of NER proteins, such as XPA and ERCCI1 [45-
47]. Although we did not examine NER genes in this
study, we found that carbon ion beam combined with
CDDP significantly altered expression of NHE]-related
genes (suppressed XRCC4 but enhanced ARTEMIS)
and HR-related genes (suppressed 53BP1 and BRACI1
but enhanced RAD51), whereas CDDP alone treatment
increased BRCA1 expression, but carbon ion beam, X-
ray alone or X-ray combined with CDDP were not
affect those of genes (Fig. 4e). In addition, carbon ion
beam combined with CDDP significantly increased
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expression of PTEN and p53, but inhibited cell cycle
related Cyclin D1, p21 and p27, whereas CDDP alone
treatment significantly increased p21 expression, in
comparison, carbon ion beam, X-ray alone or X-ray
combined with CDDP were not affect those of genes
(Fig. 4f). These findings suggest that carbon ion beam
combined with CDDP greatly disrupts DNA repair and
cell cycle regulation of BCSCs. Furthermore, cell cycle
analyses of MDA-MB-231 and MDA-MB-453 cells by
flow cytometry after a carbon ion beam, X-ray alone or
in combination with 25 pM of CDDP showed that car-
bon ion beam combined with CDDP more significantly
inhibited cell cycle progression (sub-G1 arrest) and in-
duced cell death (apoptosis/necrosis) compared to carbon
ion beam alone, X-ray alone, CDDP alone or X-ray com-
bined with CDDP (Fig. 5). All together, carbon ion beam in
combination with CDDP appeared to show beneficial ef-
fects in inducing various gene expressions in the disruption
of TNBCSCs at mRNA levels in vitro, and further investi-
gation for those of genes at protein levels in vitro and in
vivo is needed.

In this study, the number of double strand breaks
(DSBs) marker yH2AX foci, formed in CSCs was high at
1 h after either carbon ion beam or X-ray irradiation
alone, and combination with CDDP further increased
their number, suggesting that CDDP has sensitization to
both X-ray and carbon ion beams. At 24 h post-
irradiation the number and size of YH2AX foci for the
carbon ion beam were significantly higher and larger
than for X-ray irradiation, revealing the differential re-
pair capacity of the DSBs induced by the high and low
LET radiation in CSCs [48-50]. Furthermore, a more
larger number of, as well as a larger-sized YH2AX foci
were formed with carbon ion beam combined with
CDDP compared to X-ray, carbon ion beam alone or
X-ray combined with CDDP, suggesting that higher
complexity of clustered DSB was induced by carbon
ion beam in combination with CDDP (Fig. 6a, b, c).
These results reveal the greater complexity of DSBs
induced by high LET radiation combined with chemo-
therapy, which potentially leads to increased mutage-
nicity and decreased repairability of the damaged
site.

Taken together, because the carbon ion beams have a
well-defined range with well-localized energy deposition
at the end of the beam path, a unique physical character-
istic called “SOBP”, and release enormous energy at the
end of their range, carbon ion beams therefore induce
more cell cycle- and oxygenation-independent, irrepar-
able DNA damage and kill more radioresistant CSCs
than photon beams [31, 32], and combination with a
DNA-damaging antitumor compound CDDP [51-53]
further enhances those of actions based on the present
data. This is partially in line with our recent report that
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carbon ion beams combined with gemcitabine, a nucleo-
side analogue that causes cytotoxicity by inducing DNA
replication blocks, efficiently eliminate pancreatic CSCs
[54]. Our results showed in this study are the first to
show that predominant effects of carbon ion beam in
combination with CDDP on TNBC cell killing mainly
result from efficient eradication of CSCs rather than
non-CSCs.

Conclusions

In summary, the carbon ion beam combined with CDDP
has promising advantages for targeting putative BCSCs
because of complex DNA damage, increased apoptosis,
autophagy, and subsequent cell death at relatively low
doses compared to a carbon ion beam alone. All
together, our findings show the potential benefits of a
carbon ion beam in combination with chemotherapy to
target TNBCSCs.
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