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METHODOLOGY

Detecting multiple spatial disease clusters: 
information criterion and scan statistic 
approach
Kunihiko Takahashi1*   and Hideyasu Shimadzu2,3 

Abstract 

Background:  Detecting the geographical tendency for the presence of a disease or incident is, particularly at an 
early stage, a key challenge for preventing severe consequences. Given recent rapid advancements in information 
technologies, it is required a comprehensive framework that enables simultaneous detection of multiple spatial 
clusters, whether disease cases are randomly scattered or clustered around specific epicenters on a larger scale. We 
develop a new methodology that detects multiple spatial disease clusters and evaluates its performance compared 
to existing other methods.

Methods:  A novel framework for spatial multiple-cluster detection is developed. The framework directly stands on 
the integrated bases of scan statistics and generalized linear models, adopting a new information criterion that selects 
the appropriate number of disease clusters. We evaluated the proposed approach using a real dataset, the hospital 
admission for chronic obstructive pulmonary disease (COPD) in England, and simulated data, whether the approach 
tends to select the correct number of clusters.

Results:  A case study and simulation studies conducted both confirmed that the proposed method performed bet-
ter compared to conventional cluster detection procedures, in terms of higher sensitivity.

Conclusions:  We proposed a new statistical framework that simultaneously detects and evaluates multiple disease 
clusters in a large study space, with high detection power compared to conventional approaches.
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Introduction
In the middle of the 19th century, a deadly cholera out-
break affected the Soho area of London, UK. John Snow, 
a British physician, plotted the cases of cholera victims 
on a map and identified many victims within a short dis-
tance of a water pump on Broad Street. The disease map 
led him to a historic landmark, with the water from the 
pump identified as the source of cholera [1]. However, 
what if other cholera victims had also clustered around 

another pump just 200 yards away? Would this still be 
considered as a single cluster or preferably another clus-
ter with a different epicenter? Although the cause of dis-
ease or incident cannot be determined only by mapping 
the victims, disease maps are useful in initial investiga-
tions of disease causes. Whether the cases of diseases are 
scattered randomly or clustered around multiple specific 
centers is a long-standing question in epidemiological 
studies [2].

To date, detecting the tendency of a clustering incident, 
particularly at an early stage, is still a key challenge for 
practitioners in preventing severe epidemics and pan-
demics. Given recent rapid advancements in the utility 
of combined health and geographical information, the 
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challenge has become more complex and has initiated 
a range of methodological developments. Based on the 
domain with which disease clusters are dealt, the types 
of disease clustering are threefold: being purely temporal, 
purely spatial, and spatio-temporal, for each of which dif-
ferent test techniques are proposed [2]. In particular, spa-
tial clusters indicate a spatial tendency for the presence of 
a disease or incident, the risk of which is relatively high to 
other surrounding regions.

There have been many statistical tests widely used [3] 
for identifying meaningful spatial clusters. Amongst 
those techniques, a class called the general test [4] 
searches for clusters without any preconceived assump-
tions on their locations. Whether the statistical signifi-
cance information of each cluster is available, however, 
depends on the technique employed [5]. The techniques 
that do not determine any statistical significance are 
called global clustering tests, techniques developed by 
Moran [6], Whitemore et  al. [7], Oden [8], Tango [9], 
Rogerson [10] and Bonetti and Pagano [11]. In contrast, 
the other techniques that provide the statistical signifi-
cance information, on which the present study focus, 
are called cluster detection tests (CDTs), including those 
proposed by Besag and Newell [4], Turnbull et  al. [12], 
Kulldorff and Nagarwalla [13], Kulldorff [14], Tango [15].

Within CDTs, the circular spatial scan statistic [14] has 
been used extensively along with SaTScan software [16]; 
examples include, as part of their cancer surveillance ini-
tiative, investigating the geographical variation of breast, 
lung, prostate, and colorectal cancer incidences in New 
York State [17]. A distinctive feature of the methodol-
ogy is to adopt a circular scanning window varying its 
size for defining potential clusters. Such a fixed shape of 
the scanning window could perform less effective when 
detecting clusters that lie in non-circular shape regions, 
like regions alongside a river [18]. More recent develop-
ments focus on non-circular cluster forms, employing 
different spatial scan statistics; examples can be found in 
Patil [19], Assuncao et al. [20], and Tango and Takahashi 
[18]. The flexibly shaped scan statistic [18] implemented 
in FleXScan software [21] adopts the scan approach with 
an exhaustive search of all cluster candidates within a 
given radius of any area. This approach balances out 
the unfeasible exhaustive search by restricting it within 
pre-specified neighborhoods of each area [20]. Tango 
and Takahashi [22] also proposed a flexible spatial scan 
statistic implemented with a restricted likelihood ratio. 
Their technique requires much less computational time 
compared to the original statistic and effectively detects 
clusters of any shape when the relative risk (RR) becomes 
large.

Even though such extensive methodological devel-
opments have been made, there seems to have been 

little attention to the accurate statistical evaluation on 
the simultaneous detection of multiple clusters, in other 
words, identifying an appropriate number of cluster 
regions at the same time. A significant shortcoming of 
previous CDTs is that they cannot provide any statisti-
cal significance information for the identified multiple 
clusters. Such a limitation is simply because most of the 
methodologies focus on “single” cluster detection while 
investigating the extended study space within which 
more than one cluster is expected. Some CDTs can be 
adjusted for multiple cluster detection employing spa-
tial scan statistics [14, 23–25], by iteratively running a 
conventional CDT single cluster detection algorithm—
it leaves out sub-regions that are already identified as 
disease clusters in previous iterations until satisfactory 
results are obtained [14]. While the detection procedure 
is recursively performed, the cluster of the first choice 
is often referred to as the “primary” cluster, while the 
remaining clusters are referred to as “secondary” clusters; 
the conventional procedure is therefore often named as 
the secondary-cluster procedure (SCP).

The utility of CDTs becomes challenging when evalu-
ating the number of clusters that lie within the study 
region. Each iteration of cluster detection in SCPs iden-
tifies only one cluster; thus, any test statistics, including 
associated p-values of the iteration, are only valid for 
evaluating that specific cluster. As a consequence, the 
current conventional approaches fail to provide an accu-
rate assessment for selected multiple clusters. Therefore, 
a comprehensive approach is needed. A recent study sug-
gests that a combined approach of statistical modeling 
and model selection can offer a potential solution by 
illustrating a case study that detects purely temporal clus-
ters with a time series model in Takahashi and Shimadzu 
[26]. However, it is not always straightforward if the time 
series framework is directly applicable to a spatial con-
text, which involves an extra dimension. It is unable to 
take advantage of the ordering structure in data—time 
series data are one-directional along with time, from 
the beginning to the end, but spatial data do not possess 
such a clear ordering structure. It is even unclear whether 
a similar approach can perform with a high detec-
tion power for cluster detection and, thus, extra care is 
required to develop a multiple-cluster detection frame-
work in spatial contexts.

Here, we propose a unified framework that ena-
bles simultaneous detection and evaluation of multiple 
spatial-clusters by combining generalized linear mod-
els (GLMs) and information criterion approaches. The 
framework encompasses the procedure proposed for 
detecting purely temporal clusters in Takahashi and Shi-
madzu [26] as a special case. We present an illustrative 
example, the hospital admission for chronic obstructive 
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pulmonary disease (COPD) in England, available from a 
textbook [27], for evaluating the performance of the pro-
posed method. The results are compared with an SCP 
approach. The consistency property of the proposed pro-
cedure is also investigated in a simulation study.

Methods
The proposed method will be evaluated through real and 
simulation data. As an illustrative example, we applied 
the method to the spatial distribution of the hospital 
admission for COPD in England for 2010 and compared 
the detection performance with an SCP for the spatial 
tendency of disease risk. COPD is a group of lung condi-
tions that cause breathing difficulties, including emphy-
sema and chronic bronchitis, and is common in the 
middle to older aged adults who smoke. Although the 
leading cause of COPD is smoking, some cases are due 
to long-term exposure to harmful fumes or dust. Fig-
ure 1 shows the spatial distribution of the risk of hospital 
admission for COPD. There were m = 324 sub-regions 
(local authorities) in England amongst which the total 
number of cases reported was 22,293. The data was 
taken from the book “Spatio-Temporal Methods in Envi-
ronmental Epidemiology” by Shaddick and Zidek [27] 
(from the authors’ website: http://empsl​ocal.ex.ac.uk/
peopl​e/staff​/gs454​/). The color gradient corresponds to 
standardized admission rates adjusted by the underlying 
age-sex profile of the population within the sub-region; 

a darker color indicates a higher rate of COPD hospital 
admission.

A simulation study is set up to investigate the consist-
ent property, whether the proposed method tends to 
select the correct number of clusters when the actual 
number of clusters is known. The simulation data are 
motivated by the COPD data to keep some reality in the 
spatial distribution of disease. However, the focus is given 
on the evaluation of detecting low RR clusters ranging 
from 1 to 1.6.

In the simulation study, we assumed five clusters [A–E; 
Fig.  2] consisting of a different number of sub-regions, 
with each cluster showing a different RR according to the 
seven different scenarios (S1–S7) shown in Table  1. For 
instance, Scenario 1 (S1) indicated the null, i.e., there was 
no cluster, whereas Scenarios 2–5 (S2–S5) had five clus-
ters (A–E) and Scenarios 6 and 7 (S6 and S7) assumed 
only single cluster (A) in the study area. For the remain-
ing sub-regions (B–E), the RRs were set to 1.0. We gen-
erated 1000 datasets for each scenario and compared the 
estimated power calculated from the two cluster detec-
tion tests, the SCP and the proposed methods, at a sig-
nificance level of 0.05.

Results
Methodological developments
We first describe the challenge in detecting multiple-
clusters in a spatial extent, formulating it as a mixture 
Poisson GLM. Here, the formulation allows that the 
proposed procedure directly stands on the likelihood 
principle and encompasses the SCP as a special case, 
demonstrating the critical fact that selecting appropri-
ate multiple clusters is an exact parallel to the covariate 
selection in regression modeling, i.e., model selection. 
We then propose a new criterion for choosing a model 
with the appropriate number of clusters in favor of the 
maximum marginal likelihood, in a similar manner in 
deriving the Bayesian information criterion (BIC).

Multiple‑cluster model and its likelihood
Consider a study space (or area) G consisting of m seg-
ments (or sub-regions), each of which corresponds to 
the smallest element in the space (e.g., counties and 
states). We write the number of cases within segment 
i as Yi , which is assumed to follow a Poisson distribu-
tion independently with an expected value µi—i.e., 
Yi|µi ∼ Poisson(µi) . And the observations (which is 
not random variable) of which Yi is denoted in lower-
case as yi , i = 1, 2, . . . ,m . Additionally, let W denote the 
set of all potential scanning zones (sets of connected 
segments) of any size, the construction of which set 
W relies on an employed scanning method. Assuming 
that there are K  clusters: w = {w1,w2, . . . ,wK } , in space 
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Fig. 1  Maps of hospital admission risk of COPD in England in 2010 
[27]

http://empslocal.ex.ac.uk/people/staff/gs454/
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G , each mutually exclusive window wk contains a set 
of adjacent segments as a cluster; i.e., wk ∩ wk ′ = φ for 
wk  = wk ′ . Note that K = 0 and K = 1 indicate no clus-
ter and a single cluster in the study space, respectively.

The number of cases, yi , is expected to be higher 
within hot-spot clusters compared to in other parts of 
the study space. The expected number of cases can be 
modeled as

for K ≥ 1 and logµi = α0 + logµ0
i  for K = 0 . Here, the 

indicator variable zki = 1 , if segment i is a member of 
k− th cluster ( i ∈ wk ) and zki = 0 otherwise. Note that all 
coefficients are positive, βk > 0 . For segments that fall 

(1)logµi = log
(

θiµ
0
i

)

= α +

K
∑

k=1

βkzki + logµ0
i

Fig. 2  Assumed cluster areas A–E in simulation studies
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into the k-th hot-spot cluster, wk , a parameter of model 
(1), becomes θi = θwk

= exp (α + βk) . In contrast, for 
those that fall outside of the clusters ( w̄ ), the parameter 
is θi = θw̄ = exp (α) . Here, there is some flexibility in the 
constant term µ0

i := µ0
i (xi) that is often modeled as a 

function of other covariates xi , such as demographic or 
environmental factors; this yields the null model; i.e., the 
expected number of cases, when there is initially no clus-
ter in the study space such that β = 0 . The null model is 
therefore described as logµi = α + logµ0

i .
The likelihood function of model (1) can be con-

structed as follows. Now, fi
(

yi|z,ψ
)

= f (yi|µ
0
i , z,ψ) 

is the probability function of Yi = yi given the two 
arguments: the locations of a hot-spot window, 
z: = z(w) = (zki) , which is a K ×m matrix, and the 
parameters ψ = (α,β1,β2, . . . ,βK ) . The conditional log-
likelihood function can be expressed as 

  where z0i = 1 if i /∈
⋃K

k=1 wk , and otherwise as z0i = 0 . If 
we assume z to be randomly selected from a probability 
function h(z) , the complete (full) log-likelihood function 
of ψ becomes:

where L(ψ) is the likelihood function of ψ.

Information criterion for selecting an appropriate K
Multiple-cluster model (1) suggests that the problem of 
detecting multiple clusters can be approached as a model 
selection problem to find an appropriate number of clus-
ters, K (≤ Kmax) . We propose a new information criterion 
that chooses K  in favor of the maximum marginal like-
lihood, ML(y, z) = ∫ exp{log L(ψ)}g(ψ)dψ , where g(ψ) 

l(ψ |z) := log

[

m
∏

i=1

K
∏

k=0

{

f
(

yi|µ
0
i , z,ψ

)}zki

]

,

l(ψ) = log L(ψ) = log

[

m
∏

i=1

K
∏

k=0

{

f
(

yi, zki|µ
0
i ,ψ

)}zki

]

= l(ψ |z)+ log
{

h(z)
}

is a prior probability function of parameter ψ . This can 
be achieved as follows. Applying Taylor expansion and 
Laplace approximations to the marginal likelihood func-
tion, it can be approximated [28] as

where ψ̂ is the maximum likelihood estimator of ψ,

and q = K + 1 . The model evaluation criterion can then 
be obtained by eliminating terms with an order less than 
O(1) with respect to the large sample size m ; that is,

To select an appropriate number of clusters, K  , we 
define a relative difference statistic based on criterion 
C(K ) as

where C0 = C(0) , the criterion under the null model. 
Appropriate multiple clusters are selected from the set of 
candidates w̃ = (w1,w2, . . . ,wK ) with respect to 
max
K

RDC(K ).
For the calculation of the proposed criterion (2), the 

probability function h(z) must be specified. We recom-
mend h(z) = (1/m)K  as an approximation of the prob-
ability of selecting locations w given the fixed windows 
size, shape, and direction, when the window size is rela-
tively very small, #{i|i ∈ w} ≪ m , with respect to the 
whole data size m . Thus, a cluster selection criterion is 
now given as

− 2 logML(y, z)

≈ −2

m
∑

i=1

K
∑

k=0

zki

{

log f
(

yi|µ
0
i , z, ψ̂

)}

− 2 log (h(z))

+ q logm+ log
∣

∣

∣
J
(

ψ̂
)∣

∣

∣
− q log (2π)− 2 log

(

g
(

ψ̂
))

J
(

ψ̂
)

= −
1

m

∂2l(ψ |z)

∂ψ∂ψ ′

∣

∣

∣

∣

ψ=ψ̂

(2)
C(K ) = −2l

(

ψ̂ |z
)

− 2 log (h(z))+ (K + 1) logm, (K ≥ 1).

RDC(K ) = (C0 − C(K ))/C0,

Table 1  Assumed scenarios S1–S7 in simulation studies

Regions Expected Counts Relative risk (RR)

S1 S2 S3 S4 S5 S6 S7

A 11 941.88 1.0 1.5 1.3 1.2 1.6 1.3 1.2

B 5 772.14 1.0 1.5 1.3 1.2 1.3 1.0 1.0

C 7 760.88 1.0 1.5 1.3 1.2 1.4 1.0 1.0

D 7 437.49 1.0 1.5 1.3 1.2 1.3 1.0 1.0

E 3 598.06 1.0 1.5 1.3 1.2 1.2 1.0 1.0

TOTAL 33 3524.31
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Statistical significance of overall clusters
The Monte Carlo hypothesis testing procedure evaluates 
the statistical significance of appropriate models in the 
same manner as the standard scan statistic. Under the 
null hypothesis, a large number of random datasets are 
generated; however, for each of these, max

K
RDC(K ) is 

instead calculated as a test statistic (see details [26]).

Candidates of multiple clusters w
For the multiple-cluster model (1), candidate clusters, z , 
i.e., w among a large number of combinations of sets in 
W , must be chosen in advance. Using an SCP method, 
namely the flexibly shaped scan statistic, we sequen-
tially selected candidate clusters w∗

1,w
∗
2 , . . . ,w

∗
Kmax

 up to 
the predefined maximum number Kmax . While the sin-
gle cluster detection procedure is iteratively applied, the 
cluster of the first choice, w∗

1 , is often called the “primary” 
cluster, with the remaining w∗

2,w
∗
3 , . . . ,w

∗
Kmax

 referred 
to as “secondary” clusters. Note that Kmax = 1 corre-
sponds to the detection of only the primary cluster. In 
practice, we predefine the maximum number of candi-
dates (e.g., Kmax = 10, 20, . . . ) or a p-value threshold, ps 
(e.g., ps < 0.5, 0.8, 1.0 ) derived as the “secondary cluster” 
by SCPs, as there are no overlaps among the candidate 
clusters. The p-value for each cluster selected by an SCP 
is often calculated by the Monte Carlo hypothesis test-
ing procedure. The selection of candidates may differ 
depending on the scanning method used (e.g., circular, 
flexible, and so forth).

An illustrative example
As an illustrative example, we applied the method to the 
COPD data in England ( m = 324 sub-regions) for 2010, 
shown in Fig. 1. A comparison of our proposed method 
and conventional SCP revealed a distinctive difference in 
the number of detected clusters. The proposed method 
tended to detect more clusters compared to the conven-
tional SCP approach, as shown in Fig. 3 and Table 2. Note 
that some clusters are next to each other as if they are in 
the same single cluster, for example w∗

1,w
∗
2 ,w

∗
11,w

∗
12 ; how-

ever, they are not because their RRs differ. In the analysis, 
the candidate clusters w were chosen by the restricted 
flexible shaped scan statistic [22] with the maximum 
number of the area as 20. The p-values were calculated by 
the Monte Carlo hypothesis testing procedure with 9999 
replications for each cluster selected by the SCP.

Our proposed method suggested a total of 15 clusters 
(

w∗
1,w

∗
2 , . . . ,w

∗
15

)

 with the p-value of the multiple cluster 

C(K ) = −2l
(

ψ̂ |z
)

+ (3K + 1) logm, (K ≥ 1).
model as pM = 0.0001 ( C(15) = 2926.92 and RDC(15) = 
0.2242, where C0 = 3724.78). In contrast, the conven-
tional SCP detected K = 10 clusters 

(

w∗
1,w

∗
2 , . . . ,w

∗
10

)

 at 
a significance level of ps < 0.05 (Table 2). Although clus-
ters w∗

11,w
∗
12, . . . ,w

∗
15 with ps > 0.05 were excluded by the 

conventional SCP approach, the proposed method sug-
gested that they should be included, as the p-value of the 
multiple cluster model was pM = 0.0001.

Simulation study
Table 3 shows the number of detected significant multi-
ple clusters K  of the SCP and proposed procedure along 
with the total power among 1000 datasets for each sce-
nario. Note that the RRs of S5 were set to resemble those 
of the first five clusters in the example data (Table  1). 
Table 4 shows the sensitivity (Sen) and positive predictive 
value (PPV) of regions detected as significant, as well as 
their averages and number of detections with Sen = 1 and 
PPV = 1 among the 1000 datasets.

The total powers for both procedures were very simi-
lar, except for S4. However, the SCP tended to detect a 
smaller number of clusters compared to the proposed 
method. The sensitivity of the SCP was lower than that 
of the proposed procedure. Notably, for weak clusters 
with low RRs, RR = 1.3 (S3), RR = 1.2 (S4), and mixed 
RRs (S5), the SCP failed to detect the five clusters with 
a higher power. Therefore, the sensitivity of the SCP and 
the probability of Sen = 1 for these scenarios were much 
lower than that of the proposed procedure.

In contrast, the proposed procedure tended to detect 
more clusters than the actual value. The PPVs of the pro-
posed procedure were slightly lower than those of the 
SCP approach, but its sensitivity appeared to be higher. 
These simulation results suggest that the proposed pro-
cedure can detect regions within the assumed clusters 
with RR > 1.0 accurately with slightly extended regions. A 
similar performance was observed in scenarios S6 and S7 
for which a single cluster was assumed.

Discussion
Several studies have been conducted to detect multi-
ple clusters using scan statistics other than SCPs. For 
example, Zhang et al. [23] proposed an adjusted p-value 
for a sequential detection approach, recursively locat-
ing clusters based upon all previously detected clusters. 
Although this method performs better with a higher 
power than conventional SCPs, the relative sizes of the 
adjusted p-values for secondary clusters are irrelevant to 
the order in which the clusters are sequentially detected; 
thus, the k-th cluster may have a smaller p-value than the 
previously detected (k − 1)-th cluster. Additionally, the 
procedure can only evaluate the significance of individual 
clusters but not of multiple clusters as a whole.



Page 7 of 11Takahashi and Shimadzu ﻿Int J Health Geogr           (2020) 19:33 	

In the spatial context, a multiple cluster detection pro-
cedure using spatial scan statistics was described in [24, 
25]. However, this method cannot assess the significance 
of multiple clusters as a whole. A generalized linear 
mixed model with Moran’s I statistic and stepwise pro-
cedure allows for multiple cluster evaluation, accounting 
for random spatial effects. The power of the approach 
is lower than that of the standard scan statistic [29]. A 
recent study [30] suggested a quasi-likelihood approach 

that deals with spatial correlation. However, quasi-
likelihood suffers from the multiple testing problem in 
selecting multiple clusters, as the approach does not pro-
vide a full-likelihood. Our approach avoids this issue by 
utilizing the model selection framework with the pro-
posed information criterion based on the full-likelihood 
principle.

We proposed an information criterion for selecting 
an appropriate number of clusters. The information 

Fig. 3  Detected clustered-areas. The blue shaded areas were detected by both the conventional SCP and proposed approaches, whereas the 
orange shaded areas were selected only by the proposed approach
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criterion approach is based on the framework pro-
posed by Takahashi and Shimadzu [26] for detecting 
multiple temporal-clusters. The idea of model selec-
tion has been used in more general statistical modeling 

contexts; for instance, Akaike information criterion 
(AIC) and Bayesian information criterion (BIC) are 
used to estimate the number of multiple clusters [31, 
32] and finite mixtures [33]. However, in  situations 

Table 2  Detected clustered-areas with p-values, ps as the secondary, and pM of the multiple clusters

w
∗

i
No. of sub-regions Obs. RR Log likelihood ratio for w∗

i
ps pM

1 11 1486 1.58 140.44 0.0001

2 11 1598 1.31 55.95 0.0001

3 7 1061 1.39 54.75 0.0001

4 7 594 1.36 25.71 0.0001

5 4 396 1.46 25.26 0.0001

6 3 738 1.23 15.68 0.0015

7 1 51 2.39 14.78 0.0035

8 1 159 1.58 14.28 0.0048

9 1 153 1.57 13.65 0.0073

10 1 95 1.69 11.06 0.0490

11 6 747 1.19 10.94 0.0526

12 1 107 1.52 8.34 0.2513

13 3 259 1.27 7.08 0.4747

14 1 54 1.65 5.75 0.7767

15 1 60 1.60 5.71 0.7853 0.0001

Table 3  The number of detected significant multiple clusters K  of the secondary-cluster procedure (SCP) and proposed 
procedures in the simulation study

K 1 2 3 4 5 6 7 8 Power/size ( × 
1000)

Number 
of N.S. 
( K = 0)

S1 (no cluster): RR = 1.0

 SCP 36 0 0 0 0 0 0 0 36 964

 Proposed 24 8 0 0 0 0 0 0 34 966

S2 (five clusters): RR = 1.5

 SCP 0 0 0 1 997 2 0 0 1000 0

 Proposed 0 0 0 0 953 45 2 0 1000 0

S3 (five clusters): RR = 1.3

 SCP 0 2 54 413 531 0 0 0 1000 0

 Proposed 0 0 0 28 890 76 5 1 1000 0

S4 (five clusters): RR = 1.2

 SCP 220 385 270 97 9 0 0 0 981 0

 Proposed 10 50 160 345 401 30 1 0 997 0

S5 (five clusters): RR = {1.6, 1.3, 1.4, 1.3, 1.2}

 SCP 0 29 433 495 43 0 0 0 1000 0

 Proposed 0 0 20 301 621 56 2 0 1000 0

S6 (single cluster): RR = 1.3

 SCP 976 24 0 0 0 0 0 0 1000 0

 Proposed 807 168 24 1 0 0 0 0 1000 0

S7 (single cluster): RR = 1.2

 SCP 914 11 0 0 0 0 0 0 925 75

 Proposed 749 161 14 2 0 0 0 0 926 74
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where large datasets are used, conventional informa-
tion criteria, including −2 log likelihood, AIC, and BIC, 
perform poorly and cannot accurately select an appro-
priate number of clusters. The proposed criterion is 
derived from the marginal likelihood of the multiple 
cluster model and accounts for the probability distribu-
tion of selected candidate clusters. Our examples and 
simulations clearly demonstrate that the proposed cri-
teria perform well for identifying appropriate multiple 
clusters.

Figure 4 shows the comparison of the proposed crite-
rion C with other conventional criteria: −2 log L , AIC, 
and BIC, at K  ( K = 0, 1, . . . , 20 ). Although some inflec-
tion points were observed at around K = 11, the pro-
posed criterion C attained a minimum value, i.e., the 
maximum value of RDC , at K = 15. In contrast, other 
criteria monotonically decrease and do not reach mini-
mum values for K ≤ 20.

A more conservative p-value is calculated by the sec-
ondary procedure as compared to the primary cluster 
procedure [23, 34]. Thus, the former identifies fewer 
significant secondary clusters relative to true clusters. 
This was observed in our simulation study, while the 
proposed procedure tends to detect more clusters, con-
trasting the reported result in the purely temporal setting 
[26], although this may largely depend on the scenario 
assumed.

Our case study and simulation studies demonstrate 
that the proposed framework performs well, although 
some limitations remain. First, multiple cluster detection 
depends on the scanning method initially used, and we 
adopted the conventional secondary procedure to pre-
select candidate clusters for a GLM. This implies that 
choosing the optimal scan statistic with high detection 
accuracy is essential. It requires further investigations on 
various detection test statistics as well as other scanning 
methods, including the union cluster situation. Second, 
the spatial dependence structure must be considered 
for better cluster detection. These methods will provide 
insight for future research.

Conclusion
We proposed a new statistical framework that com-
bines the scan statistic and GLMs to simultaneously 
detect and evaluate multiple disease clusters in a large 
study space. The framework can determine whether the 
presence of a specific disease or incident is entirely ran-
dom over geographical space. We also developed a new 
information criterion to select the appropriate number 
of clusters in the spatial context. Together with these 
approaches, the proposed framework enables the esti-
mation and evaluation of multiple clusters with high 
detection power, as demonstrated in our simulation 
study. Further, a distinctive feature of our simultaneous 

Table 4  Sensitivity and PPV of the secondary-cluster and the proposed procedures in the simulation study (five clusters 
with 33 regions)

avg: average among 1000 simulation sets; Sen: sensitivity; PPV: positive predictive value; Sen = 1: the number of detection with Sen = 1 among 1000 sets; PPV = 1: the 
number of detection with PPV = 1 among 1000 sets

Detected regions (avg) Sen (avg) Sen = 1 (/1000) PPV (avg) PPV = 1 (/1000)

S2 (five clusters): RR = 1.5

 SCP 34.6 1.000 0.994 0.954 0.240

 Proposed 34.8 1.000 0.996 0.950 0.232

S3 (five clusters): RR = 1.3

 SCP 33.8 0.901 0.510 0.884 0.042

 Proposed 37.6 0.992 0.921 0.874 0.022

S4 (five clusters): RR = 1.2

 SCP 19.2 0.479 0.009 0.826 0.095

 Proposed 33.2 0.815 0.272 0.816 0.014

S5 (five clusters): RR = {1.6, 1.3, 1.4, 1.3, 1.2}

 SCP 28.7 0.806 0.043 0.930 0.177

 Proposed 35.2 0.961 0.647 0.905 0.063

S6 (single cluster): RR = 1.3

 SCP 12.0 1.000 0.999 0.930 0.446

 Proposed 13.1 1.000 0.999 0.873 0.374

S7 (single cluster): RR = 1.2

 SCP 11.6 0.909 0.851 0.875 0.205

 Proposed 12.7 0.912 0.855 0.822 0.173
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detection framework is that it can calculate the p-value 
of detected multiple-clusters as a whole, as opposed to 
one at a time, as in conventional SCPs.
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