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METHODOLOGY

Deviations from typical paths: a novel 
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Abstract 

Background:  Behavioral science researchers are increasingly collecting detailed location data such as second-by-
second GPS tracking on participants due to increased ease and affordability. While intraindividual variability has been 
discussed in the travel literature for decades, traditional methods designed for studying individual differences in 
central tendencies limit the extent to which novel questions about variability in lived experiences can be answered. 
Thus, new methods of quantifying behavior that focus on intraindividual variability are needed to address the context 
in which the behavior occurs and the location tracking data from which behavior is derived.

Methods:  We propose deviations from typical paths as a data processing technique to separate individual-level 
typical travel behavior from a location tracking data set in order to highlight atypical travel behavior as an outcome 
measure.

Results:  A simulated data example shows how the method works to produce deviation measures from a location 
dataset. Analysis of these deviations offers additional insights compared to traditional measures of maximum daily 
distance from home.

Conclusions:  This process can be integrated into larger research questions to explore predictors of atypical behavior 
and potential mechanisms of behavior change.

Keywords:  Intraindividual variability, Deviations, Multi-day studies, Uncertainty in travel behavior, Analytic 
framework, GPS tracking
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Background
Global Positioning System (GPS) and similar location-
tracking technologies allow for collection of rich data 
concerning travel behavior. Over the last decade there 
has been growing interest in using the detailed data pro-
vided by location tracking to answer research questions 
in the behavioral sciences dealing with the physical envi-
ronment individuals inhabit day to day. In particular, 

activity space and life space are two areas of research that 
may benefit from such automatic and unobtrusive data 
collection. For example, concepts that denote the space 
that an individual occupies in their daily life—such as 
life space or activity space—were historically measured 
using self report, but can now be measured using loca-
tion tracking data [1]. While a variety of metrics have 
been derived from location data, those currently in use 
may be limited in representing the full range of life space 
concepts [2].

Life space and activity space studies, like transpor-
tation studies, often summarize data from many con-
secutive days of measurement into a small number of 
representative values to approximate tendencies in 
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more granular measures of travel [3–6]. Examples of 
such measures include the average of each day’s maxi-
mum straight-line distance from home or the average 
area of the space an individual occupies in daily life. 
Although intraindividual variability in travel behavior 
is commonly acknowledged [7–9], the focus has pri-
marily been on using multiple days of data to obtain 
more stable estimates when testing individual differ-
ences in central tendencies. In these cases, variation 
from the individuals’ identified behavior norms is con-
sidered error. However, research questions concerning 
intraindividual variability offer opportunities for new 
insights into life space and travel behavior. For exam-
ple, research on individual differences in the number of 
commute routes used across several days suggests an 
interest in intraindividual variability in travel behavior 
among mobility researchers [10]. As multiple days of 
data are already collected to measure central tenden-
cies, one can use these data to answer new questions 
about intraindividual variability and atypical behaviors 
directly.

This intraindividual variability—the day-to-day vari-
ability of behavior within persons— allows research-
ers opportunities to answer new questions about travel 
behavior and health. These new questions could link day-
to-day variation in experiences of health to variation in 
behavior on that day and allow the magnitude of these 
associations to vary across person-level characteristics. 
For example, we would expect life space to not only be 
smaller among older adults who are more frail [11], but to 
dynamically shrink on days that older adults report more 
physical symptoms. Further, as evidence suggests that 
those with diminished physiological reserve are more 
sensitive to perturbations in their immediate environ-
ments [12], we would expect that this dynamic coupling 
of life space and physical symptoms would be stronger 
among frail older adults. In addition to linking experi-
ences on a given day to travel behavior on that day, the 
magnitude of intraindividual variability in travel behavior 
may itself be linked to health outcomes. From a dynamic 
systems perspective, a system will fluctuate as it adapts to 
change in the person (e.g., changes in health, knowledge, 
or ability), environment (e.g., change in traffic patterns or 
road closures), or situation (e.g., new demands such as a 
new job or a global pandemic) [13]. For example, research 
on variability in daily time spent on out-of-home activi-
ties suggests that non-work activities commonly occur 
but vary with no single typical amount of time spent 
across many days [14]. Intraindividual variability in travel 
behavior could model these activities as deviations from 
typical work-focused behavior, enabling further explora-
tion into associations with additional behaviors or char-
acteristics of the individual. Further, accounting for the 

extent of day-to-day variability in transit behavior could 
provide additional insight in our understanding of pas-
senger segmentation and tailoring of services [15].

A barrier to leveraging the potential of detailed 
multi-day studies in the framework of intraindividual 
variation and covariation is that current metrics are 
not aligned with intraindividual variability-oriented 
research questions. For example, the daily maximum 
distance from home, commonly used in lifespace and 
mobility studies [3, 11, 16–21], could be equal across 
days that substantially differ in the routes traveled on 
those days. Such methodological artifacts could mask 
intraindividual dynamics that link experiences on a 
given day to travel behavior on that day as well as inter-
individual differences in the magnitude of day-to-day 
variability in travel behavior. Previous work has iden-
tified periodic behavior of individuals based on fre-
quently visited locations [22, 23] and similarities across 
individuals based on patterns in routine behaviors [23]. 
However, these approaches do not address atypical 
behavior or route variability directly. Existing research 
on aggregate measures of route-switching behavior 
assesses the frequency of the various routes used by 
an individual but does not extract additional features 
about the intraindividual variation for use in further 
analyses [10, 24]. Similarly, the common measure of 
distance from home masks the breadth of behavior, 
such as side trips and excursions, that occur within a 
specified distance from home, preventing further study 
of the variability and motivation for such travel.

In this paper, we outline a general framework for cal-
culating distance from typical paths that can be used to 
study intraindividual variability in travel behavior based 
on location tracking data. These measures can be used for 
further analysis to answer questions about the dynamics 
of travel behavior and the implications of those dynam-
ics for target outcomes. This framework offers a flexible 
scaffolding for adaptation to specific research questions 
concerning deviations from individual-level typical travel 
behavior. While a variety of measures have been derived 
from GPS and other location tracking data [2], our 
approach is novel (to our knowledge) because it focuses 
on the abnormal measurements that would traditionally 
be interpreted as noise or errors in the model as a meas-
ure of primary interest. Throughout the remainder of the 
paper, we describe how existing path estimation proce-
dures can be leveraged to provide an individual reference 
set of routes from which deviations can be computed. 
These deviations can be quantified in terms of frequency 
or magnitude for straight-forward inclusion into stand-
ard analysis frameworks, such as regression models, to 
address behavioral questions concerning variability in 
travel behavior.
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We begin with a step-by-step guide for implement-
ing this framework, including the two-stage procedure 
of estimating an individual’s typical path and comput-
ing deviations from that path. The framework allows for 
substantial modification to tailor the approach to specific 
research questions. An example with simulated data fol-
lows, demonstrating how this framework can be applied 
and modified. Using this example, we compare our 
approach to a common distance from home technique 
to illustrate the utility of our deviation from typical path 
technique to capture day-to-day variability in travel 
behavior. We additionally provide a demonstration of the 
application of the proposed path estimation technique to 
real-world data. We end with a discussion of the frame-
work’s utility and possible directions for future applica-
tions and developments in this area.

Methods
We outline a framework involving six steps, presented 
in Table  1. These steps apply to both primary and sec-
ondary data analysis. The first three steps, which typi-
cally occur prior to data collection, involve formalizing 
questions, definitions, and assumptions and include: (1) 
establishing a research question, (2) establishing theory 
and formalizing assumptions, and (3) operationalizing 
the target dynamic and determining a priori groupings of 
data. The second three steps represent our primary con-
tribution and outline the process of analyzing location 
tracking data after it has been collected: (4) defining and 
determining typical paths, (5) calculating deviations, and 

finally (6) analyzing deviations. Each step is described 
sequentially in detail below.

Formalizing questions, definitions, and assumptions
Establish a research question
Before estimating a typical path and computing devia-
tions, we must first establish a research question that 
defines both the typical travel behavior we are trying to 
capture and the purpose for studying deviations from this 
typical behavior. Researchers must decide, for example, 
whether the study aims to examine individual differences 
in the magnitude of variability, the representativeness of 
a typical path, or the association of transit behavior on a 
given day to experiences on that day. Researchers must 
also consider whether the focus is on temporal variability, 
spatial variability, or both. The chosen research question 
must align with the data used. For example, questions 
focused on intraindividual variability in daily travel 
behavior will require multiple days of data to address. 
The research question will also be critical in selecting an 
appropriate path estimation procedure, quantification of 
deviations, and analysis.

Establish theory and formalize assumptions of the target 
dynamics of travel behavior
The second step is to establish the appropriate theory 
to characterize the behavioral dynamics under consid-
eration. Theory is essential at this step in the process 
because it orients the research to the temporal dynam-
ics of the travel behaviors, which are critical to decisions 
involving data collection and processing. For example, 

Table 1  Steps for deviations from typical paths framework

Formalizing questions, definitions, and assumptions

 Step 1 Establish a research question The research question facilitates the process of formalizing the definition 
of a typical travel behavior and the purpose for studying variation in travel 
behavior.

 Step 2 Establish theory and formalize assump-
tions of the target dynamics of travel 
behavior

Theory is used to characterize the behavioral dynamics under question 
including the timescale over which the travel behavior unfolds and behav-
ior cycles.

 Step 3 Operationalize target dynamic and 
determine a priori groupings of data

Develop the timeframe of interest (e.g., morning commute or combined 
daily commutes) and grouping (e.g., weekday commute and weekend 
trips) units based on theorized habitual travel behavior and potential day 
to day variability in that behavior.

Analysis of location tracking data

 Step 4 Defining and determining typical paths Estimate or define a typical path for each grouping within person—e.g., if 
the target dynamic is theorized to differ on weekdays and weekends, two 
separate typical paths should be obtained for each person.

 Step 5 Calculate deviations One deviation is calculated per observation using a distance metric to find 
the distance from the observed point to the typical path.

 Step 6 Analyze deviations Analysis should reflect the research question, theory, and groupings 
established. Multilevel models are well-suited to intraindividual studies of 
variation, with time-varying covariates allowing for study of covariation 
over theorized timescales.



Page 4 of 16Nielsen et al. International Journal of Health Geographics            (2022) 21:5 

before data processing begins, researchers must decide 
on the timescale over which behaviors unfold (seconds, 
minutes, hours, days, weeks) and their cycle for repeti-
tion (hours, days, weeks). Researchers may realize that 
the behavior unfolds across nested times scales, such as 
momentary behaviors nested within a day, nested within 
day of the week, nested within the season. Additionally, 
researchers must refer to or develop a theory to dictate 
whether a meaningful growth process (e.g., shrinking or 
expansion of life space or travel behavior during the study 
period) is also expected. For example, increased travel 
away from an established location or route could be 
reflective of a growing flexibility or freedom to travel, or 
it may indicate an increased need to obtain resources that 
the currently-accessed built environment does not read-
ily provide [25]. Theory can also establish whether the 
dynamics of the target travel behavior allow for a typical 
path to exist. Some researchers have suggested, for exam-
ple, that there is not a typical day of non-commute travel 
[14]—but perhaps modeling the commute travel as the 
typical behavior could provide meaningful context to the 
non-commute travel that allows for new insights. In cases 
when data are already collected, exploratory analyses or 
corresponding qualitative reports may provide inspira-
tion for establishing inherent dynamics.

Due to the flexibility of our technique, it is essential 
to consider the dynamics of the travel behavior prior to 
estimating typical paths and deviations. This will assist 
in defining which controls and constraints are necessary 
to discover informative deviations in travel behavior. For 
example, does a lunch excursion from work count as a 
deviation that is worthy of study? Is a change in common 
travel behavior, such as a stop at a gas station, a mean-
ingful deviation? Is a route change, such as traffic detour, 
of interest? When possible, establishing these analysis 
goals prior to data collection allows researchers to ask 
participants for these key times or locations to facilitate 
easier data processing. Either way, clear definitions for 
target dynamics of travel behavior can improve precision 
of the estimated path, which will improve estimates of 
deviations.

Operationalize target dynamic and determine a priori 
groupings of data
Now that the theoretical framework has been established, 
data processing decisions can be made to organize the 
data to align with the target dynamic. Similar to estab-
lishing theory, it is preferable to make these decisions 
prior to data collection when possible. However, adjust-
ments can be made after data collection to accommodate 
unanticipated behaviors in the data. First, researchers 
need to decide how to best group the observations based 
on anticipated travel behavior. A typical path will be 

estimated for each group of observations, meaning that 
the groups should reflect the shared travel behavior. A 
typical path should have an established scope, based on 
start and end location, time of day, or both. The group-
ings therefore define identifiable and repeatable behav-
iors across the observed time series.

We note that the duration of a path may differ across 
studies. For example, a full-day path is considered rele-
vant for life space, but a study on commute patterns may 
focus on distinct commutes to and from work. Within a 
study, multiple typical paths such as weekday and week-
end paths may exist for each person. Depending on the 
study, these categorizations may be established prior to 
data processing as context- or hypothesis-driven, or they 
may be explored during processing and analysis as data-
driven groupings. In this paper, we will focus on a priori 
established groupings. For example, studies concerning 
commute-oriented travel should identify days on which 
the individual commutes. Given the increased availabil-
ity of work-from-home options, a longer period of data 
collection may be needed to identify the typical path for 
individuals who commute less often. Similarly, individu-
als who travel to multiple workplaces will require their 
commutes to be grouped by workplace.

Second, after groupings of observations have been 
established, the data need to be organized to reflect the 
theory and align with the path estimation procedure in 
statistical software. Long format, in which each observed 
location is a separate row, will be needed in most cases. 
If separate groupings, such as weekdays and weekends, 
exist and correspond to separate typical paths to be esti-
mated, the observations for each group should be main-
tained in separate datasets or a single dataset with clear 
labels that can be used for subsetting prior to path esti-
mation and again to assign points to the appropriate typi-
cal path when calculating deviations.

Once these steps concerning research goals and data 
processing have been completed, the procedure for 
obtaining typical paths and deviations from data can 
commence. The remaining analytical steps, including 
technical details and modifications, are described in the 
sections below. As these steps represent the primary 
contribution of this paper, each step is assigned its own 
section.

Defining and determining typical paths
The fourth step in this framework is defining and deter-
mining typical paths. For our purposes, a path is a 
continuous mapping of the unit interval onto the two-
dimensional space defined by latitude and longitude 
coordinates, otherwise known as a plane curve. Exist-
ence of a typical path is a critical assumption for our 
framework, and prior steps leading to the organization 



Page 5 of 16Nielsen et al. International Journal of Health Geographics            (2022) 21:5 	

of observations into groups must establish groupings for 
which a typical path is believed to exist. Each grouping 
of observations will correspond to an estimated path. 
This definition can be extended to the three-dimensional 
space including time if deviations in timing are of pri-
mary or additional interest. Alternatively, timestamps 
can be used to define groupings and covariates in anal-
ysis, rather than used as a third dimension during path 
estimation. Specific features of the path can be encoded 
in the definition and estimation procedure. For example, 
closed paths with the same starting and ending points 
allow for treating the entire day as the grouping because 
we can assume that the individual starts and ends each 
day or trip at a common location. As mentioned above, 
other groupings of observed location points are pos-
sible, such as focusing on the commute to work. In this 
case, we would instead fit a curve that is not closed to the 
data with known starting point at home and end point 
at work. Assumptions such as limiting travel to known 
roads are possible to incorporate via alternative path esti-
mation techniques such as map-matching, lending face 
validity to the estimated path. It is also possible to replace 
the estimated continuous path in this framework with a 
dense set of discrete ordered or unordered points defined 
as latitude, longitude pairs representing all geographic 
locations that the individual passes through as part of 
their route.

The process of determining a typical path can be 
done in any number of different ways, and depends on 
the design of the study and data collection. Below, we 
describe principal curves as a data-driven option, fol-
lowed by a brief note on the use of self-reported typical 
paths. We also offer potential adjustments to account for 
study design and research goals. Alternative approaches 
to estimating a typical path can be substituted in this 
modular framework.

Data‑driven typical paths—principal curves and variations
Estimating a path is essentially fitting a curve with no 
gaps or discontinuities through the data. This process 
should be completed separately for each grouping if 
multiple typical paths need to be estimated—for exam-
ple, typical paths for weekdays and weekends should 
be estimated separately from separate datasets. There 
are several options for fitting curves to location data 
to produce an estimated travel path, most of which are 
considered smoothing procedures in the statistics litera-
ture. We recommend selecting a smoothing procedure 
based on matching known properties of the data with the 
assumptions of the procedure. For example, when travel 
is known to be limited to roads, additional steps could 
be taken to limit the estimated typical path to known 
roads. Within this paper, we focus primarily on the use 

of principal curves to estimate a typical path for two rea-
sons. First, they are relatively simple and easy for behav-
ioral researchers without prior experience in the analysis 
of GPS data to use via implementations in common sta-
tistical software. Second, they facilitate estimation of 
a typical path over the entire course of study by simply 
including all data points for all relevant days or trips 
when estimating a curve.

Principal curves are a nonlinear generalization of prin-
cipal components, or equivalently a variation on non-
linear regression that allows for symmetric treatment 
of variables when minimizing errors [26]. Conceptually, 
each location on the curve is the average of all nearby 
data points—in this case, all nearby observed location 
coordinates. While principal curves utilize a similar least 
squares criterion as linear regression, they minimize 
squared deviations in all variables compared to only the 
response variable in regression frameworks. This fits well 
with the unsupervised learning goal of path estimation 
[27].

In the context of travel behavior, a principal curve is 
a nonparametric smoother that reflects a typical path 
traveled by an individual. Multiple technical definitions 
of principal curves and corresponding algorithms have 
been offered by various authors [26, 28–33]. We make 
use of the approach described by [26] and implemented 
in the princurve package in R [34]. This approach begins 
with the principal component line and follows a stand-
ard Expectation-Maximization (EM) approach, iterating 
between projection of an updated curve and calcula-
tion of conditional expectation until the change in total 
squared distances from all points to the curve is less than 
a prespecified threshold. We make use of smoothing 
splines fit using generalized cross-validation during the 
expectation step, though a variety of options for smooth-
ers exist and can be substituted. Further adjustments to 
improve the estimated path after fitting a principal curve 
are described at the end of this section.

An important limitation of applying the principal 
curves framework to travel behavior is that the resulting 
simple curves cannot intersect themselves. As a result, 
some travel patterns that naturally occur over the course 
of a trip or day may be impossible to estimate. This type 
of travel behavior may be more likely in dense urban 
environments. There are several possibilities for address-
ing this limitation. One option is to use finer-grain seg-
mentation of observations to develop subgroups for 
fitting portions of the typical path at a time, resulting in 
a collection of principal curves defined based on shorter 
trips or trip segments that can be nested within group 
for analysis. Another option is to make use of an alterna-
tive smoother. For example, strategies to locally fit prin-
cipal curves could resolve these situations [32, 33]. The 
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princurve package in R [34] offers a choice of periodic 
LOWESS for fitting closed curves that could reflect travel 
in a loop. A third option is to incorporate time or tempo-
ral ordering of observed points as a third variable to pre-
vent the self-intersecting that occurs in two dimensions 
due to crossing back over a segment later in time—such 
as returning on the same route as departing, or taking a 
cloverleaf highway interchange. Following the estima-
tion of a path over time, the path can be reduced to two 
dimensions for computations of deviations if temporal 
deviations are not of interest, or the path can remain in 
three dimensions to allow for the study of temporal devi-
ations in addition to location deviations.

In addition to principal curves, several options have 
been proposed in the literature for estimating and 
smoothing a path from point-based location data, such 
as splines and functional data analysis techniques [35], 
hidden Markov models [36], and Kalman filters [37]. All 
of these statistical smoothing techniques require selec-
tion of one or more tuning parameters that describe 
the interval of time over which to smooth and order of 
the assumed underlying functional form (in the case of 
spline- and kernel-based smoothers) or the amount of 
noise anticipated in the measurement and overall pro-
cess (in the case of Kalman filters) [37]. Principal curves 
similarly require decisions concerning tuning param-
eters; however, many modifications to the principal curve 
algorithm have been proposed that allow for flexibility 
in adapting the framework to a variety of situations. For 
this reason, we have chosen to focus on principal curves 
as a technique that is broadly applicable—though other 
techniques may be preferable given specific assumptions 
concerning travel behaviors. Regardless of the choice of 
smoothing technique, the estimated typical path should 
be graphed and assessed visually for goodness of fit to the 
observed points and to ensure that the estimated typi-
cal path is sensible in light of established theory of travel 
behavior.

Once a typical path has been estimated, research-
ers may choose to use additional techniques to make 
adjustments to the estimated typical path that improve 
precision and add context. Such optional tasks can com-
plement the smoothing procedure to provide the most 
accurate typical path possible, though they should be 
done carefully to avoid overfitting. One such technique 
is map matching, which makes use of known features of 
the geographic space, such as roads and traffic patterns, 
to refine estimated travel patterns [38]. Map match-
ing techniques treat locations as nodes connected by 
directed edges in graphs which can be matched to known 
nodes and road segments in an established map. Several 
researchers have proposed map matching algorithms to 
define or improve estimated paths [39], particularly in 

low-sampling-rate settings [40]. Although these tech-
niques can increase the accuracy of the estimated path 
for individual trips under the assumption that all travel 
is along known roads, they require a reference library of 
road networks. Alternative principal curve fitting tech-
niques can also be used to improve the fit by bringing in 
additional data—for example, [41] offer an adaptive algo-
rithm for principal curve estimation that incorporates 
known endpoints, allowing for specification of known 
start and end points to trip groupings that can improve 
fit of the path near the end points.

Self‑reported typical paths
We note that self-reports of typical travel routes pro-
vide an alternative to data-driven path estimation. 
Self-reported typical paths can also be treated as a com-
plement to data-driven paths for validating paths or 
comparing findings—for example, in studies interested 
in recall. These routes can be stored concisely as turn-
by-turn directions or an ordered list of waypoints (e.g., 
intersections of roads) prior to analysis. Depending on 
the prior established grouping, it may be necessary to 
collect multiple routes per person. When obtaining self-
reported typical paths, it can be helpful to have local 
maps available and ask follow-up questions to validate 
their reflections on typical travel behaviors. Questions 
such as “Do you have any stops that you typically make 
along the way?” or “Do you take different routes if there 
is traffic?” can validate recall, and questions such as “Do 
you also make this trip on weekends?” can assure that no 
participant-specific groupings have been missed. Once 
typical paths have been established, either using data-
driven techniques or self-report, researchers can proceed 
to the next step of computing deviations.

Computing deviations
Once the typical travel routes have been defined, the next 
step is to calculate distances from the associated typical 
path for every observed location point. As with estima-
tion of a typical path, the step of recording deviations is 
modular and may be replaced or built upon with alter-
natives to suit the specific application. Here, we highlight 
use of Euclidean distance to quantify distance of each 
observation to the estimated path.

We begin with a collection of points belonging to a par-
ticular estimated path. The most straightforward organi-
zation is to subset the observed points based on the same 
grouping for which typical paths have been estimated—
for example, when separate paths are estimated for week-
days and weekends, calculate deviations for weekday 
points based on the weekday path and deviations for 
weekend points based on the weekend path. The points in 
a given grouping should not belong to multiple paths (i.e., 
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each point can belong to a weekday or a weekend but not 
both), but can belong to only a portion of a longer typi-
cal path depending on interpretation goals. For example, 
deviations for only a morning commute can be calculated 
and studied using a path based on travel for an entire day.

Each point is assigned a quantification of its deviation 
from its associated typical path via a distance measure. In 
practice, the nearest location to the path can be found by 
densely sampling along the estimated path and using the 
nearest path point to the observed point for calculating 
distance. Often the estimated path will already be stored 
as a dense sampling of points in statistical software, and 
this process can be automated by calculating the distance 
from the observed point to all path points and taking the 
minimum. Distance can reflect a spatial deviation such 
as traveling to a new location, a temporal deviation such 
as a traveling to an established location at a new time, or 
both—depending on whether time was included in the 
estimation of the typical path and in which dimensions 
the distance is calculated.

The simplest version of a deviation is a spatial devia-
tion based on Euclidean distance, to produce a distance 
“as the crow flies” from the observed point to the typi-
cal path. Further adjustments, such as using a Haversine 
distance or map projection to adjust for the curvature of 
the earth, are possible [42]—though in many cases these 
adjustments are trivial in comparison to the measure-
ment error in real-world passive location tracking. Dis-
tance may also be measured using travel distance along 
roads or estimated travel time to obtain a more practi-
cal measure of the movement that would be required 
to resume travel along the typical path from the current 
point.

Analysis of deviations
The final step of this framework is analysis of deviations 
to gain insights into atypical behavior. Once distances 
have been computed for every point, they can be ana-
lyzed, alone or with complementary information, using 
a variety of methods. If data were separated into multi-
ple datasets for path estimation and calculation of devia-
tions, they may need to be recombined into a single 
dataset with retained labels prior to analysis.

The process of computing deviations results in a calcu-
lated deviation for every observed point. Depending on 
the sampling rate of the GPS device and distance trave-
led, this could mean hundreds or thousands of values 
for every travel behavior grouping (e.g., day) defined for 
analysis. These rich data allow for a variety of analytic 
approaches. Deviations for individual sampled points 
can be used directly in multilevel models, growth curve 
models, or other techniques focused on intraindividual 
variance and covariance based on the research question 

[43]. These models address the longitudinal, repeated 
measures design of location-tracking studies, as well as 
the clustering of observations within day and within per-
son—making them a natural fit for many research ques-
tions concerning variability in travel. Additional steps 
could be taken to identify atypical destinations by includ-
ing timestamps and clustering observations that deviate 
from the estimated path.

Summary measures can also be derived to indicate 
individual differences in travel behaviors for use as either 
independent or dependent variables. For example, the 
maximum deviation, total or average deviation, or num-
ber of deviation clusters in a grouping may also be useful 
quantities to estimate. The average of all deviations can 
be interpreted as a measure of “goodness of fit” for the 
estimated typical path(s), where a larger average devia-
tion suggests additional behavior that is not captured by 
the typical path(s), error in measurement such as noisy 
GPS data, or both. Daily average deviations can describe 
how typical each day was. In our example below, we dem-
onstrate the utility of such summary measures, as well 
as the importance of selecting a summary measure that 
aligns with project goals. The analytic approach should 
be chosen to match the research protocol and reflect the 
established theory in terms of grouping, timescale, and 
frequency of behavior cycle. The approach should also be 
robust to any data quality concerns such as missing data 
and irregular sampling rates that occur with some collec-
tion methods.

Results
We now illustrate our approach using a simulated exam-
ple investigating a person’s travel flexibility. Our aims in 
presenting this example are first to illustrate the devia-
tions from typical paths technique and second to com-
pare this technique to a traditional distance-from-home 
approach to measuring daily travel behaviors. By using 
simulated data, we are able to highlight performance 
of the path estimation and summary of deviations in a 
known context. For the purpose of our example we sim-
ulated data to represent an individual’s travel behavior 
observed from passive GPS location tracking on a cell 
phone over a 50-day time period. Our simulated data 
reflect a usual commute route as well as trips to several 
other destinations, but for analysis we did not know the 
person’s work schedule, travel modality, or typical route 
to work and other common destinations. We assumed 
that the person went to the same workplace regularly and 
based their daily travel from a specific home location. We 
expected to identify a typical path that largely reflected 
the commuting route, allowing us to interpret any per-
turbations from that route as reflections of flexibility in 
travel—one of the possible interpretations offered by 
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[25] for observed increases in mobility. We evaluated our 
method by comparing it to other standard approaches to 
mobility. We end with a demonstration of the proposed 
path estimation technique on real-world data to show the 
capabilities and limitations of the principal curves proce-
dure in this context.

Description of simulated data
We simulated location data for a single individual over 
the course of 50 days using the Google Directions API 
[44] accessed via the googleway R package [45]. This per-
son traveled from home each day. On most days, the per-
son traveled from home to work and back along the same 
route. On other days, the person traveled from home to 
work to a specific store and back home, or from home 
to a non-work destination and back. The key locations 
were selected in a midwestern city by the researchers to 
make use of realistic geography and travel patterns forced 
by roads. The route for each travel pattern suggested by 
the API was used without digression. Observation times-
tamps were not used in this simulation.

After routes were generated by the Google Directions 
API, they were converted to latitude and longitude coor-
dinates using the R package googleway [45] and routes 
were repeated to reflect 50 days with patterns occur-
ring in the following proportions: 70% of days followed 
a usual commute from home to work and back without 
additional stops (“commute days”); 20% of days were 
usual commutes that involved an additional stop at a 
store while returning to home from work (“commute-
and-shop days”), and 10% of days involved travel to one 
of 5 other destinations outside the home (“destination 
days”; 2%, or one day, each). Within each day, points were 
sampled along the selected path, on average 350 m apart, 
reflecting the irregularity with which a location track-
ing device such as a smartphone would collect location 
data. For commute days, this resulted in an average of 
213 observations per day. To further simulate the noise in 
typical smartphone location data, small independent per-
turbations were added to both the latitude and longitude 
coordinates. These perturbations were normally distrib-
uted with mean 0 and standard deviation of .002 degrees. 
In the selected geographic area, .002 degrees is approxi-
mately 220 meters north or south, and 160 meters east or 
west. Example R code for simulating data is available in 
Additional file 1.

Application of method to simulated data
With our simulated data, we walk through the steps of 
applying our method to the simulated data. Our research 
question was “How much does a daily commute to work 
deviate from its typical route?”

The second step is to formalize theory concerning the 
research question and available data. We determined that 
each observed location coordinate served as an observed 
measure of travel behavior and that these observations 
were nested within a commute to and from work. We 
further assumed that work and home locations were sta-
ble over the observed period of time. The commute was 
a behavior that unfolded over the entire day to include 
both the morning and evening commute, and this behav-
ior repeated daily on most days with no additional nest-
ing of the behavior cycle such as weekday and weekend 
behavior. We assumed stability in the behavior over the 
course of the study period, with no growth or constric-
tion in the commute or deviations. A typical path was 
expected to exist and reflect the favored commuting 
route of the individual.

We next began the third step of operationalizing the 
target dynamics and establishing the groupings that 
determine our data processing decisions. Given that nei-
ther our research question nor theory concerned specific 
segments of a day, and instead treated commute behav-
ior as a process that unfolds over the course of the entire 
day, we retained all GPS observations. Each day served 
as a grouping over which the typical path was estimated. 
There were no known or theorized higher-level group-
ings of days, such as weekdays and weekends, so a sin-
gle path was estimated as the reference travel behavior 
for all days. For data organization, we retained samples 
in long format wherein each observed location was a 
row, with columns for latitude, longitude, study day, and 
simulated route type. Typically, route type labels would 
be unknown—however, grouping labels such as weekday 
and weekend may exist based on a priori hypotheses. To 
demonstrate our approach, we summarized deviations 
using these route labels.

We then applied the two-stage procedure of extracting 
meaningful information from our data beginning with 
the fourth step, estimating a single principal curve using 
all points from all 50 simulated study days to uncover a 
single data-driven typical path. For this example we esti-
mated the principal curve using the princurv package in 
R [34]. Figure 1 shows the 7 routes from which data were 
sampled, along with the estimated typical path. From 
this figure, we can see that the estimated typical path 
closely followed the usual commuting route, smoothing 
over the small bends. No additional processing was done 
after fitting the principal curve, so this estimated typical 
path was not constrained to follow roads. To provide a 
comparison of deviations obtained from an ideal map-
matched typical path, we included the true commute 
route as an alternative to the estimated typical path.

Figure  2 shows this typical path superimposed on 
points from three different days, with each point’s color 
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reflecting the type of travel pattern from which it was 
sampled. It is easy to visually distinguish the route taken 
on the destination day, but the commute day and com-
mute-and-shop day are less distinguishable.

We next obtained deviations from the path for every 
observed point and stored these values as an additional 
variable associated with each observed point in the data 
set. Due to the principal curve fitting procedure, each 
observed point used in the estimation of a typical path 
had a corresponding projection onto the final curve. 
Using the observed location, as well as the projection, we 
computed a distance for each observation. We similarly 
computed minimum distance from each observed point 
to the known commute route in addition to the estimated 
typical path. For this demonstration we computed Haver-
sine distances, which are similar to Euclidean distances 
but account for the curvature of the earth, using the 
distHaversine function within the R package geosphere 
[42]. We chose this approach for computing deviations 
to show an incremental build on simple Euclidean dis-
tance. Example R code for estimating a principal curve 
and computing deviations is available in Additional file 2. 
Alternative curve fitting procedures may require alter-
native steps, such as densely interpolating the typical 
path curve to identify projections corresponding to each 
observation.

At this point, we note that by calculating the deviations 
from the estimated typical path for the commute-and-
shop day from Figure 2, we can identify the excursion to 
the store systematically to assist with analysis and inter-
pretation. Figure  3 shows the points from the  selected 
commute-and-shop day, shaded based on their calculated 
deviations from the estimated typical path. We can see 
that deviations were high around the store, highlight-
ing potential flexibility in travel behavior on this day that 
allowed for this excursion. There were also large devia-
tions around home. This was true for every day due to 
the gap between the end of the estimated typical path 
and the home location—demonstrating that any mis-
fit in the typical path estimation can have downstream 
impacts. Visualizations such as this one are critical for 
both interpretation and quality checks for model mis-
fit. We can also see that there was noise in the observed 
points, resulting in some points along the estimated path 
having larger deviations while others have smaller devia-
tions. Additional data processing could be undertaken to 
reduce this measurement noise, but could also have unin-
tended consequences such as removing or attenuating 
true deviations.

The final step in our framework is analysis of the 
deviations. When analyzing travel behavior across 
many individuals, we suggest using multilevel models, 
growth curve models, or other approaches that focus on 

home

work

store

commute−and−shop commute

estimated typical path
Fig. 1  All simulated routes and estimated typical path. Jitter used to 
show overlapping lines. There are 5 destinations visited once each, 
along with the more common commute route (70% of days) and 
commute-and-shop route (20% of days). The locations of home, 
work, and the store visited during the commute-and-shop route are 
labeled.

Fig. 2  Select observed locations for three types of days. Estimated 
typical path is superimposed on the true usual commute 
route and points from three different days—a commute day, a 
commute-and-shop day, and a destination day. All stops are labeled.
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intra-individual variability. For this simple example con-
sisting of data for only one individual, we limited our 
analysis to creation of summary measures of the average 
and maximum deviation per day. Table 2 shows the mean 
and standard deviation of these summary measures for 
each type of day and compares deviations obtained from 
the estimated typical path and the true commute route. 
We can see that both summary measures reveal differ-
ences in the extent of deviation from the associated path 

for the three types of day, with the smallest calculated 
deviations belonging to the commute days and largest 
deviations belonging to the destination days. The varia-
bility in deviations was similar between the commute and 
commute-and-shop days. Findings for the estimated typi-
cal path aligned with our expectation that the estimated 
typical path would reflect the usual commute route, and 
provide insights into our research question (“How much 
does a daily commute to work deviate from its typical 
route?”). It appears that there was minimal deviation 
in the daily commute on days when the individual only 
commuted, increased deviation on days when the indi-
vidual included a stop to shop during their commute, and 
greatest deviation on days when the travel was not true 
commute behavior. The deviation values were smaller 
when using the true commute route as a reference, dem-
onstrating the imperfect estimation of the typical path 
using principal curves. However, consistent patterns in 
the summaries of deviations were visible across the two 
reference path options.

Comparison to existing methods
An additional aim of this paper is to show that our devia-
tion from typical path technique is superior to the stand-
ard distance from home measure in answering research 
questions about variability in travel behavior. Figure  4 
compares deviations to maximum distance from home, 
a common life space measure. We summarized devia-
tions from both the estimated typical path and the true 
commute route separately to further compare these two 
options. In order to establish a common timescale to 
allow for comparison of these measures, we first summa-
rized deviations within each day to obtain a single value 
of either maximum deviation (the single largest deviation 
value observed that day) or average of all deviations per 
day, along with computing the maximum distance from 
home using the original observations.

This simple simulation shows that studying deviations 
from a typical path estimated from data can recover 

home

work

store

0 500 1000 1500 2000    meters
Fig. 3  Commute-and-shop day observations shaded by deviation 
from typical path. Observed locations recorded from a single 
commute-and-shop day are shaded based on their calculated 
deviations in meters from the typical path estimated using principal 
curves, which is shown as a solid line. All stops are labeled. The largest 
deviations are observed around the store stop and home endpoint.

Table 2  Summary measures of average and maximum deviation per type of day

Summarizing deviations (meters) from both the estimated typical path and true commute route within each day uncovered anticipated trends in travel behavior for 
this individual. Specifically, the greatest deviations were found on the destination days and smallest deviations were found on commute days. Shopping trips were 
reflected with increased deviations on commute-and-shop days relative to commute-only days. Smaller deviations were recorded when using the true commute 
route as the reference path. sd = standard deviation of the daily measured deviations.

Commute (n = 35) Commute-and-shop (n = 10) Destination (n = 5)

Mean sd Mean sd Mean sd

Estimated typical path Average 425 13 499 14 3460 2197

Maximum 1805 148 2044 149 6190 3767

True commute route Average 161 6 226 6 2855 2425

Maximum 566 87 1601 127 5492 3971
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information about anomalous travel behavior under 
favorable conditions, such as normally distributed meas-
urement errors in observed points, adequate sampling 
density, and a clear prevailing travel behavior that meets 
the characteristics of a principal curve for estimating the 
typical path.

Application of path estimation using real‑world data
To demonstrate that our proposed data-driven typical 
paths approach (step 4) is possible using real-world data, 
we selected 6 days with similar travel behavior for a sin-
gle individual from the GeoLife GPS Trajectories data set 
[46–48], estimated a typical path using principal curves 
with LOWESS smoother, and computed daily maximum 
and average distance from the estimated typical path. 
Code for this demonstration is available in Additional 
file 3. Figure 5 shows that it is possible to estimate a typi-
cal path that approximates the prevailing observed travel 
behavior with minimal impacts from measurement error. 

The example also displays a limitation of using a single 
principal curve to estimate travel in certain real-world 
scenarios: this individual appears to backtrack on their 
travel near the western edge of the map, and a single 
principal curve cannot contain such a loop. However, the 
average deviations for each day summarized in Table  3 
are relatively small, indicating that the estimated path 
does not deviate substantially from the observed points. 
Table 3 also highlights the day-to-day variability captured 
by the average and maximum deviations calculated for 
each day—for example, deviations are higher on average 
on day 3 compared to the other five days.

Discussion
GPS and other location-tracking technologies have 
facilitated convenient and affordable collection of travel 
behavior of individuals, which in turn enables research 
into behavioral patterns that can address important ques-
tions concerning topics spanning public health, urban 

Fig. 4  Differential separation of deviations on commute days with and without shopping across competing summary measures. For both the 
estimated typical path and the true commute route, using the average of all calculated deviations from a typical path provides the greatest 
separation between two similar types of days—a day in which the person only commutes and a day in which they commute and shop—while 
the traditional measure using a single distance referenced to a single point offers minimal separation. Separation is greater when using the true 
commute route as a reference rather than the estimated typical path. In this comparison, Haversine distances in meters are used for all measures 
but the range of values displayed differs across the graphs. The emphasis is on the differing separation between day types within each graph, rather 
than comparison of each type of day across graphs.



Page 12 of 16Nielsen et al. International Journal of Health Geographics            (2022) 21:5 

design, traffic routing, and others. While existing work 
has established the utility of location tracking for such 
questions [1] and offered a variety of metrics for analy-
sis of such data [2], we note that relatively little work has 
developed methods focused on intraindividual variabil-
ity despite a demonstrated need [7–10]. Instead, exist-
ing approaches tend to summarize behavior into highly 
aggregated measures of travel and routine behavior [3–6, 
22, 23]. We offer a framework that models not only the 
prevailing behaviors of individuals, but also emphasizes 
atypical travel behavior that can provide novel insights 
into intraindividual variability and change. The devia-
tions estimated within our framework can be used to 
summarize individual differences in the dynamics of 
travel behavior or as time-varying phenomena that are 
linked to daily experiences. Within our modular frame-
work, we provided guidelines for both data-driven and 

self-reported definitions of typical paths, and outlined 
the process for calculating deviations from the estab-
lished path. We showed that our method captures day-
to-day variability in travel behavior that is masked by the 
common distance from home measure.

Results discussion
Through our results section, we provided an example of 
the application and utility of the proposed framework. 
Using a simulated dataset that contains 50 days of pri-
marily commuting behavior, we showed how a typical 
path that reflects the prevailing commute behavior can 
be estimated using a principal curve. We showed how 
deviations measured from this estimated path compare 
to those measured from the true commute route. The use 
of simulated data provided the benefit of known labels 
for each day and known commute behavior to demon-
strate performance of the method using suggested path 
estimation and deviation computation options. We addi-
tionally demonstrated that the principal curve approach 
can be applied to real-world travel data and highlighted 
the additional complexities and data quality issues that 
may require case-by-case modifications of the approach 
to address.

Our procedure captures meaningful travel behavior 
because travel away from the typical path is visible as dis-
tinct clusters of high-deviation points without additional 
processing. For example, larger deviations on days with 
travel away from the typical path indicate meaningful 
travel behavior beyond the measurement noise and inac-
curacy in the estimated path captured on commute-only 

Day 1

Day 2

Day 3

Day 4

Day 5

Day 6

Estimated Path

Fig. 5  Principal curve typical path estimation applied to real-world data. Estimated typical path and recorded travel behavior from six days for a 
single person.

Table 3  Summary measures of average and maximum deviation 
per day

Summarized deviations from the estimated typical path show that a single 
principal curve can closely approximate observed travel behavior over several 
days while highlighting day-to-day variability.

Day Average 
deviation

Maximum 
deviation

Observations

1 20.20 125.07 1281

2 24.91 124.31 1141

3 45.29 591.90 3311

4 27.98 619.43 23285

5 21.51 214.26 6201

6 21.74 124.57 880
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days. This demonstrates that meaningful information 
can be extracted even with a simple path estimation pro-
cedure such as principal curves on unprocessed data. 
However, our visualization of the calculated deviations 
relative to the estimated typical path revealed that even 
days that are commute-only, and should thus match the 
typical path, have non-zero deviation. This can be attrib-
uted to two sources of variability—measurement noise 
of the points and inaccuracy in the estimated path. We 
demonstrated that deviations are lower when using the 
known commute route as a reference, which eliminated 
the inaccuracy of the estimated path. Thus, pre-process-
ing steps such as map-matching [38–40] can improve 
both typical path estimation and observed locations used 
for calculating deviations.

We additionally showed how the deviations can be 
studied to provide new insights. Our comparison of sim-
ple summary measures shows not only that averaging by 
type of day recovers anticipated trends with larger devia-
tions coming from commute-and-shop days, but that the 
deviations can be used to identify atypical behavior that 
occurs nearby established behavior. For example, the stop 
at the store is missed when measuring travel behavior 
using the maximum distance from home. This highlights 
a key innovation of our proposed framework: updating 
the reference from a single established point, such as 
home, to using established travel behavior as measured 
by the typical path as the reference. Our findings suggest 
that current approaches may underestimate flexibility 
in travel behavior, and our proposed framework offers 
potential for new insights by additionally capturing the 
variety of travel that may occur between the reference 
location and the most distant locations.

Our example of path estimation using principal curves 
applied to real-world data mirrors findings based on 
simulated data. The calculated deviations were small 
overall, suggesting that this estimated typical path may 
be adequate for research questions concerning atypical 
travel behavior such as visits to new destinations or new 
route choices. Additional situation-specific steps, such 
as segmenting the travel behavior or including temporal 
ordering, could be taken to more closely model the indi-
vidual-level typical travel behavior prior to calculating 
deviations.

While our examples used summary measures to show 
the differential separation achieved by orienting each 
observation to a path rather than a single point, the cal-
culated deviations could also be used directly in other 
modeling frameworks such as multilevel models. The 
advantages of using the deviations directly in analyses 
include allowing every observation to provide unique 
information and having many measurements per day 
rather than a single measure, allowing us to consider 

variability across many timescales. Critically, we dem-
onstrated that deviations from a typical path provide dif-
ferent information about travel behavior than common 
existing measures—more specifically, they describe how 
unusual travel behavior is, rather than how distant travel 
is from a set location. This opens new questions about 
atypical travel and travel flexibility that were previously 
limited by available methodologies.

Method discussion
We proposed a novel framework for the analysis of loca-
tion tracking data which highlights deviation in travel 
behavior as a meaningful behavioral indicator. This 
approach allows for direct analysis of day-to-day variabil-
ity within individuals and identification of atypical travel 
behavior. Existing work on the analysis of location track-
ing data has focused primarily on summarizing typical 
travel behavior and treats deviations as noise [2]. These 
existing approaches, such as the distance from home and 
lifespace ellipse, mask the variety of travel behavior that 
occurs between the reference location and most distant 
locations. Our proposed emphasis on deviations from 
typical paths informs understanding of inter- and intra-
individual variability throughout travel behavior and can 
be achieved using passive location tracking possible with 
existing technology such as smartphones.

This framework provides substantial flexibility in the 
estimation of both paths and deviations, making it adapt-
able to a variety of research questions. In particular, mul-
tiple approaches can be taken to both estimate typical 
paths and compute deviations from those paths. Typi-
cal paths can be estimated with a variety of algorithms 
such as the principal curves method described here, or 
with procedures that incorporate additional information 
such as limiting to roads via map matching. Alternative 
smoothers or approaches to data-driven path estima-
tion may work well in specific situations and for specific 
research questions. The principal curves approach docu-
mented here offers a flexible, data-driven option that fits 
a curve for each person, without the need for specialized 
tools or software. Our method allows for data analysis 
even in cases where knowledge of the geography and 
built environment is unknown.

Importantly, the principle curves approach we describe 
does not preclude self-reported or otherwise pre-defined 
typical paths. Instead, such predefined paths can be 
used either as an alternative or complement to data-
driven typical paths when estimating deviations. We 
advocate for the data-driven approach because it mini-
mizes participant burden and recall bias. Additionally, 
the data-driven approach easily accommodates second-
ary analysis of existing tracking data where additional 
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questions cannot be asked of the individuals represented 
in previously-collected data.

Our technique is also flexible in that typical paths can 
represent specific trips unique to an individual, daily 
routes of an individual, or common behavior of grouped 
individuals. Similarly, deviations can be estimated using 
Euclidean distance, or additional information such as 
known streets can be used to estimate a true travel dis-
tance for vehicular transportation. Further, this frame-
work can be applied across many scales—while the 
examples in this paper focus largely on travel via vehicles 
on streets, the approach can be applied to understand 
movement within a single building such as an office space 
or long term care facility.

Limitations and future directions
Our framework provides substantial flexibility for iden-
tifying atypical travel behavior and flexibility in travel 
behavior. This enables researchers to gain new insights 
into intraindividual variability. However, the poten-
tial of this method must be viewed within the context 
of its limitations. First, we acknowledge that our formal 
model assumptions may limit application in specific cir-
cumstances. For example, the framework would be chal-
lenging to apply if a typical path did not exist. Indeed, 
prior research has found a lack of typical travel behavior 
within non-commute travel [14], highlighting the need to 
ensure that the research question and context support a 
typical path assumption. Further, realistic behavior often 
includes paths with loops, which violates assumptions for 
spatial fitting of many path estimation techniques includ-
ing the principal curves highlighted here. Potential solu-
tions for violations of these assumptions could include 
modifications to theorized target dynamics and group-
ings for data organization to ensure that the theory and 
research question align with using this technique.

We also note that real-world passive location tracking 
data, such as smartphone location data, also introduces 
challenges that may impact applications of this frame-
work. On the technology side, gaps in the data and 
irregularities in sampling rate are common with smart-
phone location data [49], particularly in dense urban 
environments. The context of this missing data will 
determine how impactful the data loss is. For exam-
ple, regularly missing observations along a straight 
stretch of highway where deviations are either unlikely 
or impossible will have minimal impact on the estima-
tion of the typical path and the results. However, miss-
ing observations in a dense urban area where there are 
many opportunities for side trips can lead to failure 
to identify true deviations. Our method does provide 
some robustness in the path estimation for occasional 

missing data due to the longitudinal collection of 
observations on behavior that repeats many times over 
the course of a study. Addressing missing data will 
likely require situationally-specific solutions, but gen-
eral approaches that weight some observations more 
than others or interpolate location may improve both 
the typical path estimation and analysis of deviations. 
Alternative approaches to estimating the typical path, 
such as map matching, may provide improvements in 
these contexts. Future work should explore applica-
tions to real-world data, including study of reliability 
of typical path estimation, and detail situation-specific 
solutions.

Finally, an important area for future work would be to 
address the patterns that occur in deviation measures and 
violate assumptions of downstream analysis approaches. 
Unlike deviations along the typical path, which should 
be small and reflect noise in measurement and the esti-
mated path, consecutive deviation values away from the 
typical path will exhibit autocorrelation. Incorporating 
use of time stamps is one possible approach to identify-
ing these patterns. Time series techniques may be useful 
for addressing autocorrelation while retaining all values. 
Alternatively, measures traditionally used for unpro-
cessed location tracking data [2] may be applied here by 
changing the reference from a single point to the typical 
path. For example, the time spent away from the path 
may be a relevant summary measure of the deviation. 
The further study of these and other summary measures 
based on deviations from typical paths, including tempo-
ral deviations, is an area for future adaptation and study 
of their statistical properties.

Conclusions
In conclusion, our framework emphasizes deviations in 
travel behavior to enable novel research concerning flex-
ibility and anomalies in travel behavior across a variety of 
content areas. The framework facilitates answering new 
questions about travel behavior and health by leverag-
ing the increased ease and affordability of densely sam-
pled passive location tracking of individuals. Researchers 
have substantial flexibility to fine-tune the approach to 
specific research questions and specific contexts, and 
we offer initial suggestions that are broadly applicable 
throughout our step-by-step guide to facilitate ease of 
implementation.
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