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Abstract 

Background:  Conducting surveys in low- and middle-income countries is often challenging because many areas 
lack a complete sampling frame, have outdated census information, or have limited data available for designing and 
selecting a representative sample. Geosampling is a probability-based, gridded population sampling method that 
addresses some of these issues by using geographic information system (GIS) tools to create logistically manage-
able area units for sampling. GIS grid cells are overlaid to partition a country’s existing administrative boundaries into 
area units that vary in size from 50 m × 50 m to 150 m × 150 m. To avoid sending interviewers to unoccupied areas, 
researchers manually classify grid cells as “residential” or “nonresidential” through visual inspection of aerial images. 
“Nonresidential” units are then excluded from sampling and data collection. This process of manually classifying 
sampling units has drawbacks since it is labor intensive, prone to human error, and creates the need for simplifying 
assumptions during calculation of design-based sampling weights. In this paper, we discuss the development of a 
deep learning classification model to predict whether aerial images are residential or nonresidential, thus reducing 
manual labor and eliminating the need for simplifying assumptions.

Results:  On our test sets, the model performs comparable to a human-level baseline in both Nigeria (94.5% accu-
racy) and Guatemala (96.4% accuracy), and outperforms baseline machine learning models trained on crowdsourced 
or remote-sensed geospatial features. Additionally, our findings suggest that this approach can work well in new areas 
with relatively modest amounts of training data.

Conclusions:  Gridded population sampling methods like geosampling are becoming increasingly popular in coun-
tries with outdated or inaccurate census data because of their timeliness, flexibility, and cost. Using deep learning 
models directly on satellite images, we provide a novel method for sample frame construction that identifies resi-
dential gridded aerial units. In cases where manual classification of satellite images is used to (1) correct for errors in 
gridded population data sets or (2) classify grids where population estimates are unavailable, this methodology can 
help reduce annotation burden with comparable quality to human analysts.
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Background
Nationally representative survey samples are needed for 
studies in low- and middle-income countries to support 
decision-making in research areas ranging from interna-
tional development to public health. For a probability-
based sample, this requires an updated sampling frame 
with adequate coverage of the target population. For a 
face-to-face survey of households, a country’s national 
census may provide an outdated sampling frame. How-
ever, to obtain a statistically efficient probability-based 
sample of households, an up-to-date roster of house-
holds within the sampled area units is necessary. This is 
often unavailable in low- and middle-income countries, 
so researchers have traditionally relied on field enu-
meration of the smallest administrative units or random 
walk to sample households [1]. In a field enumeration 
approach, researchers conduct a listing of all households 
within the sampled areas to construct a sampling frame; 
the sample of households is then randomly selected from 
this list. A full listing is time consuming and expensive 
and requires skilled personnel [2], and it is susceptible to 
main-street bias (oversampling of highly populous areas), 
among other errors. In a random-walk approach (also 
called random route sampling), field staff do not enumer-
ate all households within a selected area; instead, they 
are provided a starting point and a set of instructions for 
selecting households while in the field (e.g., sample every 
fourth house along a specified route). This approach is 
less resource intensive but lacks statistical rigor because 
of underlying assumptions about the selection method 
[3, 4], and may be prone to bias because of the effects of 
interviewer behavior [5–13].

Geosampling for gridded population sampling
Researchers are developing new and innovative methods 
that facilitate probability-based survey samples in devel-
oping countries at a reasonable cost. One such method, 
geosampling, uses a geographic information system (GIS) 
to partition areas of interest into logistically manageable 
grid cells for sampling [14], contributing to the growing 

literature on gridded population sampling [2, 15–22]. 
The first step of geosampling is typically to use a coun-
try’s administrative geography (e.g., states, districts) from 
the most recent census to design a multistage probabil-
ity-based sample up to the smallest administrative unit 
with reliable information (Fig. 1). Once the smallest avail-
able administrative units are sampled, a grid is overlaid 
on the sampled units to partition them into 1  km2 grid 
cells, called primary grid cells (PGCs). A probability-
based sample of PGCs is then selected with the option of 
integrating population estimate data, derived from GIS 
resources such as LandScan [23] into the sample design.

The PGCs are further divided into smaller area units 
called secondary grid cells (SGCs) using a similar 
approach, albeit without a population estimate at that 
lower level, and a probability-based sample of SGCs is 
selected. Using SGCs as the smallest area unit ensures 
a manageable area size for the field staff conducting 
data collection, and reduces the degree to which sur-
vey respondents are clustered in a particular geographic 
area. High clustering of sampled units can lead to inflated 
variance estimates, thus reducing accuracy of survey esti-
mates [24]. Interviewers are then instructed to survey all 
households within selected SGCs, reducing the potential 
for interviewer selection bias. Note that SGCs can vary 
in size (50 m × 50 m to 150 m × 150 m grid cells) based 
on population density and urbanicity, rendering smaller 
areas in dense urban environments and larger areas in 
more rural settings. This flexibility in grid size variation 
is designed to help field staff better manage logistics, as 
large grid areas in population-dense environments make 
it more difficult for interviewers to effectively scan the 
entire targeted area, identify households to include in the 
sample, and attempt to interview all targeted respondents 
within the grid unit during one visit.

Given the logistical challenges, it is undesirable and 
costly to send field staff to uninhabited or sparsely pop-
ulated areas. Prior to sampling PGCs and SGCs, sev-
eral steps are taken to refine the set of grid cells eligible 
for selection. First, PGCs with a LandScan population 

Fig. 1  Overview of an example multistage geosampling design outside of Kampala, Uganda
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estimate lower than 250 people per km2 are excluded 
from sampling. While gridded population datasets are 
becoming more detailed [25], population predictions 
at smaller area sizes have historically been less accurate 
than at larger geographic units. In particular, case studies 
have reported large absolute differences existing across 
gridded population data sets in more populous regions 
when compared to low density areas [26], and root mean 
squared error (RMSE) between gridded population esti-
mates and high spatial resolution population census data 
increasing as the geographic units are more granular [27]. 
To help mitigate these inaccuracies, a random sample 
of PGCs with an estimated population greater than 250 
people per km2 is selected for visual residential screen-
ing. Screening utilizes a human coder who determines 
if a PGC is residential by using aerial photography to 
establish the context in which buildings are located. This 
enables the coder to perceive the likely purpose for the 
structures. The presentation of residential buildings on 
an aerial photograph is not uniform within or between 
communities and countries. It is necessary to consider 
various geospatial characteristics such as community 
size, building pattern, and proximity to other land uses 
when determining whether a building is residential. The 
final sample of PGCs is selected among those classified as 
residential.1

For SGCs, it becomes difficult to reproduce the screen-
ing strategy used for PGCs because LandScan popula-
tion estimates are not available for SGCs and because 
the set of SGCs is much larger, increasing the time and 
cost of screening. Prior applications of geosampling 
have relied on sequential sampling from a hypergeo-
metric distribution to implement a manageable form of 
residential screenings for SGCs. A hypergeometric dis-
tribution provides the number of successes in sample 
draws, without replacement, from a finite population 
of size that contains an exact number of successes (i.e., 
achieving the draw with the targeted characteristic—in 
our case, a residential SGC), wherein each draw is either 
a success or a failure. SGCs are sequentially selected at 
random, screened for residences, and only enter the sam-
ple if deemed residential; this process continues until 
the desired SGC sample size has been achieved. Because 
screening ceases before all SGCs within a PGC have been 
screened, this approach does not provide all the neces-
sary information to calculate appropriate probabilities of 
selection for residential SGCs. Consequently, a simplify-
ing assumption that the population is uniformly distrib-
uted across all SGCs within a PGC must be made during 
weighting.

Motivation
Our goal is to create a protocol for how to efficiently and 
accurately classify SGCs as residential versus nonresi-
dential so that nonresidential grids can be excluded from 
sampling and accounted for in probabilities of selection. 
This study assesses the utility of machine learning for this 
task, as an alternative to manual screening. The advan-
tages of this approach are a reduced level of effort and 
the ability to create a complete residential screening of all 
SGCs within sampled PGCs. Furthermore, the availabil-
ity of complete screening information for SGCs would 
eliminate the need for simplifying assumptions during 
calculation of SGC sampling weights. Although geosam-
pling and other methods use satellite imagery for final-
stage selection [2, 15–18, 20, 22, 28, 29], this is the first 
instance, to the authors’ knowledge, of using machine 
learning to aid in sample frame construction in GIS-ena-
bled sampling methodologies.

Methods for classifying satellite imagery
The remote sensing community has a long history of 
detecting geospatial features of interest in satellite 
imagery. Traditional approaches for feature extraction 
use spectral properties from individual pixels to deter-
mine land use or coverage categories [30–32]. With the 
wider availability of high-resolution satellite imagery, 
researchers have expanded to Geographic Object-based 
Image Analysis (GEOBIA) methods [33–35]. These 
methods are aimed at identifying and demarcating spe-
cific objects of interest, such as lakes or buildings, instead 
of assigning broad land-cover categories to pixels, such as 
“water” or “urban.”

Increasingly, deep learning models [36] are being 
used to analyze satellite imagery on diverse tasks, such 
as semantic segmentation [37], per-pixel classification 
[38], and poverty mapping [39]. Deep learning has also 
been particularly successful in scene classification tasks 
[40–44], which assign an entire aerial image into one of 
several distinct land-use or land-cover categories. Con-
ceptually, scene classification is equivalent to a binary or 
multiclass object recognition task in the computer vision 
literature, except that input images are aerial landscapes 
instead of portrait or in-profile photographs. As such, 
our problem can be framed as a two-category scene clas-
sification task (predicting whether a satellite image scene 
is residential vs. nonresidential), where the model results 
are used to determine which areas are eligible for the sur-
vey selection process.

In the following sections, we discuss components of 
the study, including the data used to test the approach, 
the machine learning models used for scene classifi-
cation, and the results. We assess the performance of 
our deep convolutional neural network (CNN) models 

1  A residential PGC or SGC is a grid cell with at least one building structure 
detected in the aerial imagery.



Page 4 of 17Chew et al. Int J Health Geogr  (2018) 17:12 

against two benchmarks: (1) a human baseline represent-
ing the raw agreement between two independent coders, 
and (2) a machine learning baseline trained on a set of 
crowdsourced geospatial features from OpenStreetMaps 
(OSM) and remotely sensed features from the Euro-
pean Space Agency (ESA) Land Cover data set. To bet-
ter understand the generalizability and reproducibility of 
our approach, we have tested the models in two different 
countries—Nigeria and Guatemala—and evaluated the 
extent to which model accuracy is affected by changes in 
the training set sample size. Lastly, we conclude with dis-
cussions on the approach and future work.

Methods
Data preparation
The data used for this study are from two geosampling-
based projects. The first data set is from a random sub-
sample of SGCs from the states of Lagos and Kaduna 
in Nigeria. All SGCs in the subsample were manually 
screened and then split to create training and test data 
sets. An additional data set, which included SGCs from 
Guatemala City, was used to validate the model’s gen-
eralizability across different countries and geographic 
settings. The process of generating the SGC images was 
the same for both Nigeria and Guatemala. Table 1 sum-
marizes the different grid areas sizes for the Nigeria and 
Guatemala data sets, respectively.

Aerial and satellite images were retrieved through 
three web map services, providing global access to recent 
Google, Bing, and Esri base maps and imagery. Grid-
based polygon layers for both PGCs and SGCs were 
constructed in ArcGIS, and the source of the imagery 
at the time of the survey was recorded for future repro-
ducibility. Google and Bing image services are com-
mercially available to ArcGIS users for a modest license 
fee, and Esri imagery is natively integrated into the 
GIS software. While these tiled image services provide 
worldwide coverage, they can vary in both age and spa-
tial resolution from 1 to 2  m depending on the specific 
geographic location. As such, the imagery provided by 
each of these services may differ in resolution, color bal-
ance, brightness, and cloud cover from location to loca-
tion, and between vendors. To help determine the best 

imagery for identifying residential areas for a given loca-
tion, a graphical user interface (GUI) was developed to 
help human coders toggle between the different imagery 
services while classifying grids as residential versus non-
residential (see “Gold-standard labels” section for more 
detail on developing gold-standard labels). Although 
using different imagery sources complicates the analysis, 
it exposes the methodology to implementation scenarios 
that research teams may realistically encounter. Model 
performance across imagery sources and grid area sizes 
are presented in the Results.

We selected 71 random PGCs in Nigeria that contained 
residential development (Fig. 2a), as well as an additional 
6 PGCs in Guatemala (Fig. 2b). Because of the relatively 
smaller sample size in Guatemala, diversity in urbanicity 
and geographical characteristics were considered for 
PGC selection instead of a purely random selection to 
ensure better generalizability.

From these PGCs, 5350 SGC images were created for 
Nigeria and 1500 for Guatemala. The size of the second-
ary grid unit was determined by its level of urbanicity as 
defined from the latest country census. Urban areas had 
smaller grid cells than rural areas to account for popu-
lation density, to avoid high clustering, and so that field 
staff would have a more consistent workload across 
SGCs.

Although this adds complexity to the modeling task, we 
included it in the study to more realistically mirror sur-
vey field work considerations. The Nigerian images were 
composed of 410 grid cells of 50 m × 50 m, 3896 grid cells 
of 100 m × 100 m, and 1044 grid cells of 150 m × 150 m 
images. The Guatemalan set was composed of 1200 grid 
cells of 50 m × 50 m and 300 grid cells of 100 m × 100 m 
images. Figure 3a shows an example SGC grid in Nigeria 
and Fig. 3b shows an example SGC grid in Guatemala.

Labelling data
Gold‑standard labels
To develop the gold-standard labels of whether a grid is 
considered “residential” or “nonresidential,” SGCs were 
individually evaluated by coders to determine if they 
contained one or more buildings within the image. If the 
image contained one or more buildings, the entire grid 
was considered “residential”; otherwise, it was considered 
“nonresidential.” Since there is a certain amount of sub-
jective decision making required by the coders to deter-
mine if buildings are present, the data were labelled by 
two independent coders, with a senior GIS analyst acting 
as an adjudicator to settle disputed labels and to ensure 
consistency and accuracy in selection. The instances of 
coder disagreement were the motivation for the human 
benchmark metric (“Human benchmark metric” section) 
and is further examined in the “Discussion” section.

Table 1  Count of  images by  grid area sizes in  the  Nigeria 
and Guatemala data sets

Type Size Nigeria Guatemala

PGC 1 km × 1 km 71 6

SGC 50 m × 50 m 410 1200

SGC 100 m × 100 m 3900 300

SGC 150 m × 150 m 1044 0
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This process was completed using a GUI tool devel-
oped within ArcGIS for applying a residential or nonresi-
dential label to each of the grid cells. Figure 4a provides 
an example residential SGC image whereas Fig.  4b pre-
sents an example nonresidential image.

Human benchmark metric
To provide a naïve human-level benchmark for how con-
sistently coders agree on labels for this task, we computed 
the raw agreement [45] between our two independent 

coders, prior to adjudication. The raw agreement for two 
coders can be calculated using the following formula:

where N is the total number of images that are jointly 
labelled by the two coders, nij is the number of cases 
assigned as i by Coder 1 and j by Coder 2 for categories i, 

RawAgreement =
1

N

C∑

i=1

nii

Fig. 2  a Nigeria PGC Image (1 km × 1 km). b Guatemala PGC Image (1 km × 1 km)

Fig. 3  a Nigeria SGC Image (50 m × 50 m). b Guatemala SGC Image (100 m × 100 m)
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j = 1, …, C and C is the total number of categories (in our 
case, residential and nonresidential).

Although other measures of inter-rater reliability have 
been developed to correct for when coder agreement 
occurs by chance [46, 47], there are several benefits to 
using raw agreement for comparison. First, it provides 
the cleanest comparison to classification model predic-
tions, because it is mathematically equivalent to the 
“overall accuracy” evaluation metric commonly used in 
scene classification tasks. The only distinction between 
the two is that raw agreement compares the difference in 
labels between two humans, whereas classification accu-
racy typically compares the difference between a gold-
standard human label and a model prediction. Second, 
inter-rater reliability measures that account for agree-
ment that is expected to occur through chance, such as 
Cohen’s kappa, can be controversial depending on the 
context. In the social and health sciences, Cohen’s kappa 
has been criticized for (1) its “base rate problem” [48], the 
difficulty in comparing kappa statistics across studies due 
to the statistic’s dependence on the proportions of posi-
tive and negative examples in any given sample, and (2) 
the assumptions the statistic inherently makes about the 
decision-making process of raters, which should instead 
be explicitly modeled for each rater individually [49]. 
In the remote sensing community, the kappa statistic 
has been heavily criticized for its use in assessing land 
change, being scrutinized for reasons such as its assump-
tion of randomness being an irrelevant baseline for many 
spatial classification problems [50] and being redundant, 
since it is highly correlated with overall accuracy [51]. 

For these reasons, raw agreement was used in this study 
over other reliability metrics, although additional evalu-
ation measures were used to assess model performance 
(“Model evaluation” section).

Of the 5350 Nigerian images, coders disagreed on 
labels for 482 grids, resulting in a raw agreement of 
91.0%. Of the 1500 Guatemalan images, coders disagreed 
on 44 grids, resulting in a raw agreement of 97.1%.

Training and test sets
The Nigeria and Guatemala data were randomly split into 
training sets for building models (85%) and test sets for 
model evaluation (15%), stratified to preserve the class 
ratios of residential and nonresidential images found in 
the overall data. Although not severely unbalanced, non-
residential grids were more common than residential 
grids in both our Nigeria (63/37) and Guatemala (67/33) 
samples. Table  2 provides a breakdown of the training 
and test sets, respectively, by country and class type.

Fig. 4  a Example SGC residential scene (100 m × 100 m). b Example SGC nonresidential scene (100 m × 100 m)

Table 2  Training and  test data set allocation for  Nigeria 
and Guatemala

Nigeria Guatemala

Training set 4550 1275

 Residential 1676 417

 Nonresidential 2874 858

Test set 800 225

 Residential 295 73

 Nonresidential 505 152

Total 5350 1500
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As of writing, most open source machine learning 
libraries do not support modeling.tiff files, so the images 
were converted to.png format. Additionally, the images 
were rescaled from 720p × 720p to 150p × 150p for com-
putational efficiencies, as smaller images allow for faster 
model training and easier handling of large batch sizes. 
When applicable, we performed additional pre-process-
ing steps for the pre-trained models assessed for trans-
fer learning, as specified in the original papers [52, 53]. 
These steps are necessary to ensure that the models pro-
duce reliable output by matching the input data format 
used to originally train the models.

Residential scene classification models
To create a model that can accurately discern between 
residential and nonresidential aerial images, we develop 
a series of scene classification models based on machine 
learning methods. Machine learning is a subdiscipline of 
artificial intelligence that focuses on the ability of com-
puters to “learn” how to perform tasks without being 
explicitly programmed how to do so. For example, rather 
than hand-code software routines with specific instruc-
tions on how to identify residential scenes from images, 
a model is “trained” to learn how to distinguish between 
residential and nonresidential scenes from examples of 
labelled data. Exploring modern machine learning meth-
ods for aerial scene classification is attractive due to the 
near human-level performance they have achieved in 
tasks as diverse as object recognition [54–56], speech 
recognition [57, 58], and gaming [59–61]. Additionally, 
after a model is trained, predicting the classes of new 
images can be automated without additional human 
intervention and performed at scale. For the use case of 
screening grids for residential or nonresidential scenes, 
these models can be used as the sole screening tool or 
as an additional quality check to assist a team of human 
annotators.

The scene classification models presented in this paper 
can be classified into two overarching groups: (1) “deep 
learning” models [36], which learn data representations 
by processing raw data inputs through multiple succes-
sive model layers that detect features (most commonly, 
performed with artificial neural network models) and 
(2) more traditional “shallow learning” models that learn 
decision rules from variables (i.e., features) created by 
modelers with expertise or experience with the phenom-
ena being modeled. In our case, we develop deep learning 
scene classification models directly from labelled satellite 
images without explicitly creating variables that distin-
guish between residential and nonresidential grids. These 
models are described in the “Deep learning models” sec-
tion. For comparison, we also develop shallow learning 
scene classification models with analyst-derived features 

from the open global GIS datasets OSM [86] and the 
European Scape Agencies Climate Change Initiative pro-
ject [62]. These models are described further in the “Shal-
low learning models”  section. A workflow diagram of 
the two sets of modeling approaches is also included in 
Fig. 5. In total, there are 11 models developed for Nigeria 
and another 11 models for Guatemala, whose predictions 
are compared with each other on the test sets and to the 
human coder raw agreement scores. Testing such a large 
number of models is motivated by the No Free Lunch 
Theorem [63], which states that there are no theoretical 
guarantees that any one standard machine learning algo-
rithm will work best on all tasks, implicitly promoting 
an empirical approach to model selection for supervised 
classification problems.

Deep learning models
Baseline convolutional neural network  As a baseline 
deep learning model, we constructed an eight-layered 
convolutional neural network (CNN) consisting of three 
convolutional, three pooling, and two fully connected lay-
ers. A CNN is a type of artificial neural network model that 
contains a convolution filter as at least one of its layers. In 
image processing, a convolution filter (or kernel) is a small 
matrix of values that, when applied to a larger image, can 
help isolate notable image features (edges, corners, etc.). 
Convolution filters use the convolution matrix operation 
to extract features, often convolving the filter across the 
image in a sliding window to capture local details. While 
researchers have developed many specialized filters for 
feature extraction [64, 65], CNN filters are not specified 
a priori to extract any specific features. Instead, elements 
of the CNN filter matrix are included as model param-
eters and derived during the training process, effectively 
creating custom filters salient for the specific modeling 
task. Deep CNNs take this a step further by chaining con-
volution layers together, a process that ideally captures 
increasingly higher-level and more nuanced representa-
tions of the data. This model uses 3 × 3 convolution filters 
with a stride of 1 to extract data representations.

Other types of layers besides convolutional layers are 
often included in CNNs to perform complementary 
actions. Max pooling [66] was performed in three layers 
with a 2 × 2 filter to reduce the number of parameters and 
help prevent overfitting. Max pooling is a simple dimen-
sion reduction technique in which a portion of a matrix 
is isolated and the max value of the isolated elements is 
returned. This simplified representation summarizes 
characteristics of the earlier layers, helping later layers 
generalize more broadly rather than learn traits that are 
specific only to a particular image. In addition, rectified 
linear units (ReLU) were used for the activation function 
to speed up training [67]. Activation functions serve the 
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same purpose as link functions for general linear models 
(GLMs) in the statistics literature [68], providing a way of 
transforming a linear predictor into a nonlinear response 
space. ReLUs differ from other popular activation func-
tions like the logistic sigmoid function (commonly used 
in logistic regression) in that ReLUs return zero at any 
input values in the negative domain and return the input 
value itself in the positive domain:

The first fully connected dense layer also used a ReLU 
activation function and leveraged a dropout method 
[p(dropout) = 0.5] to prevent overfitting [69]. Dropout is 
a regularization technique in which units in your neural 
network are randomly dropped (along with their connec-
tions) during training. The intuition behind this method 
is that, by thinning the network connections in your fully 
connected layers, you prevent parameters from being too 
interdependent among themselves, resulting in a network 
that will generalize better to new examples. A final dense 
layer with a sigmoid activation function is used to create 

f (x) = x+ = max(0, x)

predicted probabilities of inclusion for either the “resi-
dential” or “nonresidential” classes. The model was run 
with a batch size of 25 images each and trained over 35 
epochs. Figure  6 presents a simplified network diagram 
of the baseline CNN.

Transfer learning  Large labelled data sets or strong 
regularization are often required to effectively train 
deep learning models without overfitting [69]. While 
many state-of-the-art deep learning models have dozens 
of layers [52, 53], this can results in thousands or even 
millions of model parameters to fit. Training an exceed-
ingly deep architecture from scratch with random ini-
tializations was prohibitive for our sample size, so we 
used a transfer learning approach [70–72] to leverage 
stable weights from deep CNN classification models 
trained on much larger data sets. Transfer learning is 
a learning framework in which the objective is to use 
a model trained in one source domain (or task) to help 
build a model in a related target domain (or task) with-
out the need for considerable new labelled data [70]. 

Fig. 5  Workflow diagram of modeling approach
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This “knowledge transfer” paradigm, in which general 
features learned from one task help inform a similar 
task, has become particularly popular with deep CNNs, 
as pretrained models built on large labelled datasets are 
often available through open source code repositories.

To test a transfer learning approach, we used the Ima-
geNet dataset as our source domain and the labelled 
grid scene images as the target domain. ImageNet is 
a labelled image data set consisting of over 1.2 mil-
lion high-resolution images and 1000 categories [73], 
which were collected from the web and labelled by 
human coders on Amazon’s Mechanical Turk platform. 
ImageNet categories are based off the lexical database 
WordNet, which semantically organizes and groups 
commonly used words into concept hierarchies [74]. As 
such, ImageNet does not include aerial images because 
they are not generally associated with archetypical 
representations of objects (e.g., a standard image of a 
building would be more likely to be portrayed in profile 
or as part of a landscape rather than from an overhead 
view). In addition, aerial images may contain many 
distinct objects in the same image whereas ImageNet 
images do not. Even with this limitation, transfer learn-
ing with ImageNet trained models have produced state-
of-the-art results on images that do not fit this criteria, 
such as medical [75] and satellite imagery [76].

While it seems unintuitive that a model built on non-
aerial images could help develop a model that identifies 
residential gridded aerial units, deep CNNs have been 
shown to benefit from spatial hierarchies of patterns 
[77] in which earlier layers detect small localized pat-
terns (such as edges), while later layers construct more 
complex representations (such as shapes) composed of 
the localized patterns detected in earlier layers. While 
complex representations at later layers can reduce the 
performance of transfer learning to new tasks if they 
are too highly specialized [72], research suggests that 
transferring features even from dissimilar tasks can 
be better than using random parameter initializations 
[72]. In addition, transferability tends to increase as 

the similarity between tasks increases; [72] as such, we 
favor using pretrained model weights in this study that 
were originally trained to solve a task similar to ours 
(Inception V3 [52] and VGG16 [53] used for object 
recognition).

To test the viability of transfer learning, we used pre-
trained models from the well-known Inception V3 [52] 
and VGG16 [53] architectures. Inception and VGG16 
are deep CNN model architectures that won first and 
second place, respectively, at the ImageNet Large-Scale 
Visual Recognition Challenge 2014 (ILSVRC 2014) and 
have been used successfully for transfer learning on 
tasks diverse as cell nuclei classification on histopathol-
ogy images [78], human aquatic activities classification 
on micro-Doppler signatures [79], and fruit detection 
in orchards [80]. Model parameters (i.e., weights) for 
the architectures trained on ImageNet were acquired 
through the Python Keras library implementation [81]. 
To allow the pretrained weights to update for our mod-
eling task, we performed transfer learning in two steps. 
First, we ran our training and test images through the 
pretrained Inception V3 and VGG16 networks on all but 
the top layers, which often consist of a fully connected 
layer to flatten the dimensionality and an evaluative fully 
connected layer with a softmax activation function to 
provide predicted probabilities for class assignment. The 
top layers of the pretrained models were not included, 
because we are not interested in predicting the original 
ImageNet classes. Second, we used the resulting “bottle-
neck features” [82] as the base for training our own small 
fully connected model with our classes of interest (resi-
dential vs. nonresidential). Our model includes a fully 
connected layer with ReLU activation units, a dropout 
layer with a probability of dropout = 0.5, and a final out-
put layer with a sigmoid activation function to produce 
class probabilities.

As a final experiment, we created an ensemble model 
[83–85] of our transfer learning models by averaging 
each model’s predicted probabilities. The premise behind 
ensemble learning is that a diverse set of models can 

Fig. 6  Network diagram of baseline CNN
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achieve better predictive performance than any of the 
individual constituent models alone.

Shallow learning models
Although aerial and satellite images provide a direct 
way of detecting remote land features, modeling on 
aerial images is unnecessary if the features of interest 
are already captured in existing data sets. Large, open 
geospatial databases, such as OSM [86], provide crowd-
sourced annotations of roads and buildings for areas 
worldwide. Furthermore, open data sets of land cover 
categories, maintained by ESA used to study the effects 
of climate change [62], provide land use and develop-
ment patterns. As an additional benchmark, we devel-
oped classification models using data derived from OSM 
and ESA to compare the effectiveness of object recogni-
tion models using aerial satellite imagery to classification 
models using features derived from open geospatial data-
bases. To ensure that the methods could be reproduced 
in new countries, we only considered data sources that 
were both open source/freely available and had a global 
scope.

Table  3 provides a list of variables created for the 
OSM + ESA data set. These variables were assigned to 
each PGC and SGC by intersecting the grid cell bounda-
ries and the various contributing geospatial layers using 
ArcGIS. Building and road features were extracted from 
OSM while major land-cover variables were assigned to 
the grid cells from the ESA Climate Change Initiative 
project. The intersection of buildings to grid cell bounda-
ries was performed twice. The first analysis determined 
if a grid cell contained any building while the second 
intersection only included buildings that were not clas-
sified by OSM as having a non-residential use. Examples 
of non-residential buildings that were excluded from the 
intersection include churches, stores, and banks. This 
variable within the dataset is referred to as semi-filtered 
as OSM building data is not comprehensively attributed. 
The classification of grid cells using ESA data assigned 
each SGC with the land cover classification that inter-
sected the largest proportion of the grid cell.

We assessed the OSM + ESM data set on seven differ-
ent classifiers (decision trees, gradient boosting trees, 
AdaBoost, random forest, logistic regression, support 
vector machines, and k-nearest neighbors) using the 
scikit-learn package in Python [87]. The models were run 
for both Nigeria and Guatemala using the same training 
and test splits as the deep CNN models for comparability.

Model evaluation
To evaluate model performance on the test set, we used 
the following four metrics to assess different aspects of 
the predictions:

1.	 Overall accuracy—percent of correct predictions.
2.	 Precision—true positives/(true positives + false posi-

tives). Indicates the number of true positives out of 
all observations that are predicted positive (i.e., of all 
the grids that are predicted residential, the percent-
age that are actually residential).

3.	 Recall—true positives/(true positives + false nega-
tives). Indicates the number of true positives detected 
(i.e., the percentage of all residential grids predicted 
residential by the model).

4.	 F1-score—harmonic mean of precision and recall:

	

These metrics were calculated for each model evalu-
ated, on both data sets. For additional model assess-
ments, we compared overall accuracy across imagery 
sources (Google, Bing, Esri) and SGC grid area sizes 
(50 m × 50 m, 100 m × 100 m, 150 m × 150 m). Last, we 
tested the model sensitivity with respect to the amount 
new of training data required, to better understand 
the expected data annotation burden on future survey 
projects.

F1 =
2

1

recall
+

1

precision

Table 3  GIS derived OSM + ESA variables

Variable name Type Number Description

ContainBuildings Binary 1 Whether an SGC contains an OSM building polygon

SemiFitBuild Binary 1 Whether an SGC contains a semi-filtered OSM building polygon

AnyRoad Binary 1 Whether the SGC intersects any OSM road

ResRoad Binary 1 Whether the SGC intersects any OSM road labelled residential

ResPlusUnRoad Binary 1 Whether the SGC intersects any OSM road labelled residential or unlabeled

Glob2015_MajLC Categorical 38 ESA land-cover categories, ranging from “cropland” to “permanent snow and ice”
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Results
Scene classification model results
Table  4 presents model evaluation metrics across the 
model runs for both Nigeria and Guatemala. Raw agree-
ment of the two independent coders is also provided as 
the human-level benchmark.

Of the four deep learning models assessed (baseline 
CNN, VGG16, IncetionV3, and VGG16 + Inception), 
the ensemble of VGG16 and InceptionV3 performed 
the best in Nigeria, with an accuracy of 94.4% and 
F1-score of 92.2%. The ensemble also performed the 
best in Guatemala with a test set accuracy of 96.4% and 
F1-score of 96.5%. Overall, the transfer learning models 
performed considerably better than the baseline CNN, 
with over 93% accuracy for both VGG16 and Incep-
tionV3 in Nigeria (compared to 88.9% for the baseline 
CNN) and over 95% for both in Guatemala (compared 
to 93.3% for the baseline CNN). Both the transfer learn-
ing models and the ensemble compared favorably to 
the human benchmark for Nigeria, performing better 
than the raw agreement (94.5 vs. 91.0%). These models 

almost performed as well as the human benchmark in 
Guatemala (96.4 vs. 97.1%).

As a further comparison, we created shallow clas-
sification models using GIS-derived variables from 
OSM and ESA to predict residential grids in Nigeria 
and Guatemala. Using the same grids for training and 
test sets as the deep learning models, our best model 
accuracy using the OSM + ESA variables was 80.6% 
in Nigeria and 93.8% in Guatemala (Table 4). In Nige-
ria, all models except k-nearest neighbors performed 
similarly, with AdaBoost and logistic regression clas-
sifiers performing slightly better than others. In Gua-
temala all models performed in a tight range between 
92.4 and 93.8%, although only k-nearest neighbors and 
AdaBoost achieved an accuracy lower than 93.8%. Pre-
cision, recall, and F1-scores were also stable and con-
sistent within country samples.

Compared to the deep learning models trained 
directly on images, the shallow learning models using 
OSM + ESA variables performed worse in both Nigeria 
and Guatemala. Although model accuracy was relatively 

Table 4  Model evaluation metrics for the Nigeria and Guatemala test sets

*Raw agreement between two independent coders

Model Type Acc. Prec. Recall F1

Nigeria

 Baseline CNN Deep 88.9% 89.2% 88.9% 89.0%

 VGG16 with ImageNet weights Deep 93.4% 93.4% 93.4% 93.3%

 InceptionV3 with ImageNet weights Deep 93.6% 93.6% 93.6% 93.6%

 VGG16 and InceptionV3 ensemble Deep 94.5% 94.5% 94.5% 94.5%

 Decision Tree Shallow 80.3% 80.9% 80.3% 78.9%

 Gradient Boosting Shallow 80.3% 80.9% 80.3% 79.0%

 AdaBoost Shallow 80.6% 81.8% 80.6% 79.2%

 Random forest Shallow 80.1% 80.7% 80.1% 78.8%

 Logistic regression Shallow 80.6% 81.8% 80.6% 79.2%

 Support vector machine Shallow 79.9% 81.5% 79.9% 78.1%

 K-nearest neighbors Shallow 75.6% 81.3% 75.6% 71.3%

 Human benchmark Human 91.0%* – – –

Guatemala

 Baseline CNN Deep 93.3% 93.3% 93.3% 93.3%

 VGG16 with ImageNet weights Deep 96.4% 96.7% 96.4% 96.5%

 Inception V3 with ImageNet weights Deep 95.6% 95.9% 95.6% 95.6%

 VGG16 and InceptionV3 ensemble Deep 96.4% 96.7% 96.4% 96.5%

 Decision tree Shallow 93.8% 94.1% 93.8% 93.8%

 Gradient boosting Shallow 93.8% 94.1% 93.8% 93.8%

 AdaBoost Shallow 92.9% 93.1% 92.9% 93.0%

 Random forest Shallow 93.8% 94.1% 93.8% 93.8%

 Logistic regression Shallow 93.8% 94.1% 93.8% 93.8%

 Support vector machine Shallow 93.8% 94.6% 93.8% 93.9%

 K-nearest neighbors Shallow 92.4% 93.7% 92.4% 92.6%

Human benchmark Human 97.1%* – – –
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close between the image and OSM + ESA models in Gua-
temala (93.8 vs. 96.4%), there was a substantial difference 
in performance in Nigeria (80.6 vs. 94.4%). In addition, 
unlike the image-based models, the OSM + ESA mod-
els greatly underperformed the human-level benchmark 
in Nigeria (80.6 vs. 91.0%), while also slightly underper-
forming in Guatemala (93.8 vs. 97.1%).

A possible explanation for the difference in perfor-
mance of the OSM + ESA models between Nigeria and 
Guatemala may be because of the completeness of the 
OSM database for the two countries. Evidence of this 
comes from a recent study on road network complete-
ness in OSM [88], which found that Nigeria had a lower 
estimated fraction of roads captured (36%) than Gua-
temala (47%). Although using a GIS feature model may 
become more reliable as developing countries get better 
coverage, the models trained on satellite images in this 
study do not suffer from this limitation.

Effect of imagery source and grid area sizes
As our data sets in Nigeria and Guatemala contain mul-
tiple image sources and grid area sizes, we test to see if 
accuracy on the best performing model is impacted by 
either sources of variation. Table  5 reports the test set 
accuracy across different SGC grid sizes. In Nigeria, the 
model was most accurate predicting 50  m × 50  m grid 
size images (98.65%), followed by the 150  m × 150  m 
grid sizes (95.48%). The model was least accurate in pre-
dicting the 100  m × 100  m grid size images (93.52%). 
However, as the accuracies fall in a small range, we per-
formed a 3-sample test of proportions to account for the 
differences in accuracy that may occur due to chance. 
The test results do not provide substantial evidence to 
reject the null hypotheses that all the accuracy meas-
ures across SGC grid sizes are equal, given α = 0.05 
(Chi-square = 3.691; p-value = 0.1579). Likewise, while 
Guatemala also predicted 50  m × 50  m grids (97.21%) 
more often than 100 m × 100 m grids (93.48%), the differ-
ences in accuracy were also not statistically significant at 
α = 0.05 (Chi-square = 0.595; p-value = 0.4403).

Table  6 reports the test set accuracy across different 
image sources. While three sets of images were provided 
for analysts to choose from (Google, Bing, and Esri), no 
images from Esri were selected for coding. In Nigeria, the 
model predicted near-identical accuracies across image 
sources (Google = 94.25%; Bing = 94.90%). The 2-sam-
ple test of proportions also reflects this, failing to reject 
the null hypothesis at an α = 0.05 (Chi-square = 0.016; 
p-value = 0.8982). Surprisingly, Google was selected 
for all 50  m × 50  m grids and Bing was chosen for all 
100  m × 100  m grids in Guatemala. As such, the differ-
ences in accuracy and test statistics are the same as when 
stratifying by grid size.

Effect of training set size
Operationalizing this method in new countries will 
require retraining the models with images from the new 
countries. To better understand the expected data anno-
tation burden, we created learning curves to test how sen-
sitive model performance is to training size [89]. Figure 7 
shows the test set accuracy and 95% confidence intervals 
for training set sizes at 10, 25, 50, 100, 250, 500, and 1000 
images. Five randomly sampled training sets were cre-
ated and trained for each set size, stratified to preserve 
the class ratios seen in the original training sets. The five 
trained models for each training set size were then run 
on the corresponding countries complete validation set 
to determine accuracy metrics. Although results are only 
presented for the pretrained VGG16 model, the learning 
curves showed similar trends for InceptionV3.

As expected with smaller training sizes, there is 
a lower average and larger variance in the accuracy 
for both Nigeria and Guatemala. Average accuracy 
increases as training size increases, from 78.2% (n = 10) 
to 91.7% (n = 1000) in Nigeria and 90.5% (n = 10) to 
96.1% (n = 1000) in Guatemala. Although neither sets 
of models at these sample sizes exceed the human-level 
benchmarks, they do approach the baseline with mod-
est amounts of training data. This finding both supports 
the robustness of transfer learning and the more practi-
cal case of portability to new areas.

Table 5  Test set accuracy by SGC grid size

SGC size Nigeria Guatemala

Count Accuracy Count Accuracy

50 × 50 m 74 98.65% 179 97.21%

100 × 100 m 571 93.52% 46 93.48%

150 × 150 m 155 95.48% 0 –

Test for equality 
of proportions

χ2 = 3.691, df = 2, 
p-value = 0.1579

χ2 = 0.595, df = 1, 
p-value = 0.4403

Table 6  Test set accuracy by image source

Image source Nigeria Guatemala

Count Accuracy Count Accuracy

Google 643 94.25% 179 97.21%

Bing 157 94.90% 46 93.48%

Test for equality 
of proportions

χ2 = 0.016, df = 1, 
p-value = 0.8982

χ2 = 0.595, df = 1, 
p-value = 0.4403
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Discussion
These findings suggest the effectiveness of deep CNNs 
for identifying residential grids for cluster sampling, 
providing an accurate and scalable way to help screen 
large areas with minimal data requirements. Although 
this method was demonstrated within the context of 
geosampling, the approach can be applicable to any 
household survey in low- and middle-income countries 
with a gridded population sample design. With studies 
showing a variety of inaccuracies for model-based pop-
ulation data sets at the sub-national level [26, 27], our 
approach could help verify, supplement, or even replace 
the need for gridded population estimates in certain 
cases.

Although little has been published on the use of scene 
classification for applications in survey research, our 

results support findings in the remote sensing literature 
on deep CNNs providing state-of-the-art performance 
on remote scene classification tasks [90], showing over 
95% overall accuracy on data sets containing anywhere 
from 2 [41] to 45 [91] scene categories. In particular, 
several studies have also documented the effectiveness 
of using transfer learning with CNNs pretrained on 
ImageNet for scene classification tasks [41–43], even 
though the underlying source data set does not contain 
satellite images. While other scene classification bench-
mark datasets [91, 92] can contain up to dozens of dif-
ferent categories (e.g., airplanes, stadiums, beaches, 
viaduct, etc.), many of these scenes are largely irrele-
vant for the purpose of household surveys that are only 
interested in residences. Of comparable studies that 
publish confusion matrices with scene specific accuracy 
metrics, residential scenes have been among the most 
difficult to correctly classify (Table  7). Han et  al. [42] 
and Hu et al. [43], whom both also use a transfer learn-
ing approach with deep CNNs pretrained on ImageNet, 
found that predicted accuracy of residential classes 
ranged from 85 to 95%, compared with our 94.5% accu-
racy in Nigeria and 96.4% accuracy in Guatemala. This 
difficulty in predicting residential scenes may be due 
to their high similarity to other classes or ambiguity 
in the definition of what is considered a “residential” 
scene. Especially when encountering difficult-to-define 
categories, collapsing classes (such as our overarch-
ing “nonresidential” class) can increase classification 
accuracy by simplifying the modeling task, requiring 
the model to distinguish only between broad, distinct 
categories [93]. By focusing on only two scene classes 

Fig. 7  Learning curves for Nigeria and Guatemala

Table 7  Residential scene classification accuracy across studies using deep CNNs transfer learning models

*Medium and Sparse residential tied for 19th/20th place

**Tied with “intersection” for 17th/18th place

***Tied with seven other classes for 12th–18th place

****Tied with “storage tank” for 19th/20th place

*****Tied with “idle land” for 10th/11th place

References Scene class Dataset # Classes Accuracy (%) Relative scene 
accuracy 
ranking

Hu et al. [43] Sparse Residential UC Merced 21 85 19 of 21*

Med. Residential UC Merced 21 85 19 of 21*

Dense Residential UC Merced 21 90 17 of 21**

Han et al. [42] Sparse Residential UC Merced 21 95 12 of 21***

Med. Residential UC Merced 21 90 19 of 21****

Dense Residential UC Merced 21 85 21 of 21

Residential SIRI-WHU 12 93 10 of 12*****

Residential WHU-RS 19 88 19 of 19

Chew et al. (in this study) Residential Nigeria 2 94.5 NA

Residential Guatemala 2 96.4 NA
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in our modeling, survey researchers not only benefit 
from a potentially higher accuracy model than if they 
included additional scenes, but the scenes included are 
only those relevant for downstream analysis.

In addition to providing survey research teams with 
a method for screening residential areas, our work also 
provides contributions to the larger scene classification 
literature. While deep CNNs have been effective on scene 
classification tasks ranging in spatial resolutions (2-m 
resolution in SIRI-WHU dataset [94] to 1-ft resolution 
in UC Merced dataset) [95], few studies have reported 
applying deep CNN scene classification models to data-
sets containing multiple spatial resolutions as found in 
our data set. We do not  find statistically significant dif-
ferences in accuracies between grid area sizes and image 
sources, suggesting that deep CNN models can perform 
well on image datasets that contain heterogeneous prop-
erties and that may resemble data collected by survey 
research and implementation teams on projects in devel-
oping countries. Additionally, most other benchmark 
scene classification datasets contain images from devel-
oped areas, such as the United States [40, 95], Europe 
[91], and urban areas in China [96], rather than low- and 
middle-income countries. By extending scene classifica-
tion to Nigeria and Guatemala, we provide additional evi-
dence that methods shown to be effective in developed 
nations also apply to developing nations where data qual-
ity and availability is generally worse.

While initial results are promising, future work could 
expand the training set to include a larger and more 
diverse geographic scope to better understand how the 
method generalizes across developing nations. Further-
more, since SGC images are localized within PGCs, our 
training samples are highly clustered geographically. This 
is appropriate for our use case; however, future research 
could validate if the high accuracy found in this study 
applies when predicting random SGC grids within a 
country. Extended analyses could also examine the extent 
of spatial autocorrelation among residential grids and 
assess if methods that explicitly model this dependence 
(e.g., Markov random fields) can help improve model 
accuracy. In future work, deep learning models could also 
be applied at the PGC level. Although this could reduce 
the existing multistep process that is required to imple-
ment manual residential screening down to a single step, 
it is unclear whether the heterogeneity within the larger 
PGCs would impact the effectiveness of the method.

One limitation of our study was that our nonresiden-
tial grids contained a variety of landscapes, including 
agricultural, forested, and predominately commercial 
areas without residencies. While we argue that focus-
ing the problem specifically on residential versus non-
residential will likely be preferred for gridded population 

sampling for household surveys, future research can be 
directed toward better understanding whether creating 
more granular scene categories for nonresidential grids 
can refine the screening process, particularly in helping 
disambiguate areas in the built environment (residential 
vs. commercial). This option would need to be balanced 
against the additional labelling burden of coders need-
ing to choose among multiple classes. The current geo-
sampling methodology only requires knowing whether 
residential buildings are present in the area. However, the 
task could be reframed as an object detection problem 
with the objective of identifying the number of buildings 
in a grid instead of just the presence or absence of resi-
dential buildings. The extension of this work to an object 
detection task could facilitate the estimation of popula-
tion estimates for SGCs or may allow direct selection of 
households from aerial images.

Lastly, although we present these metrics as an assess-
ment of how well our models compare to human perfor-
mance on this task, we recognize that the specific values 
for the human-level benchmark are only representative of 
the coders recruited to assist for this study. Coders with 
different levels of experience, skill, and conscientious-
ness than ours would likely produce different results. 
Additionally, these numbers represent the disagreement 
across both training and test sets in Nigeria and Guate-
mala, whereas the model predictions are only assessed on 
the test sets. Nonetheless, these ballpark figures do pro-
vide us greater assurance of this method’s merits com-
pared to the status quo and much needed context to the 
raw model performance metrics.

Conclusion
Using deep CNNs, we demonstrated that we can cor-
rectly classify whether areas are residential or non-
residential from aerial satellite images, meeting or 
exceeding a human-level benchmark in both Nigeria 
and Guatemala. Not only does this capability reduce 
the manual resources and calendar time needed for 
labelling images on future geosampling projects, but it 
will also improve calculation of probabilities of selec-
tion at GIS sampling stages by avoiding unnecessary 
assumptions about the population distribution. Our 
findings also suggest that this approach can work well 
in new areas with relatively modest amounts of train-
ing data. Lastly, in areas where GIS variables from data 
sources like OSM are well populated, using GIS derived 
feature variables can also accurately detect whether 
a grid is residential or nonresidential. However, our 
findings suggest that using CNNs trained on satellite 
images work even when crowdsourced spatial data sets 
are not well populated or maintained.
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