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Abstract 

GPS technology and tracking study designs have gained popularity as a tool to go beyond the limitations of static 
exposure assessments based on the subject’s residence. These dynamic exposure assessment methods offer high 
potential upside in terms of accuracy but also disadvantages in terms of cost, sample sizes, and types of data gen‑
erated. Because of that, with our study we aim to understand in which cases researchers need to use GPS-based 
methods to guarantee the necessary accuracy in exposure assessment. With a sample of 113 seniors living in Barce‑
lona (Spain) we compare their estimated daily exposures to air pollution (PM2.5, PM10, NO2), noise (dB), and green‑
ness (NDVI) using static and dynamic exposure assessment techniques. Results indicate that significant differences 
between static and dynamic exposure assessments are only present in selected exposures, and would thus suggest 
that static assessments using the place of residence would provide accurate-enough values across a number of 
exposures in the case of seniors. Our models for Barcelona’s seniors suggest that dynamic exposure would only be 
required in the case of exposure to smaller particulate matter (PM2.5) and exposure to noise levels. The study signals 
to the need to consider both the mobility patterns and the built environment context when deciding between static 
or dynamic measures of exposure assessment.

Highlights 

Static and dynamic exposures were estimated for a set of basic exposures (NO2, PM2.5, PM10, dB, NDVI) 
among 113 seniors in Barcelona.
Static exposures were based on residential location while 7-day GPS tracking was used for dynamic exposures.
Dynamic assessments using GPS-tracking are not providing enough accuracy across all the range of expo-
sures.
PM2.5, and noise exposures significantly benefited from GPS-tracking use.
NO2, PM10, and exposures to greenness did not lose significant accuracy using only residential static exposures 
with Barcelona’s seniors
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Introduction
Research on how environmental exposures directly affect 
human health has gained attention in recent years. The 
assessment of how exposure to different environmental 
features can harm or promote health has greatly ben-
efitted from more accurate data both on the spatial dis-
tribution of exposures and on human positioning and 
travel behavior. To date, available scientific evidence has 
amply demonstrated the associations between daily aver-
age exposures to factors such as air pollution, noise, and 
greenness and cardiovascular disease, mental health, and 
even wellbeing [1–3].

Static vs dynamic exposure assessment
Traditionally, most environmental exposure assessments 
have taken the residence location or the workplace as a 
proxy for people’s environmental exposures [4, 5]. Using 
geolocated addresses has been a major step forward from 
using just the administrative neighborhood [6]. However, 
in real life, most people move beyond their residential 
areas during their everyday travel, and thus static resi-
dential neighborhoods cannot capture the entire context 
of exposure [7–9]. Some have suggested that the litera-
ture needs to move beyond notions of contextual influ-
ence that rely on using such specific fixed locations [10, 
11]. GPS and tracking technologies have been viewed as 
the optimal solution to go beyond where people live to 
where people visit and how much time they spend at each 
particular location [12, 13]. GPS location and tracking 
trajectories can accurately identify people’s space–time 
trajectories, frequency, and duration which can provide 
dynamic measures of exposure measures that stand in 
contrast to traditional static address-based measures. 
These dynamic measures of exposure can greatly improve 
the accuracy of exposure assessments either at the 
momentary level or at the activity space daily aggregate 
level [14–16].

Dynamic assessments of exposures also allow for 
avoiding commonly identified limitations of neighbor-
hood effects research, such as the uncertain geographic 
context problem (UGCoP) [17] or the neighbor-
hood effect averaging problem (NEAP) [18]. Such 
approaches, however, are far more resource-inten-
sive, require more specific research designs [19], and 
may be affected by other common spatial biases such 
as the selective daily mobility bias [20]. Most impor-
tantly, studies using raw GPS data usually need to use 
additional methods to add contextual information 

on individuals’ time-activity patterns [21] and they 
require intensive engagement from study participants 
which usually leads to small sample groups, vulner-
able to participation rates, and study-abandoning [22]. 
Participants in studies requiring location tracking and 
high spatio-temporal precision also report concerns 
with data privacy and surveillance. Because of that, it 
is important to understand when it is necessary to use 
dynamic exposures and in which situations we can 
expect high-accuracy exposure assessments from static 
measures alone. Deciding between static or dynamic 
exposure measurements is a complex task that will 
likely depend on the subject of analysis and the type of 
exposure of interest.

This need is even more important when dealing with 
specific population groups such as seniors or children 
for whom wearing a specific tracking device may be 
more difficult than the adult population. In addition, 
real exposures have been found to vary widely between 
social groups. That is mainly because of differences in 
location patterns and daily mobility habits. Previous 
research has found socioeconomically disadvantaged 
groups to be more frequently in contact with hazard-
ous exposures [8]. Because of the link between travel 
and exposure, sociodemographic groups with differ-
ent travel patterns are likely also to differ in their daily 
exposures. General assessments of exposure to the 
overall population are, for example, not often applica-
ble to seniors due to their distinct spatial practices and 
travel behavior.

While studying seniors’ exposure levels to air pol-
lutants, noise or greenness is particularly important 
because of their larger chronic diseases’ prevalence 
[23, 24], these assessments often require specific study 
designs given seniors’ special relationship with their 
neighborhood and their most near built environment 
[25]. Seniors spend higher amounts of time in the close 
vicinity of their residences [26–28] which would sug-
gest that residential-based exposure assessments would 
provide accurate-enough exposure measures, but at the 
same time, they also tend to engage in higher amounts 
of walking trips [29] which increases their sensitivity to 
environmental exposures. While the consensus seems 
to be that seniors tend to have smaller and more com-
pact activity spaces [30, 31] they cannot be considered 
home-bound, as their daily mobility is complex and 
they show great variance in their activity spaces sizes 
and shapes [32]. Previous studies have found that given 
the proper built environment conditions, seniors can 
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significantly extend their living spaces and even spend 
more time outside of their residential neighborhood 
than inside of it [33, 34]. That is especially true in walk-
able and compact cities such as Barcelona where sen-
iors most often used modes of transport -walking and 
public transport- can take them far within the city.

Common environmental exposure assessments
Choosing between static or dynamic exposure assess-
ment methods, however, will not only be dependent on 
the population group, but also the nature of the expo-
sures. Studies comparing the spatial distribution of envi-
ronmental exposures such as carbon dioxide (CO2), Fine 
particulate matter PM2.5 and PM10, nitrogen dioxide 
(NO2), or sulfur dioxide (SO2) have found little to no 
spatial correlation between them [35–37] suggesting that 
the decision on whether to use dynamic or static meas-
urements would have to be also exposure dependent. 
To date, studies estimating the effects of environmental 
exposures on seniors have focused on air pollution, noise 
pollution, and greenness [38–41].

Studies estimating the effects of air pollution typically 
use a combination of NO2, PM10, and PM25 as air qual-
ity indicators. These pollutants are mainly emitted by 
internal combustion vehicles and are the most prevalent 
air pollutants in urban environments [42, 43], including 
in Barcelona [44, 45]. Their public health dangers are well 
documented [46] and seniors are considered one of the 
most at-risk populations [47]. Ambient particulate matter 
is recognized as one of the main environmental risk fac-
tors for chronic respiratory diseases [48, 49] and cogni-
tive decline among them [50, 51].

Exposure to unwanted sound from industry, trans-
port, or other urban activities is commonly referred to as 
noise pollution [52–54]. Noise pollution is a public health 
issue that has been is gaining prominence as scientific 
evidence linking noise and health increases [55]. Among 
these links, studies have found noise to be associated 
with sleep disturbances, hypertension, cardiovascular 
risks, chronic stress, or disturbances in mental health [56, 
57]. Recent analyses have also found seniors to be more 
affected by noise than the rest of the population even 
when exposed to a similar level of measured noise [58]. 
Most worrisome, seniors also tend to live in areas with 
higher concentrations of noise pollution [59] something 
that Lagonigro et al. [60] also found in Barcelona.

However, there are also positive environmental expo-
sures for seniors, such as exposure to greenness. Being in 
contact with nature, which includes having visual access 
to green space, has been associated with a wide range of 
positive health effects, from physical to mental health 
and restorative processes [61–64]. Urban greenness, 
commonly measured using the Normalized Difference 

Vegetation Index (NDVI) [61, 62, 65–67] can provide 
optimal places to walk or recreate while also being neg-
atively correlated with other negative urban exposures 
such as air or noise pollution. Among seniors, exposure 
to green space has been linked to many health outcomes, 
including mortality, social capital, obesity, and most fre-
quently with physical activity [68–70].

Given the high number of biases that affect neighbor-
hood effects research, more light is needed to define 
what is the appropriate scale at which to measure expo-
sure among specific population groups. Considering this 
need for a better understanding of when to use dynamic 
vs static research designs in studies involving the senior 
population, this study sets to estimate exposure to air 
pollutants, noise, and greenness in a sample of 113 older 
people living in Barcelona and participating in a GPS-
tracking study for 7  days. The study sets out to answer 
whether using static exposure techniques based on the 
residential address is enough to represent the totality 
of exposures experienced throughout a day. That is to 
understand if continuing to use static exposure measure-
ments instead of dynamic-based ones will compromise 
the reliability of exposure assessment studies among 
seniors.

Methods
This study was set in the context of the RecerCaixa Pro-
ject (“Ciudad, calidad de vida y movilidad activa en la 
tercera edad. Un análisis multi-metodológico a través de 
Tracking Living Labs”) and took place in the municipality 
of Barcelona. The project aimed to explore basic mobility 
patterns of seniors (> 64 years old) living in the Barcelona 
metropolitan area along with quantifying the environ-
mental, social and health issues that impact their daily 
mobility choices.

Study design and population sample
With more than one-fifth of its population being over 
65  years old, Barcelona is usually defined as a compact, 
walkable, and vital city [71–74]. Barcelona’s morphologi-
cal conditions are representative of other historical Med-
iterranean cities, combining high population density and 
land use mix that create walkable environments but also 
maintaining high car-use levels due to extensive motori-
zation rates along with significant car-dependency in 
parts of the metropolitan area [75]. Due to its density and 
high vehicle use, Barcelona has also high average levels of 
air pollution and noise pollution [76–78]. Despite hav-
ing a low ratio of green-space per inhabitant compared 
to other European cities (18 m2 including the peri-urban 
forest of Collserola), small parks, streets, boulevards, 
and plazas with trees often compensate for the need 
for spaces for outdoor activities and provide an optimal 
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distribution of NDVI (Normalized Difference Vegetation 
Index) levels [79, 80].

Participants were recruited between June 2016 and 
June 2017. Researchers contacted 39 senior centers scat-
tered through the Barcelona metropolitan area to recruit 
seniors to participate in a tracking-GPS data gather-
ing. Participants had to be 65  years old or above and 
not have specific mobility impairments. After being 
informed written and orally about the study, and pro-
vided with research protocols and instructions, 269 par-
ticipants gave informed consent, out of those, we focused 
on those that lived within the limits of the Barcelona 
municipality (n = 113). Confidentiality was ensured by 
using random identification numbers and data censor-
ing. The study was approved by the Ethics Committee 
on Animal and Human Experimentation at Universitat 
Autònoma de Barcelona (UAB; CEEAH-3656). Consid-
ering that seniors’ outdoor behavior in relation to the 
built environment presents differences according to their 
characteristics, we classified our sample by age [younger 
(< 75  years old), and older (≥ 75  years old) seniors] and 
gender.

Data collection
To collect data regarding the routine travel behavior of 
seniors, participants were asked to wear a GPS device 
(QStarz BT-Q1000X; QStarz International Co., Ltd., 
Taiwan, R.O.C.) and a wrist-worn accelerometer (Acti-
graph GT3X + ; ActiGraph LLC, Pensacola, Florida USA) 
for seven consecutive days. Valid days included at least 
four wearing days and ten hours of device wear-time. 

Participants were also asked to fill in a questionnaire dis-
closing their age, gender, self-reported health, and per-
ceived characteristics of their residential neighborhood. 
The Physical Activity Location Measurement System 
(PALMS) v.R4 was used to aggregate data extracted from 
GPS and accelerometer devices into 15 s intervals [16].

Spatial exposure to air quality components was based 
on the air quality inmission maps provided by the Bar-
celona municipality with data from 2019 (Fig.  1). These 
maps provide data on nitrogen dioxide (NO2), and sus-
pended particulates PM10 and PM2.5 based on annual 
averages and are calculated at the street section level. The 
spatial modeling of the dispersion of pollutants is per-
formed by the municipality and offers a complete map 
of average immission levels at the street-section scale 
(Fig. 2L). Similar to Chum and Ocampo [81] and Nyhan 
et al. [12] we used average daily NO2, PM10, and PM2.5 
concentrations as a proxy of exact exposures.

Data on noise exposure were based on the noise con-
tour maps from the strategic noise map of the city of 
Barcelona, obtained through the Barcelona Open Data 
portal with data from 2017 (Fig. 2). These are the result 
of the collaboration between the Barcelona city council 
and the Barcelona Public Health Agency (ASPB) and rep-
resent noise levels on a daily average (7 am to 9 pm). The 
spatial distribution of noise exposure is represented in 
Fig. 2 (left).

Finally, we used NDVI to represent the levels of urban 
greenness in Barcelona. Due to healthy green vegetation 
reflecting more infrared radiation and absorbing more 
energy in the red wavelength compared to unhealthy 

Fig. 1  Daily air pollution levels spatial distribution in Barcelona: PM10 (left), PM2.5 (center), NO2 (right). Source: Ajuntament de Barcelona
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vegetation or surfaces without vegetation, NDVI is com-
monly used to assess vegetation levels. The NDVI data-
base of Catalonia 2019 available on the portal of the 
Cartographic and Geological Institute of Catalonia [82] 
was used. NDVI orthoimages are generated from images 
obtained by an aerial photogrammetric camera, capa-
ble of obtaining information not only from the visible 
range of the electromagnetic spectrum but also from 
the near-infrared, and with a pixel size of about 25.cm 
on the ground. NDVI scores can vary from -1 to 1 when 
the result is < 0 corresponds to areas without vegetation 
cover corresponding to water or artificial surfaces, for 
values 0 < NDVI < 0.2 it is expected to find bare soil or 
dead vegetation, between 0.2 < NDVI < 0, 4 corresponds 
to soil with sparse or not very vigorous vegetation, in 
cases of 0.4 < NDVI < 0.6, areas with vigorous and abun-
dant vegetation are estimated, while those exceeding < 0.6 
correspond to areas with dense and vigorous vegeta-
tion [82]. NDVI use is very common in studies assess-
ing greenness exposure [83–86] and has also been used 

before in Barcelona [61, 62]. The distribution of NDVI 
levels in Barcelona is presented in Fig. 2 (right).

The spatial resolution of environmental exposures 
maps allowed us to pair average environmental condi-
tions to GPS points using GIS spatial analysis techniques. 
These allowed us to assess the variability of intensity of 
exposures based on spatial location and movements of 
seniors. It was, however, not possible to assess temporal 
variability as environmental exposures represented daily 
averages and were thus not disaggregated by hour or time 
of day.

A series of covariates were extracted from the par-
ticipants baseline survey such as gender and age 
(mean = 74.9; sd = 7.56). Based on their place of residence 
we also calculated their income and population density 
based on census track data. In order to ease interpreta-
tion, we also grouped seniors per types of built environ-
ment with historic district representing the older parts 
of the city, Expansion representing the compact develop-
ment starting around 1850 and sprawl areas representing 

Fig. 2  Daily noise levels (left) and greenness (right) spatial distribution in Barcelona
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the more recent development areas characterized by low 
densities and high car dependency.

GIS processing
Using the self-reported home address of each participant 
we created a street network buffer of 600 m. Within these 
600 m, the second buffer of 20 m was estimated, calcu-
lated by including only those roads that are walkable. 
Thus, the residential area of exposure is the result of a 
network buffer of 20 m around the roads where walking 
is possible and that falls within 600 m from the place of 
residence. to define the residential extent of exposures 
(Fig.  3, left). The 600-m buffer was estimated based on 
previous studies on older adult mobility [71, 87, 88] and 
corresponds to approximately 10 min of walking for that 
age group which has been a walkable distance for the 
population group. The 20-m buffer corresponds to the 
average street width in Barcelona [79]. To capture the 
range of dynamic exposure we used a 20-m buffer around 
all walking tracks accumulated by each participant 
throughout each participating day (Fig. 3, right) following 

[5, 14]. We chose a 20-m buffer because the GPS accu-
racy cannot distinguish which side of the street the par-
ticipant is using and thus covering the whole street width 
was deemed necessary.

Once residential and dynamic exposure ranges were 
defined, we used spatial join to average the exposures 
within each buffer of 600  m, thus creating daily aver-
age exposures for NO2, PM10, PM2.5, noise, and NDVI 
respectively (Fig. 4). All processes were conducted using 
ArcMap 10.7.1.

Statistical analysis
Using daily averages of exposure, we tested the differ-
ences between home and dynamic average daily expo-
sures. Pairwise correlations between exposures are 
available in Additional file 1: Table S1. To do so we used 
paired sample t-test to examine home-dynamic averages 
that were significantly different from each other. NO2, 
PM10, PM2.5, noise, and NDVI daily average exposure 
measurements were compared using t-tests to assess 
the overall level of agreement. To visualize exposure 

Fig. 3  Residential (left) and dynamic (right) exposure buffers of one day of data collection



Page 7 of 16Marquet et al. International Journal of Health Geographics            (2023) 22:3 	

differences, we used boxplots while stratifying the results 
by age group and gender of the participants.

To examine the role of any sociodemographic or con-
textual variable driving the differences in exposure, we 
used a 5 model multivariable analysis in which we use 
multilevel Poisson models estimating the differences 
between residential and dynamic environmental expo-
sures. Each model uses the difference between home 
and dynamic exposure levels for each environmental 
exposure type (model 1: PM10; model 2: PM2.5; model 
3: NO2; model 4: dB; model 5: NDVI). Each model esti-
mates the effect of gender and age of the participant and 
the urban layout and average income level of the partici-
pant’s home neighborhood while also controlling for the 
number of walking trips conducted each day. To account 
for the nested nature of our data, we employ multilevel 
models using the participant’s ID as a random effect. All 
analysis were run using Stata v16.

Results
Average exposure levels for the main three air quality 
pollutants -PM10, PM2.5, NO2-, are shown in Table  1. 
Differences between home and dynamic exposure are 
tested using paired samples t-tests.

In terms of PM10, the average participant was exposed 
in a single day to areas with 25.64 µg/m3 annual immis-
sion levels, while their dynamic exposure was 25.9 µg/m3. 
While a statistically significant difference, the estimated 
value using GPS tracking was only 1.0% different than 
the estimated value using the home exposure (p = 0.006). 
When stratified by population groups, the larger statisti-
cally significant differences between home and dynamic 
PM10 exposure were found in those participants that 
were older than 75  years old, who registered dynamic 
exposures 1.92% higher than home exposure (p < 0.001). 
Other statistically significant differences were found 
among men (1.74%; p < 0.001), those living in the Expan-
sion area of the city (1.53%; p < 0.001), and those living in 

Fig. 4  Example of noise exposure calculation based on residential (left) and dynamic (right) buffers
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high-income areas (1.15%; p < 0.001), although no differ-
ence was greater than 2%.

In terms of exposure to PM2.5, the average daily expo-
sure difference was 5.77% higher when calculated using 
dynamic GPS tracking than using the home method 
(p < 0.001). All population groups registered statistically 
significant differences, with no differences below 5%. 
The maximum differences were found among women 
(6.05%; p < 0.001), the older population (6.32%; p < 0.001), 
and those living in sprawl or low-density areas (6.81%; 
p = 0.022).

The NO2 exposure assessment registered a daily expo-
sure difference between the home and dynamic method 
of 1.33 on average (1.33%; p = 0.036). The only statistically 
significant differences were found among men (1.77%; 
p = 0.022), the older population (1.73%; p = 0.036), those 
living in the Expansion (1,41%; p = 0.042) and most sig-
nificantly in low-income areas (2.24%; p = 0.001).

Average exposure levels for noise (dB) and greenness 
(NDVI) are shown in Table 2. In terms of noise, the aver-
age participant lived in an area with an average of 58.6 
daily db. In contrast, the average participant was exposed 
to areas with 64.6db during his/her daily walking trips. 
The estimated dynamic exposure was thus 9.35% lower 
than the home exposure (p < 0.001). Almost all popula-
tion groups share that same difference between 9 and 

11%. The larger differences are found among those who 
live in the Expansion area (− 11.06; p < 0.001) or the his-
toric district (− 11.1; p < 0.001) and among those living in 
high-income areas (− 11; p < 0.001).

Greenness for its part did not show major significant 
differences when assessed using the home range or the 
dynamic exposure (0.44%; p = 0.708). Only those living 
in the historic district of the city recorded a 5% differ-
ence between the home and the dynamic exposure, with 
the dynamic exposure being higher (home = 0.190 vs 
dynamic = 0.201; p = 0.004).

The graphical representation of the differences between 
residence and dynamic exposures (Fig. 5) shows there are 
higher mean differences in the case of PM2.5, noise, and 
NDVI. When focusing on gender and age, women and 
those older than 75 portray higher mean differences in 
noise and NDVI, while men and elders’ younger than 75 
show higher mean differences in PM2.5 and NO2, thus in 
air pollution.

When using multilevel Poisson models to examine the 
role of individual sociodemographic or contextual vari-
ables driving the differences in exposure, we spot signifi-
cant differences between the types of exposure (Table 3). 
Model 1 estimates differences in PM10 to be signifi-
cantly higher for those living in sprawled areas when 
compared to those living in historic districts and acting 

Table 1  Home and dynamic daily exposures to PM10, PM2.5, and NO2 per population group

a Residence-based exposure measured on a 600 m street-network buffer from the geocoded participant’s address
b Dynamic-based exposure measured on walking Daily Path Areas
c Difference between Home and Dynamic exposures as a percentage of home exposure
d Paired samples t-test

PM10 PM2.5 NO2

Homea Dynamicb Diff. %c pd Homea Dynamicb Diff. %c pd Homea Dynamicb Diff. %c pd

Total (N = 113) 25.64 25.90 1.00 0.006 16.17 17.16 5.77 0.000 37.55 38.05 1.33 0.036

Sex

 Men (N = 55) 25.71 26.17 1.74 0.001 16.27 17.21 5.47 0.000 37.23 37.91 1.77 0.022

 Women (N = 58) 25.57 25.64 0.29 0.559 16.07 17.11 6.05 0.000 37.84 38.19 0.92 0.357

Age

 65 to 74 y.o. (N = 58) 25.85 25.89 0.14 0.808 16.17 17.07 5.25 0.000 37.93 38.29 0.96 0.315

 75 + y.o. (N = 55) 25.41 25.91 1.92 0.000 16.16 17.25 6.32 0.000 37.14 37.79 1.73 0.036

Urban layout

 Expansion (N = 91) 25.80 26.20 1.53 0.000 16.50 17.50 5.69 0.000 38.05 38.60 1.41 0.042

 Sprawl (N = 6) 23.69 22.48 − 5.37 0.259 14.16 15.20 6.81 0.022 31.20 31.41 0.67 0.838

 Historic District (N = 16) 25.43 25.42 − 0.03 0.923 15.01 15.94 5.89 0.000 36.98 37.39 1.09 0.227

Income

 High (N = 68) 25.75 26.05 1.15 0.000 15.68 16.52 5.13 0.000 39.08 39.37 0.76 0.384

 Low (N = 45) 25.48 25.68 0.79 0.173 16.88 18.08 6.61 0.000 35.33 36.14 2.24 0.001

Density

 High (N = 107) 25.74 26.08 1.30 0.000 16.28 17.26 5.72 0.000 37.89 38.41 1.36 0.025

 Low (N = 6) 23.69 22.48 − 5.37 0.259 14.16 15.20 6.81 0.022 31.20 31.41 0.67 0.838
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as a reference. Model 2 finds no significant association 
between PM2.5 and any of the introduced variables. 
Model 3—focused on NO2—finds expected differences 
in home-dynamic exposure to be 70% higher in those liv-
ing in sprawl areas when compared to those living in his-
torical districts, once the rest of the covariates are taken 
into account. Model 4 and Model 5 dedicated to esti-
mating differences in home-dynamic exposures to noise 
and greenness respectively, did not find any associations 
between home-based measures of exposure and GPS-
track-based dynamic measures of exposure once all the 
control variables are taken into account.

Discussion and conclusions
 Our results indicate that significant differences between 
static and dynamic exposure assessments are only pre-
sent in selected exposures and would thus suggest that 
dynamic assessments using GPS-tracking are not provid-
ing superior accuracy across all the ranges of exposures.

Regarding air quality—measured using NO2, PM10, 
and PM2.5—our data suggest that dynamic exposure 
would only be recommended in the case of the smaller 
particulate matter (PM2.5) for which a discrepancy of 
almost 6% between residential and dynamic exposures 
was detected. This is consistent with previous findings 
that have found major differences between static and 

dynamic PM2.5 exposure [21, 89, 90]. Both NO2 and 
PM10 presented discrepancies below 1.5% leading us 
to believe that the potential gains in accuracy derived 
from the use of GPS tracking would not outweigh its 
challenges and burdens. Our results suggest that among 
seniors, only studies dealing with PM10 and NO2 expo-
sure among very specific population sub-groups would 
require a GPS-tracking methodology. An example of that 
would be studies focused on the older age range (sen-
iors over 75 years old), or in low-income areas, in which 
discrepancies between static and dynamic exposures 
are closer to 2%. In the most complete study to date on 
the differences between static and dynamic measures of 
traffic-related exposure set in Shenzen, China, Yu et  al. 
[40, 41] found the static measures to overrepresent expo-
sures by almost 30%. Our results confirm Yu’s findings 
for the specific case of seniors and the major discrepan-
cies found when assessing PM2.5. Our models, however, 
seem to indicate that in the context of Barcelona static 
measures are underrepresenting real exposures and not 
overrepresenting them.

Regarding noise exposure, our estimates suggest that 
studies focusing on seniors and noise would greatly ben-
efit from dynamic exposure assessment and the use of 
GPS tracking. According to our data, static home-based 
measures tended to overestimate noise exposure by 10%, 

Table 2  Home and dynamic daily exposures to noise (dB) and greenness (NDVI) per population group

a Residence-based exposure measured on a 600 m street-network buffer from the geocoded participant’s address
b Dynamic-based exposure measured on walking Daily Path Areas
c Difference between Home and Dynamic exposures as a percentage of home exposure
d Paired samples t-test

dB NDVI

Homea Dynamicb Diff. %c pd Homea Dynamicb Diff. %c pd

Total (N = 113) 58.66 64.62 − 9.35 0.000 0.237 0.24 0.44 0.708

Sex

 Men (N = 55) 58.61 64.42 − 9.03 0.000 0.236 0.23 − 1.53 0.340

 Women (N = 58) 58.54 68.40 − 9.66 0.000 0.238 0.24 2.21 0.189

Age

 65 to 74 y.o. (N = 58) 65.37 59.29 − 10.26 0.000 0.225 0.235 − 0.23 0.875

 75 + y.o. (N = 55) 63.81 57.80 − 10.39 0.000 0.249 0.25 1.07 0.539

Urban layout

 Expansion (N = 91) 65.48 58.60 − 11.06 0.000 0.239 0.24 0.47 0.697

 Sprawl (N = 6) 58.92 57.50 − 2.48 0.197 0.336 0.31 − 8.92 0.002

 Historic District (N = 16) 65.48 58.96 − 11.1 0.000 0.190 0.20 5.44 0.004

Income

 High (N = 68) 66.12 59.56 − 11.00 0.000 0.216 0.21 − 1.25 0.272

 Low (N = 45) 62.45 57.14 − 9.29 0.000 0.268 0.27 2.33 0.160

Density

 High (N = 107) 64.93 58.63 − 10.74 0.000 0.232 0.23 15.48 0.330

 Low (N = 6) 58.93 57.5 − 2.48 0.197 0.336 0.31 − 8.92 0.002
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and that overestimation was higher in areas with heavy 
traffic, such as the example or historic districts. Interpre-
tation of dynamic vs static measures of sound exposure in 
the literature is diverse. While Kou et al. [91] argue that 
mobility constrained groups such as seniors might find 
more difficulties in adjusting their behavior to the pres-
ence of high noise pollution, others such as Ma et al. [89, 
90] have argued that residents of high-noise pollution 
areas might be self-selecting their mobility routes and 
destinations to travel to less noisy areas which may lower 
their average dynamic-exposure. In that specific case, 
the fact that seniors don’t have mobility patterns that are 
strictly fixed by the presence of the workplace would con-
tribute to their flexibility to self-select for less noisy areas.

Finally, studies interested in the exposure of seniors to 
greenness and NDVI, would not seem to benefit from 
dynamic exposures in urban areas similar to Barcelona. 

In part, these results might be explained by the high 
density of curbside street trees in Barcelona [79]. Linear 
methods calculated around pedestrian tracks might be 
positively affected by the large presence of curbside trees. 
In contrast, because Barcelona has a lack of parks and 
open green spaces, home exposure to NDVI might also 
be limited to curbside trees. Previous studies have also 
failed to find a significant difference between dynamic 
and static exposures to greenness [92]. Differences 
in terms of NDVI exposure in Barcelona seem highly 
dependent on the residential location, suggesting that in 
this case, it might be worth considering the kind of urban 
area that is being studied before deciding on whether to 
use dynamic exposures. In the specific case of greenness 
and seniors, home-based exposure is even more impor-
tant given the links between home-based measures of 
greenness and mental health [67].

Fig. 5  Distribution boxplots for differences between residence and dynamic exposure per gender, age When we interact the differences by gender 
and age (Fig. 6) we can spot similar differences with very little changes in the means but with interquartile ranges being consistently wider in the 
case of males, especially in the case of NDVI
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Overall, our study failed to uncover large discrepancies 
between static and dynamic exposures. This might be 
explained by several factors. First, the study population—
seniors above 65  years old—are also one of the popula-
tion groups that tend to use their local neighborhood the 
most, with travel patterns that are usually concentrated 
around their home residence and with activity spaces 
that cover fewer distances away from home [29]. Taking 
most trips in the vicinities of home would likely attenuate 
the expected accuracy benefits from a dynamic exposure 
approach. This would confirm the previous hypothesis 
that states that daily exposures estimates obtained from 
the two approaches only differ substantially if an indi-
vidual’s time spent away from home is large [21, 93–95]. 
These findings, supported by the study by Yu et  al. [40, 
41] in China suggest that dynamic exposure assessment 
may only be warranted when studying those population 
groups that tend to spend more time in out-of-home 
activities in nonresidential neighborhoods and are thus 
exposed to considerable different conditions over the day.

In practical terms, the fact that most seniors have lower 
mobility rates makes them potentially more vulnerable 
to the conditions of their local neighborhoods. As such, 
seniors with higher mobility ranges may be able to select 
for the less polluted environment during their daily eve-
ryday mobility, while seniors with more limited mobility 

capacities may find it difficult to lower their exposures to 
hazardous local conditions. In the specific case of Bar-
celona however, previous research has demonstrated 
that the seniors increased use of proximity and the local 
neighborhood is a matter of preference and potential of 
the built environment [28, 96] rather than a case of spa-
tial entrapment caused by limited mobility options [97].

The specific characteristics of the local built environ-
ment in Barcelona may also contribute to explaining the 
general low accuracy gains from dynamic exposures, as 
low variance in the built environment characteristics 
has also been known to affect other similar study set-
tings [98]. Studies dealing with more diverse urban envi-
ronments might accrue additional gains from dynamic 
exposure, suggesting that the decision on whether or not 
to use a tracking methodology and dynamic measures 
would depend not only on the population group that is 
being studied but also be location dependent.

In the interpretation of results a couple of limita-
tions need to be considered. For once, mobility data 
and exposure data came from different sources as par-
ticipants were not equipped with specific devices to 
capture exposure while they were moving. Thus, the 
opportunistic use of city council exposure data creates 
a time-gap between the moment on which the tracking 
took place (2017) and the exposure data (2018). This 

Fig. 6  Distribution boxplots for differences between residence and dynamic exposure per the interaction between gender and age
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may create small accuracy inconsistencies that need to 
be considered, however in recent years Barcelona has 
failed to produce a significant change in the levels of 
emissions, noise or greenness [99, 100] and that makes 
us confident that baseline conditions did not change 
significantly between 2017 and 2018. Secondly, the use 
of NDVI as a measure of greenness of exposure differs 
in nature to the other measures of exposure as NDVI in 
not a physical measure but a simplified indicator which 
is highly sensor dependent. This could affect future rep-
licability of the study’s findings.

This study is the first to assess the need for dynamic 
exposure assessment when studying exposures of seniors. 
In this case, we use seniors as an example of a popula-
tion group with low mobility levels among which using 
dynamic measures of exposure would not accrue sig-
nificant accuracy gains in environmental exposure 
assessments. This qualifies the often extended idea that 
dynamic measures of exposure are greatly needed across 
all kinds of studies [101] and would point to the need 
to adapt the use of dynamic vs static measures of expo-
sure to the kind of mobility patterns of the population 
group of interest. Generally, studies on environmental 
exposures need to consider human mobility and spatial 
variations of exposures if they want to avoid misinter-
pretations. Accurate estimates of exposures are key for 
policymakers to identify spatial or social inequities in 
exposures and to design interventions that can alleviate 
them. The search for accuracy cannot hide, however, the 
need to use more efficient and cost-effective methods for 
each research question.
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