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Role of AmpG in the resistance 
to β‑lactam agents, including cephalosporins 
and carbapenems: candidate for a novel 
antimicrobial target
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Abstract 

Background:  A complex cascade of genes, enzymes, and transcription factors regulates AmpC β-lactamase overex-
pression. We investigated the network of AmpC β-lactamase overexpression in Klebsiella aerogenes and identified the 
role of AmpG in resistance to β-lactam agents, including cephalosporins and carbapenems.

Methods:  A transposon mutant library was created for carbapenem-resistant K. aerogenes YMC2008-M09-943034 (KE-
Y1) to screen for candidates with increased susceptibility to carbapenems, which identified the susceptible mutant 
derivatives KE-Y3 and KE-Y6. All the strains were subjected to highly contiguous de novo assemblies using PacBio 
sequencing to investigate the loss of resistance due to transposon insertion. Complementation and knock-out experi-
ments using lambda Red-mediated homologous recombinase and CRISPR–Cas9 were performed to confirm the role 
of gene of interest.

Results:  In-depth analysis of KE-Y3 and KE-Y6 revealed the insertion of a transposon at six positions in each strain, at 
which truncation of the AmpG permease gene was common in both. The disruption of the AmpG permease leads 
to carbapenem susceptibility, which was further confirmed by complementation. We generated an AmpG permease 
gene knockout using lambda Red-mediated recombineering in K. aerogenes KE-Y1 and a CRISPR–Cas9-mediated gene 
knockout in multidrug-resistant Klebsiella pneumoniae-YMC/2013/D to confer carbapenem susceptibility.

Conclusions:  These findings suggest that inhibition of the AmpG is a potential strategy to increase the efficacy of 
β-lactam agents against Klebsiella aerogenes.
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Background
Gram-negative bacteria are a major threat to hospital-
ized patients and are associated with high mortality 
rates [1–4]. Hospital-acquired infections such as pneu-
monia, bloodstream infections, urinary tract infections, 
wound or surgical site infections, and meningitis are 
of particular concern to the clinicians. In the presence 
of antibiotic selective pressure, bacteria are capable of 
acquiring or up-regulating genes that code for antibiotic 

Open Access

Annals of Clinical Microbiology
and Antimicrobials

*Correspondence:  deyong@yuhs.ac
†Roshan D’Souza and Nguyen Le Phuong contributed equally
1 Department of Laboratory Medicine and Research Institute of Bacterial 
Resistance, Yonsei University College of Medicine, 50‑1 Yonsei‑ro, 
Seodaemun‑gu, Seoul 03722, Korea
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12941-021-00446-7&domain=pdf


Page 2 of 10D’Souza et al. Ann Clin Microbiol Antimicrob           (2021) 20:45 

drug resistance, eventually leading to the emergence and 
global dissemination of these pathogens [5]. Also, Gram-
negative bacteria can have redundant resistance mecha-
nisms, either using single mechanisms against multiple 
antibiotics or multiple mechanisms against a single anti-
biotic. The antimicrobial- resistance crisis has escalated 
for several reasons: the high cost associated with find-
ing novel antibiotic targets and antibiotic discovery, the 
length of time needed to design the drug and evaluate the 
efficacy, and the increased frequency of emerging bacte-
rial resistance.

Klebsiella aerogenes (previously known as Enterobacter 
aerogenes) is a clinically significant bacterium in the fam-
ily Enterobacteriaceae. K. aerogenes are part of the nor-
mal microbiota of the gastrointestinal tract in 40 to 80% 
of the population [6]. Though not a primary human path-
ogen, it has been implicated in a variety of healthcare-
associated conditions, such as systemic bacteremia and 
urinary and lower respiratory tract infections, which are 
intrinsically resistant to ampicillin and narrow-spectrum 
cephalosporins [7, 8]. K. aerogenes possesses a chromo-
somal ampC β-lactamase gene that can be induced by 
antibiotic stress with various β-lactams. Mutations in 
the AmpC β-lactamase expression pathway can lead to 
resistance against extended- and broad-spectrum cepha-
losporins [9, 10].

Carbapenems, one class of β-lactam antibiotics, have 
historically been successful for treating cephalosporin-
resistant K. aerogenes infections [11]. Alarmingly, K. 
aerogenes have recently emerged worldwide as carbape-
nem-resistant because of the high frequency of mutations 
in its ampR and ampD genes [12, 13]. In this study, we 
examined the mechanism of carbapenem resistance in K. 
aerogenes using transposon mutagenesis. In addition, we 
incorporated the CRISPR–Cas9-mediated gene knockout 
system to delete ampG permease and understand its role 
in antimicrobial resistance.

Methods
Bacterial strains, plasmids, antibiotics and oligonucleotides
K. aerogenes YMC2008-M09-943034 (KE-Y1) was col-
lected from a tertiary-care hospital in Korea in 2008, 
and non-carbapenemase-producing carbapenem-
resistant Klebsiella pneumoniae (YMC/2013/D) was 
collected from a different tertiary-care hospital in 
Korea in 2013. Bacterial identification was performed 
using the VITEK 32 GN system (BioMérieux, Marcy 
l’Etoile, France) and was confirmed using the direct 
colony method with MALDI-TOF MS (Bruker Dal-
tonics, Bremen, Germany). The MICs of piperacillin, 
piperacillin-tazobactam, ampicillin, ampicillin-sulbac-
tam, ceftazidime, ceftazidime-clavulanate, cefepime, 
imipenem, meropenem, ciprofloxacin, and aztreonam 

were determined by agar-dilution methods and E-test 
and interpreted according to the Clinical and Labora-
tory Standards Institute guidelines (2018). Lambda Red 
donor plasmid pKD46 was obtained from the E. coli 
Genetic Stock Center at Yale University (New Haven, 
CT, USA). Plasmid ZpUC-19 was a gift from Dr. Yo 
Suzuki at the J. Craig Venter Institute, La Jolla, CA, 
USA. Plasmids pCRISPR (Addgene plasmid # 42875) 
and pCas9 (Addgene plasmid #42876) were gifts from 
Luciano Marraffini. Plasmid pKDsgRNA-ack (Addgene 
plasmid #62654) was a gift from Kristala Prather. 
Recombinant strains were selected with spectinomy-
cin, chloramphenicol, or kanamycin at a concentration 
of 50, 34, or 30  mg/l, respectively. Antibiotic concen-
trations were reduced by half for selecting strains har-
boring two or more plasmids. Oligonucleotides were 
synthesized by Macrogen, Inc., Korea.

Transposon mutagenesis and complementation
Conjugation was performed by cross-streaking E. 
coli SM10 λpir and KE-Y1 on Mueller–Hinton plates. 
Transconjugants were selected on media containing 
gentamicin (2  mg/l) and ciprofloxacin (0.1  mg/l). The 
colonies were further replica-plated on Mueller–Hin-
ton plates containing meropenem to obtain carbape-
nem-susceptible mutants. The in-silico-determined (see 
below) novel target functional gene, ampG, was amplified 
using primers AmpG-F and AmpG-R (Additional file  1: 
Table S3), cloned into EcoRI- and XbaI-digested pAD123 
vector, and transformed into chemically competent 
transposon-mediated mutants (carbapenem-susceptible 
K. aerogenes KE-Y3 and K. aerogenes KE-Y6) as described 
previously [14, 15].

DNA isolation, WGS, and analysis
The DNA of the wild-type and mutant strains were 
extracted using the Wizard genomic purification kit 
(Promega, WI, USA) with modifications to the manu-
facturer’s protocol by adding 5 μl RNase solution during 
cell lysis and incubating the supernatant with DNA at 
− 20  °C for 1 h after addition of isopropanol. The WGS 
data were obtained by using the PacBio RS II sequencing 
system (Pacific Biosciences, Inc., Menlo Park, CA, USA) 
in a commercial laboratory (DNALink, Korea). To con-
firm the integrity of PacBio sequencing, all strains were 
sequenced on a 318 chip using the Ion Torrent PGM 
system and Ion Sequencing 200 kit (Life Technologies, 
Carlsbad, CA, USA). Annotations were performed using 
the RAST annotation pipeline with manual scrutiny [16]. 
All genomic analyses were performed using Geneious 
Pro 8.0 [17] (http://​www.​genei​ous.​com).

http://www.geneious.com
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Amino acid alignment and AmpG structure modeling
The amino acid sequences of AmpG protein from K. 
aerogenes KE-Y1 (CP045870), Klebsiella pneumoniae 
ATCC 13883 (KN046818), Escherichia coli O157:H7 
(CP034384) and Pseudomonas aeruginosa PAO1 
(CP053028) was aligned using Vector NTI align X. 
The structure model of AmpG was further estab-
lished using I-TASSER according to homology mod-
eling method [18]. The TOP 5 models predicted by 
I-TASSER and each model C-score are − 1.43, − 2.07, 
− 2.21, − 3.10, − 3.51 respectively. C-score is typically 
in the range of [− 5, 2], where a C-score of a higher 
value signifies a model with a higher confidence and 
vice-versa.

CRISPR–Cas9 mediated gene knockout
K. pneumoniae-YMC/2013/D (carbapenemase-non-
producing, carbapenem-resistant), was included for 
CRISPR–Cas9 mediated AmpG permease gene knockout 
studies. CRISPR/Cas9 system with lambda Red recom-
bineering was used to knockout the chromosomal ampG 
permease gene as described previously [14]. First, pCas9 
was transformed into electrocompetent YMC/2013/D, 
and clones were selected on chloramphenicol-LB agar 
plates. pKD46 was digested with XmnI to replace the 
ampicillin-resistance gene blaamp with the spectinomy-
cin resistance gene blaspec to generate pKD46-spec. The 
spectinomycin gene was amplified from pKDsgRNA-ack 
using primers Spec-XmnI-F and Spec-XmnI-R. pCas9 
containing YMC/2013/D was made electrocompetent 
again, and pKD46-spec-transformed cells were selected 
on spectinomycin LB plates. Plasmid pCRISPR::ampG 
was constructed by annealing oligonucleotides (ampG.
cRNA.S and ampG.cRNA.AS) and ligating the product 
to BsaI-digested pCRISPR as described in the Marraffini 
pCRISPR protocol [19]. A 60-nt ssDNA oligonucleo-
tide (ampG::STOP.lead or ampG:STOP.lag) encoding 
two consecutive stop codons in the ampG open read-
ing frames and pCRISPR::ampG were mixed with 40  µl 
electrocompetent YMC/2013/D (pKD46-spec, pCas9). 
Transformants were selected using kanamycin and 
chloramphenicol.

Allelic replacement mutagenesis using lambda Red 
recombineering
The ampG deletion mutant strain was constructed by 
gene replacement via double crossover recombination 
as described previously with a few modifications [20]. 
Briefly, three different fragments (including the upstream 
and downstream fragments of ampG) and the zeocin 
resistance cassette fragment were amplified using three 
different primer pairs i.e. Up_ampG_F/R, Zeo_F/R and 

Down_ampG_F/R (Table  S3). The reverse primer of the 
upstream fragment and forward primer of the down-
stream fragment of ampG at their 5’ ends included a 
15–20-nt extension homologous to the primers used to 
amplify the zeocin marker gene. Nested overlap-exten-
sion PCR was performed using an equal concentration 
of the three fragments to generate a linear DNA template 
containing the zeocin marker gene  flanked by both the 
upstream and downstream homologous regions. Plasmid 
pKD-sgRNA-ack was transformed into electrocompetent 
KE-Y1, and clones were screened on LB plates contain-
ing spectinomycin. Strain KE-Y1 containing pKD-sgRNA 
was grown in LB broth until reaching OD600 = 0.2, and 
lambda Red recombinase was expressed by adding 0.2% 
arabinose and with an additional 1.5-h incubation at 
30 °C. Cells were harvested and made electrocompetent, 
and the linear DNA was electroporated. The sample was 
plated on low-salt LB agar plates containing 50  μg/ml 
zeocin and incubated at 37 °C. The ampG gene knockout 
was confirmed using accuPower PCR Premix (Bioneer, 
Daejeon, Korea) with different primer sets including Up_
ampG_F & Down_ampG_R; Up_ampG_F & ZeoR; ZeoF 
& Down_ampG_R; ZeoF & ZeoR. The reaction mixture 
was prepared according to manufacturer instructions 
with 0.2 μM primer concentration..

Results
β‑lactam susceptibility induction by mutagenesis
K. aerogenes KE-Y1 was mated with E. coli SM10 λpir 
containing the transposon donor vector pBTK30 encod-
ing the aacC1 gentamicin 3’-acetyltransferase for clone 
selection. More than 100,000 colonies were screened to 
yield two transconjugants of K. aerogenes KE-Y1 suscep-
tible to carbapenem, K. aerogenes KE-Y3 and K. aerogenes 
KE-Y6. The minimum inhibitory concentrations (MIC) of 
these strains are shown in Table 1. Transposon insertion 
led to a 16-fold decrease in ertapenem MIC (from 8 to 
0.5 μg/ml) and a 32-fold decrease in the meropenem MIC 
(from 8 to 0.25  μg/ml). Both mutant strains were also 
susceptible and showed decreased MICs to piperacillin-
tazobactam (32-fold), cefotaxime (64-fold), ceftazidime 
(64-fold), and aztreonam (64-fold).

Sequencing and comparative analysis
PacBio sequencing yielded circular genomes with 
5,296,061, 5,272,156, and 5,266,224 base pairs with 54.8%, 
54.9%, and 54.9% GC content for KE-Y1, KE-Y3, and 
KE-Y6, respectively (Fig. 1). Average Nucleotide Identity 
(ANI) obtained with MUMmer and BLAST indicated 
more than 99.8% similarity among all three strains (Addi-
tional file  1: Table  S1). Whole-genome alignment using 
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Mauve [21] indicated the homology between the three 
strains with one locally collinear block reversed (Fig. 2).

Amino acid alignment and AmpG structure modeling
The amino acid sequence comparison of AmpG KE-Y1 
with K. pneumoniae, E. coli and P. aeruginosa showed 
similarity of 96.33%, 93.08% and 41.58%, respectively. 
Also, all known activation motif residues (G25, A122, 
Q124, A181) were conserved (Fig.  3). Based on the 
homology modeling structure of AmpG KE-Y1, the 
activation motif residues are located inside the trans-
membrane. Therefore, it is expected to be similar to the 
previously known AmpG modeling structure [22].

Open reading frames deactivated by transposon insertions
Whole-genome sequencing (WGS) analysis of KE-Y1, 
KE-Y3, and KE-Y6 revealed six insertions of gentamicin-
encoded transposons. The transposon-mediated inac-
tivated genes are listed in Additional file  1: Table  S2. 
AmpG permease gene insertions were seen in both car-
bapenem-susceptible transposon insertion strains KE-Y3 
and KE-Y6. In strain KE-Y3, the AmpG permease gene 
was truncated in the middle by the transposon inser-
tion. However, in strain KE-Y6, the transposon inserted 
immediately upstream of the gene, leading to the loss of 
the promoter required for AmpG permease gene expres-
sion (Fig.  4). The genome position of the genes respon-
sible for induced β-lactamase expression is illustrated in 
Fig. 5, along with its comparison to that of the wild-type 

and its transposon mutant derivatives. AmpC-AmpR 
and AmpD-AmpE are closely linked with each other. The 
localization of the AmpG, AmpC-AmpR, and AmpD-
AmpE genes are similar and identical in all the three 
strains.

AmpG permease and carbapenem resistance
Complementation of susceptible strains KE-Y3 and 
KE-Y6 with plasmid pAD123::AmpG reverted the strain’s 
resistance phenotype. We observed a 16-fold (0.5 to 8 μg/
ml) increase in ertapenem resistance for both KE-Y3 
and KE-Y6, and meropenem resistance was increased 
eightfold (0.25 to 2 μg/ml) and 16-fold (0.25 to 4 μg/ml) 
for both strains, respectively. In addition, the comple-
mented strains were resistant to piperacillin-tazobactam 
(≥ 128  μg/ml), cefotaxime (≥ 128  μg/ml), ceftazidime 
(≥ 32  μg/ml), and aztreonam (≥ 32  μg/ml).  AmpG gene 
knockout from the wild-type KE-1 using allelic replace-
ment mutagenesis induced susceptibility to most of 
the antibiotics tested, and the MICs were similar to the 
transposon mutants KE-Y3 and KE-Y6.

CRISPR–Cas9 mediated AmpG permease knockout
The clinical isolate K. pneumoniae-YMC/2013/D was 
included for CRISPR–Cas9-mediated gene knock-
out studies to evaluate the role of AmpG permease in 
another Gram-negative multidrug resistant patho-
gen. The CRISPR/Cas9 knockout system, coupled 
with lambda Red recombineering, has been used to 

Table 1  MICs of wild-type K. aerogenes KE-Y1 and its transposon insertion mutants (KE-Y3 and KE-Y6), its complemented derivatives, 
and the ampG knockout mutant (KE-Y1ΔampG)

*: AES modified (Advanced Expert system)

Antibiotics KE-Y1 Wild-type KE-Y3 
Transposon 
mutant

KE-Y3 + pADY123::ampG KE-Y6 
Transposon 
mutant

KEY6 + pADY123::ampG KE- Y1ΔampG

Ampicillin  ≥ 32(R)  ≥ 32(R)  ≥ 32(R)  ≤ 2*(R*)  ≥ 32(R)  ≤ 4(S)

SAM  ≥ 32(R)  ≤ 2(R*)  ≥ 32(R)  ≤ 2(R*)  ≥ 32(R)  ≤ 2(S)

TZP  ≥ 128(R)  ≤ 4(S)  ≥ 128(R)  ≤ 4(S)  ≥ 128(R)  ≤ 4(S)

Cefazolin  ≥ 64(R) 32(R)  ≥ 64(R) 16 (R*)  ≥ 64(R) 32(R)

Cefoxitin  ≥ 64(R)  ≥ 64(R)  ≥ 64(R)  ≥ 64(R)  ≥ 64(R)  ≥ 64(R)

Cefotaxime  ≥ 64(R)  ≤ 1(S)  ≥ 64(R)  ≤ 1(S)  ≥ 64(R)  ≤ 1(S)

Ceftazidime  ≥ 64(R)  ≤ 1(S) 32(R)  ≤ 1(S)  ≥ 64(R)  ≤ 1(S)

Cefepime  ≤ 1(S)  ≤ 1(S)  ≤ 1(S)  ≤ 1(S) 2(S)  ≤ 1(S)

Aztreonam  ≥ 64(R)  ≤ 1(S) 32(R)  ≤ 1(S)  ≥ 64(R)  ≤ 1(S)

Ertapenem  ≥ 8(R)  ≤ 0.5(S)  ≥ 8(R)  ≤ 0.5(S)  ≥ 8(R)  ≤ 0.5(S)

Meropenem 8(R)  ≤ 0.25(S) 2(I)  ≤ 0.25(S) 4(R)  ≤ 0.25(S)

Amikacin  ≤ 2(S)  ≤ 2(S)  ≤ 2(S)  ≤ 2(S)  ≤ 2(S)  ≤ 2(S)

Gentamicin  ≤ 1(S)  ≥ 16(R)  ≥ 16(R)  ≥ 16(R)  ≥ 16(R)  ≤ 1(S)

Levofloxacin  ≤ 0.12(S)  ≤ 0.12(S)  ≤ 0.12(S)  ≤ 0.12(S)  ≤ 0.12(S)  ≤ 0.12(S)

Tigecycline 1(S)  ≤ 0.5(S)  ≤ 0.5(S)  ≤ 0.5(S)  ≤ 0.5(S)  ≤ 0.5(S)

TMP/SMX  ≤ 20(S)  ≤ 20(S)  ≤ 20(S)  ≤ 20(S)  ≤ 20(S)  ≤ 20(S)
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overcome cell death caused by double-stranded DNA 
breaks in Enterobacteriaceae. An AmpG knockout in 
K. pneumoniae-YMC/2013/D induced susceptibility to 
carbapenems. MIC data indicated a ≥ fourfold (≥ 0.32 

to 8  μg/ml) and twofold (8 to 4  μg/ml) decrease in 
resistance to imipenem and meropenem, respectively, 
compared to the wild-type isolate.

Fig. 1  Circular view of whole-genome alignment of the chromosome of KE-Y1, KE-Y3, and KE-Y6. The first, second and third ring (outermost to 
inner) represent the BLAST comparisons of KE-Y1, KE-Y3, and KE-Y6 against the wildtype KE-Y1, respectively. The fourth and fifth layers indicate 
the GC (guanine-cytosine) skew (purple-green) and the GC content (black), respectively. The GC skew indicate the deviation from the average GC 
content of the three whole-genome sequences. The positions of the genome are marked in the innermost layer. This image was created using 
BLAST Ring Image Generator



Page 6 of 10D’Souza et al. Ann Clin Microbiol Antimicrob           (2021) 20:45 

Discussion
Our results demonstrate that carbapenemases do not 
mediate carbapenem resistance in K. aerogenes. Thus, 
control and management of carbapenem resistance 
should not be focused solely on the use of carbapene-
mases. Carbapenem resistance can also be due to over-
expression of AmpC, efflux pumps, and porin loss (or a 
combination of these). To the best of our knowledge, this 
is the first report of K. aerogenes and the role of AmpG 
permease on carbapenem resistance following induction 
of ampC during antibiotic-induced stress. This stress may 
lead to many other mutations in the bacterial genome 
that cause resistance to a wide variety of non-carbap-
enem antibiotics such as cefotaxime, ceftazidime and 
cefepime [10].

AmpC is a chromosomally encoded group I, class C 
cephalosporinase produced by K. aerogenes at basal lev-
els. The presence of β-lactams, such as cefoxitin and 
imipenem, highly induce AmpC expression [23], which 
involves a complex network of regulatory genes closely 
linked with peptidoglycan recycling [24]. During anti-
biotic treatment, the balance of peptidoglycan synthesis 
is compromised, releasing GlcNAc-anhydro-MurNAc-
oligopeptides into the periplasm. Resulting murapeptides 
are transported into the cytosol by an AmpG transporter 
encoded by ampG [25]. However, AmpG has no influence 
on ampC induction, nor does it show a gene dosage effect 
[26]. Upon entry into the cytosol, the GlcNAc sugar resi-
due is removed by β-N-acetylglucosaminidase (NagZ) to 
generate 1,6-anhydromuropeptide, which is processed by 
N-acetyl-anhydromuramyl-L-alanine amidase (AmpD) 
during the non-induced state [27, 28]. However, growth 

in the presence of β-lactams leads to increased break-
down of peptidoglycan or mutations in the ampD gene 
and may eventually lead to an increased intracellular con-
centration of murapeptides [29]. Another gene, ampE, 
located near ampD; AmpD modulates the response 
exerted on β-lactamase expression by AmpE [30].

In the carbapenem-resistant KE-Y1 wild-type strain, 
this increased concentration of intracellular murapep-
tides might have induced the AmpC production by 
interacting with the LysR-type transcriptional regula-
tor AmpR, making the strain resistant to carbapenems 
[31]. The ampR gene is located immediately upstream of 
ampC and encodes a DNA-binding protein that activates 
ampC [32, 33].

Consistent with the above observations and data 
obtained in this study, the ampG knockout implicates 
this protein as a potential pharmaceutical target for con-
trolling ampC hyper-expression. Studies indicate that 
cells lacking AmpD or AmpG lose 40% of the peptidogly-
can layer per generation [31]. Both carbapenem-suscep-
tible transposon insertion mutants KE-Y3 and KE-Y6 
contained an ampD gene; therefore, the susceptibility to 
the carbapenem was due to the loss of functional ampG. 
Similar studies previously suggested the role of AmpG in 
the antimicrobial resistance of P. aeruginosa and K. cloa-
cae [26, 34].

Conclusions
To our knowledge, this is the first report illustrating the 
role of AmpG in carbapenem resistance in K. aerogenes. 
We used knockout studies with transposon mutagen-
esis in K. aerogenes KE-1 and the CRISPR–Cas9 gene 

Fig. 2  Mauve alignment of KE-Y1 (top), KE-Y3 (middle) and KE-Y6 (bottom) strains. As determined by progressive Mauve alignment, homology 
(colored blocks) was noted among the three strains. In the KE-Y6 strain, one locally collinear block (~ 36 Mb) was reversed; however, there was no 
loss of function for any genes
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Fig. 3  Amino acid sequence alignment and AmpG KE-Y1 structure modeling. A The Amino acid sequence alignment results of AmpG in 4 species; 
Klebsiella aerogenes (CP045870), Klebsiella pneumoniae (KN046818), Escherichia coli (CP034384), Pseudomonas aeruginosa (CP053028). Red stars are 
conserved activation motif residues. B The picture shows the homology modeling structure of AmpG K.aerogenes KE-Y1. The labeled residues are 
conserved activation motif residues
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Fig. 4  Linear comparison of multiple genomic loci around the AmpG permease between the KE-Y3 vs KE-Y1 (top) and KE-Y6 vs KE-Y1 (bottom). 
Both images show the transposon insertions in the KE-Y3 and KE-Y6 mutant derivatives. In KE-Y6, AmpG has been truncated in the middle due to 
the insertion of transposon. However, in strain KE-Y3, transposon insertion is immediately upstream of AmpG, resulting in the loss of the promoter 
required for its expression

Fig. 5  Diagram indicating the genes responsible for peptidoglycan recycling. This illustrates the position of the AmpG-AmpC-AmpR-AmpD gene 
network in the whole genome of KE-Y1, KE-Y3, and KE-Y6. The AmpG permease coding sequence (CDS) has been interrupted by the transposon 
(blue) in KE-Y3 and KE-Y6
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knockout system to inactivate AmpG permease in 
a multidrug-resistant clinical isolate of K. pneumo-
niae. Additionally, using gene complementation, we 
reversed carbapenem resistance to validate our find-
ings. Future studies should explore additional AmpG 
protein inhibitors as therapeutic drugs for controlling 
antibiotic resistance. Also, the other inactivated genes 
in our study due to mutagenesis should be further ana-
lyzed to detect any additional change in the phenotype. 
The transposon mutagenesis approach could be used 
to understand novel resistance mechanisms in other 
classes of bacteria to potentially identify other antibac-
terial targets.
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